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Abstract—In industry, prognostic health management (PHM)
is used to improve the system reliability and efficiency. In PHM,
remaining useful life (RUL) prediction plays a key role in
preventing machine failure and reducing operation cost. Recently,
with the development of deep learning technology, the long short-
term memory (LSTM) and convolutional neural networks (CNN)
are adopted into many RUL prediction approaches, which show
impressive performances. However, existing deep learning based
methods directly utilize raw signals. Since noise widely exists
in raw signals, the quality of these approaches’ feature repre-
sentation is degraded, which degenerates their RUL prediction
accuracy. To address this issue, we firstly propose a series of new
handcrafted feature flows (HFFs), which can suppress the raw
signal noise, and thus improve the encoded sequential information
for the RUL prediction. Additionally, to effectively integrate
our proposed HFFs with the raw input signals, a novel Bi-
LSTM based two-stream network is proposed. In this novel two-
stream network, three different fusion methods are designed to
investigate how to combine both streams’ feature representations
in a reasonable way. To verify our proposed Bi-LSTM based two-
stream network, extensive experiments are carried out on the
C-MAPSS dataset, showing superior performances over state-of-
the-art approaches.

Index Terms—Remaining Useful Life (RUL) Prediction, Bi-
directional LSTM, Two-stream Network, Deep Learning, Time
Series

I. INTRODUCTION

Remaining useful life (RUL) prediction acts as a core task in
the prognostics and health management (PHM), which predicts
the machinery failure, prevents accidents and lowers operation
cost. Generally, the RUL prediction refers to use time series
data from multiple sensors to predict the remaining life of
a machine. Currently, in the RUL prediction task, existing
approaches fall into two categories: model based and data
driven methods. In the model based methods [1]-[3], the
prior knowledge on a mechanical system (or component) is
required to formulate the system’s degradation characteristics.
However, with the rapid progress of industry, mechanical
systems become complex, and extensive prior knowledge is
required in model based methods. This makes it difficult to
apply these methods to predict the RUL. In comparison, data
driven methods regard the mechanical system as a black box.
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Instead of requiring the dynamics of a system, data driven
methods only need to collect the sensor data, which makes
these methods applicable to complex mechanical systems.

Recently, deep learning technology adventures rapidly and
shows its promising performance in many industry applica-
tions [4]-[7]. Some data driven methods [4]-[6], [8]-[15]
which utilize the deep learning technology, are proposed for
the RUL prediction. The approach [8] firstly investigates the
effectiveness of the deep learning technology in the RUL
prediction, where a convolutional neural network (CNN) is
proposed. They extend the convolution and pooling layers to
the temporal dimension for capturing the temporal relationship
among signals. After that, several CNN based methods [5], [6],
[11] are proposed to explore the temporal feature capability
for CNN based methods.

Apart from it, long short-term memory (LSTM) is very
popular in the nature language processing field, which is
good at learning the long-term information or capturing the
sequential information. Since sequential information is im-
portant for the RUL prediction, LSTM is widely applied in
many methods [8]-[10] to predict the RUL. The approach
[10] directly utilizes LSTM to predict RUL by exploiting
the long-term dependencies. To further improve the capac-
ity of LSTM in capturing the long-term dependencies, [8]
proposes a bi-directional LSTM based approach, which can
accept time series data from two directions and shows better
performances than traditional LSTM based approaches. In
[9], the attention mechanism is embedded into the LSTM,
which further improves the prediction accuracy further by
investigating the relationship across different time steps. In
[16], a reconstruction loss is proposed for enhancing the
encoded feature representation.

Deep learning technologies like CNN and LSTM are used
in many approaches for the RUL prediction. However, these
methods are directly applied on the raw signals including
random noise. This kind of random noise may affect the
performances of these approaches. In Fig. 1, we illustrate four
time sequences from sensors. Affected by this random noise,
the raw signals fluctuate. The encoded sequential information
based on this raw signals is degenerated. Approaches only
based on the raw signals cannot accurately predict the RUL.

To solve this problem, we propose a novel Bi-LSTM based
two-stream network in this paper. Our proposed Bi-LSTM
based two-stream network aims to effectively integrate the
raw signals with an additional sequence of signals called
handcrafted feature flows (HFFs), which are proposed by us
in this paper. Different from raw signals, our proposed HFFs
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Fig. 1: Four sequences of raw sensor signals are shown. Noise
widely exists in these signals.

are computed statistically among the temporal axis, which can
suppress the influence caused by the random noise from raw
signals. Our proposed HFFs clearly show the sensor signal
variation trend. Apart from it, bi-directional long short-term
memory (Bi-LSTM) has shown a strong capacity to capture
the sequential information. To integrate our HFFs with the raw
input signals, we propose a Bi-LSTM based two-stream net-
work. In our proposed Bi-LSTM based network, we regard a
Bi-LSTM as an unit, and utilize several Bi-LSTM units to form
a stream for processing the input data. Two streams are used to
capture the sequential information for raw input signals and the
HFFs, respectively. After getting these two produced features,
a fusion module is proposed to combine these features together
and forward the combined feature to a regressor. To effectively
combine these two features, we investigate different fusion
methods and propose an effective fusion module for our two-
stream network. Extensive experiments are conducted on the
well-known C-MAPSS dataset [17], showing state-of-the-art
performances.

This work is extended from its preliminary version [18].
We summarize the main changes made to our original work
as follows. 1) A series of novel handcrafted feature flows are
proposed. Compared with our preliminary handcrafted feature,
our proposed handcrafted feature flows not only suppress the
raw signal noise, but also provide temporal information for
the RUL prediction. 2) Compared with our preliminary work,
a new Bi-LSTM based two-stream network is proposed to
effectively fuse raw signals and our handcrafted feature flows.
With our proposed handcrafted feature flows and the two-
stream network, the RUL can be predicted accurately.

The main contributions in this paper can be summarized as
follows:

1) Handcrafted feature flows are proposed to suppress the
noise existing in raw input signals. With our proposed
HFFs, we can easily capture the sequential information,
and improves the RUL prediction accuracy.

2) We propose a Bi-LSTM based two-stream network. Sev-

eral different fusion methods are proposed to effectively
integrate our HFFs with the raw input signals.

The remaining of the paper is organized as follows: a
comprehensive review on related works is given in Section
IL. In Section III, we firstly present our proposed handcrafted
feature flows and then propose our Bi-LSTM based two-stream
network. Experimental settings, network hyper-parameters,
evaluation methods, and our experimental results are discussed
at Section IV. Following it, we present our conclusion in
Section V.

II. RELATED WORK

RUL prediction has been studied for tens of years. Recently,
with the remarkable progress of the deep learning technology,
many deep learning based methods are proposed for the RUL
prediction. In this section, we review some advanced deep
learning based methods in the RUL prediction.

In the RUL prediction, deep learning based methods can be
roughly divided into three categories: CNN based methods,
LSTM based methods and CNN-LSTM based methods. In
CNN based methods, [4] firstly explores the effectiveness
of CNN on the RUL prediction, showing a significant im-
provement than existing methods. After that, [5S] proposes
a time window to augment the training data and uses this
augmented data for the neural network training. A multi-
scale CNN [19] is proposed to combine both local and global
information together for a better performance. The approach
[6] proposes a double-CNN to divide the RUL prediction into
two stages and provides an accurate RUL prediction. MSCAN
[20] proposes to utilize a self-attention scheme to exploit the
distinction between multiple sensor data and develops a multi-
scale learning strategy to capture the sequential information.
Multi-Head Net [21] is proposed to consider the detailed time
sequence information for the RUL prediction.

Apart from it, some methods are proposed according to
LSTM regarding to its strong capacity in capturing temporal
features. [10] proposes a LSTM based method, which tries to
fully utilize the sequential dependencies and learns the hidden
pattern existing in time series. The method [9] introduces an
attention mechanism to the LSTM for further improvement.
Although LSTM is able to learn the long-term dependency, it
only accepts the time sequence in a single direction and the
potential feature information is not fully exploited. To alleviate
this issue, [22] adopts the bi-directional LSTM, which learns
temporal information from two directions and provides a better
performance. In deep learning, gated recurrent unit (GRU) is
also widely used to capture the sequential information. The
method [23] combines the GRU with an attention scheme
together to predict the RUL. Following it, a bi-directional
GRU is proposed in BiGRU [24], where an attention scheme
and a skip connection are applied to exploit the long term
dependencies among multiple sensor data. To further improve
the accuracy in the RUL prediction, a type of CNN-LSTM
based methods [8], [11], [25] are proposed, where they use
a CNN to extract features from raw data and utilize the
LSTM to encode the temporal information. These CNN-
LSTM based methods produce some impressive performances.
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Fig. 2: The overview of our proposed method.

Recently, contrastive learning [26], [27] shows great success
in improving the feature representation for deep learning
based approaches. Several approaches [28], [29] propose to
utilize the contrastive learning to improve the RUL prediction
performance. CADA [28] designs a contrastive loss [30] to
learn the domain-invariant features. In the method [29], a
Siamese network is employed to prevent the neural network
from over-fitting during the training process.

Various deep learning based methods have been proposed.
However, these methods directly accept the raw sensor data
which contains noise. This noise from raw signals may affect
the performances for these methods. To solve this problem,
we propose the handcrafted feature flows (HFFs). Then, a Bi-
LSTM based two-stream network is designed to effectively
fuse both raw input signals and our HFFs together, producing
state-of-the-art performances.

III. METHODOLOGY

In this section, we present our proposed handcrafted feature
flows and our bi-directional LSTM (Bi-LSTM) based two-
stream neural network. The pipeline of our proposed method is
illustrated in Fig. 2. Given the raw sensor signals, X € RT*C
where T is the length of the signal and C' represents the sensor
number. We firstly generate the corresponding handcrafted
feature flows (HFFs) X. Then, both raw input signal X and
the HFFs X are forwarded to our proposed Bi-LSTM based
two-stream network to predict the RUL prediction.

A. Handcrafted Feature Flows

In this subsection, a series of new handcrafted feature flows
(HFFs) are proposed to suppress the noise existing in the raw
input signals.

To produce our proposed HFFs, several handcrafted features
are computed at first. We adopt two kinds of handcrafted
features: amplitude average and the trend coefficient of linear
model [18]. Given a specified temporal length ¢, the amplitude
average for the sequence of signals from the sensor c is
computed according to Eq. 1.

HC

avg

= Foug(X©,t Z Xe(i (1)
where X¢(i) indicates the signal value from sensor c¢ at ith
time step.

Amplitude average only reflects the mean value within a
period of time. To provide more information for describing
the raw signals, we propose to use a polynomial to fit the raw
signals and use the corresponding coefficients to describe the
raw signals. This process can be formulated as:

Hyp = Fpp(X€,1). 2)

p

Concretely, we select a simple but effective polynomial
model to fit the given raw signals as follows:

(i) = wo + wiz(i). 3)

where wg and w; are the coefficients. To estimate these two
coefficients, the least squares method is applied to minimize
the difference: ||wo + w1z (i) — y(i)||?, where y(i) represents
the real signal value. These coefficients are used as our
another handcrafted feature. Generally, to effectively capture
the sequential feature, we pre-process the given raw data by
normalizing them. Thus, wy becomes zero, and we use w; as
our another handcrafted feature.
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Fig. 3: The pipeline of our proposed handcrafted feature flow
generation.

It is challenging to use these two handcrafted features above
to indicate the sequential information for time series signals.
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To solve this problem, we generate the HFFs by computing
these features under different temporal length. As illustrated
in Fig. 3, given a sequence of input signal with 7' temporal
length from the sensor ¢, we firstly compute our handcrafted
features Hg,, and Hj, in varied temporal length ¢, which
increases from 2 to T'. After that, we concatenate them together
according to Eq. 4.

Fhff(Xc) = Concat(Favg(Xca 2), FPf(XCv 2), Favg(Xc> 3),
For(X€,3), Faug(X©,4), Fpr(X©,4),. ..,
Foug(X,T), Fpp(X€,T)).

“4)

For the input signals from C' sensors, we compute C' groups

of handcrafted feature flows and combine them together via a
concatenation operation as follows:

X = COHC&t(Fhff(X1>,Fhff(X2),

5
Fnpp(X%),.. Fapp(X9)), )
where X indicates the final produced HFFs. Given the raw
input signals X € RT*C we can obtain our HFFs, X e
RT-1x2C T is the window size, and its value is indicated
in the Sec. IV
With our proposed handcrafted feature flows, the noise
in the raw input signals is suppressed, and the sequential
information can be easily captured. This improves the RUL
prediction accuracy.

B. Bi-LSTM based Two-stream Network

To effectively combine our proposed HFFs with the raw in-
put signals, we propose a Bi-LSTM based two-stream network
in this subsection.

As shown in the right side of Fig. 2, our proposed Bi-
LSTM based two-stream network consists of two streams, raw
stream and HFF stream. The raw stream is used to capture
the sequential information from the raw input signals, and the
HFF stream is utilized to process our proposed HFFs. In our
proposed two-stream network, we stack two consecutive Bi-
LSTM units into a stream for extracting temporal features.
After that, two fully connected layers are adopted as a feature
decoder. Finally, two encoded feature vectors are combined
together in the fusion module, which are used to predict the
final results.

Input: = i % =1
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Fig. 4: The illustration for bi-directional LSTM.

Bi-directional LSTM (Bi-LSTM) has been widely used in
the RUL prediction task [8], [22], [31], which has shown a
strong capacity in capturing the sequential information. As
illustrated in Fig. 4, compared with the vanilla LSTM, Bi-
LSTM receives the sequence of data in both two directions:
forward and backward. For the forward direction, the compu-
tation process can be formulated as follows:

W) = (T (), B (t—1),w)
(Wi @ () + Wi b (£ — 1))

() =
F ) = o(@iy @) + Tas b (t— 1)

_ LT = (@7 (0) + B F (1 - 1)
)T = o (Wi T () + Bo h (1)) ’
2= FHodt-1+ 70 0T

T () = T (1) © tanh(7 (1))

- (6)
where i (1), ?(t), G (t), and O (t), indicate the gates for
input, forget, 3911 and output at time ¢ for the forward direction,
respectively. A (¢) and ¢ () represent the hidden and cell state
at time ¢ in the forward direction, respectively. o denotes the
sigmoid function, and ® indicates the Hadamard product. E?z-i,
ﬁhi, E?Ivf, th, Wig, ﬁhg, Eﬁo, and E?h(,, are the learnable
weights.

Similar to the forward directional process, the backward
process is computed as below:

W)= T, B+ 1),w)
T) = o(WuT (@) + Tni h(t+1))
Ft) = o(Wi T () + Way b (t+1))
J5m= tnh(%lg:ﬂ()+$§hg (t+1))
B %(t):if_(% F(t)+ Whoh <_(t+1))
Z(t)=f(t)® ct+1)+ i ()o@
h(t) = % (t) © tanh(‘C (t))

(N
To effectively combine the outputs from two directions, we
apply the element-wise addition fusion on the Bi-LSTM:

Ofinal(t) = T (t) + 0 (¢). ®)
After two consecutive Bi-LSTM layers, two fully connected
layers are adopted as feature encoders. Following by it, a
fusion module is proposed to fuse both streams.

In our proposed two-stream network, the raw stream pre-
dicts the RUL according to the raw input signals, while the
HFF stream estimates the RUL based on the HFFs which
are produced by aggregating handcrafted features across time
steps. Based on the raw signals, the raw stream can rapidly
capture the characteristic variation of a machine’s RUL, but
may be easily affected by the random noise. In comparison,
with our proposed HFFs, the HFF stream utilizes the history
information to predict the RUL. The influence of random noise
can be suppressed, but a late prediction may be produced in the
HFF stream. To effectively use these two streams, we proposed
three different fusion methods, as shown in Fig. 5.
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Late Fusion. An intuitive approach to use these two streams
is to weighted sum the predictions from these two streams. In
our late fusion, we fuse the two streams at the result level,
where the same weight is given on these two predictions for a
weighted summation. Concretely, as illustrated in Fig. S5a, we
use these two streams to predict the RUL, respectively. Then,
we compute the average on these predictions. This process can
be formulated as follow:

Y, = Avg(Y,(£+(X)), Ya(fu(X))), 9)

where f,.(X) and f;,(X) indicate the produced feature vector
for the raw stream and the HFF stream, respectively, and Y,
and Y}, represent the regressor prediction for the raw stream
and the HFF stream, respectively. Our late fusion method can
be realized easily by running each stream separately. This does
not require additional GPU memory. In the late fusion, we
assume that the predictions from these two streams are equally
important. However, this assumption may be not consistent
to the real scenario. Apart from it, a more complex fusion
method may be more effective than the addition operation.
To combine these two streams better, we propose another two
fusion methods.

Concatenation Fusion. Different from the late fusion,
our proposed concatenation fusion method combines the two
streams on the feature level. We use two streams to encode
the useful information, respectively, and then provide these
encoded features to a decoder. In this fusion method, we do not
specify a specific fusion method, but leave this to the decoder
for learning an effective fusion approach. As illustrated in Fig.
5b, given two encoded feature vectors: fr € R? and fn € R,

the fused feature vector f, € R? is computed as follow:

fo = Concate(f,(X), fn(X)). (10)

This operation directly concatenate two feature vectors to-
gether, which results in the dimension d =d+d. After that,
we forward this fused feature vector into a fully connected
layer and a regressor to predict the RUL. The concatenation
operation increases the dimension of the feature vector from
dtod, and expands the model size. This may increase the
difficulty in training a neural network. To solve this issue, we
propose another fusion method.

Addition Fusion. Different from the concatenation fusion
method, we specifically defined an element-wise addition
operation to fuse the features from two streams. Since a neural
network produces different response values to different input
signals, we assume that the encoded feature from each stream
is the weighted feature vector. Based on this assumption,
we propose the element-wise addition fusion method. As
displayed in Fig. 5c, we directly add one feature vector to
another feature vector. This process is defined at Eq. 11.

fo = fr(X)+ fu(X), (11)

where both feature vectors are combined together by the
element-wise addition operation and the dimension of the
fused feature vector is not increased.

We implement these three different fusion methods in our
experiment part and investigate their performances on the
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Fig. 5: Our proposed fusion methods.

RUL prediction. With our proposed Bi-LSTM based two-
stream network, both raw input signals and our HFFs are
effectively combined, which improves the performance on the
RUL prediction.

IV. EXPERIMENTS

A. Dataset Discreption

A widely used dataset, commercial modular aero propul-
sion system simulation (C-MAPSS) [17], is used to verify
the effectiveness of our proposed modules. The C-MAPSS
dataset includes time sequential data from 21 sensors in total,
which record the degradation process for aircraft engines as
shown in Fig. 6. The information recorded from these sensors
includes temperature, pressure, and speed measured by sensors
distributed on different locations for the engine. There are four
subsets: FD001, FD002, FD003 and FDO004, and their details
are listed in Table II. As listed in Table II, FD002 and FD0O0O4
are more complex than others. They contain more training and
testing trajectories, and are involved in six different operation
conditions.
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TABLE I: Comparison with other methods.

Dataset [ FDO001 [ FD002 [ FDO003 [ FD004
Evaluation RMSE Score RMSE Score RMSE Score RMSE Score
HDNN [32] 13.02 245.00 15.24 1282.42 12.22 287.72 18.16 1527.42
CNN-LSTM [33] 14.40 290.00 27.23 9869.00 14.32 316.00 26.69 6594.00
BLCNN [34] 13.18 302.28 19.09 1557.55 13.75 381.37 20.97 3858.78
DCNN [5] 12.61 273.70 22.36 10412.00 12.64 284.10 23.31 12466.00
BiLSTM-ED [35] 57.00 273.00 | 49.00 3099.00 42.00 574.00 40.00 3202.00
LSTM-BS [36] 14.89 481.00 26.86 7982.00 15.11 493.00 27.11 5200.00
ATS2S [16] 12.63 243.00 14.65 876.00 11.44 263.00 16.66 1074.00
CNN-BiLSTM [8] 12.13 174.00 16.01 1230.00 11.96 242.00 18.10 1513.00
MF-LSTM [18] 12.15 233.12 14.26 747.97 12.57 254.11 17.63 1174.83
Bi-LSTM based Two-Stream Network (ours) 11.96 206.33 14.48 726.82 13.41 223.36 15.11 892.39
fully connected layers in each stream are set as 16. The hidden
Fan Compressor  Combustor  Turbine i i i
Modules { (LPC and HPC) (HPTand LPT) number of the fully connect.ed layer in the fus1on. module is
l set as 8. For data argumentation, the dropout layer is used and
. the dropout rate is 0.2. Each fully connected layer is followed
SRR by a ReLU layer. In the training process, the batch size is 10
;:}HL" L < and the epoch number is 50. All experiments are conducted
Physical s i T with PyTorch and the Ubuntu 20.04 system.
sensor { Temp. Temp. Temp.
meas. Pressure  Pressure Pressure Speed Temp.  Temp. .
C. Evaluation Methods
Fig. 6: Illustration for an aircraft engine. According to approaches [8], [9], we choose two metrics,
root mean square error (RMSE) and scoring function, to
TABLE II: Overview of C-MAPSS Dataset evaluate the performance of our proposed method.
1) RMSE. The RMSE is commonly used to compare the
Subsets | Conditions | Fault Modes | 1raining Testing difference between the predicted value and the actual remain-
fajectones | jectones i ful life. It is defined as follows:
FDOOI 1 1 100 100 1ng usetu : :
FDO002 6 1 260 259
FD003 1 2 100 100
FDO04 6 2 248 249 (12)

1) Data Setting: Although there are 21 sensors in this
dataset, some sensor data remains a constant value, providing
less information for this task. Following the protocol in [8],
[9], we remove the redundant sensor data during training and
testing. There are 14 sensor data used in this paper.

Sliding window [5], [9], [37] is utilized to segment the
sensor data, where the window size is set to be 30 in this
paper. For the length of the data sequence less than 30,
we simply pad the segmented data with its first value. Data
normalization has been proven to be important in the RUL
prediction. According to [8], the min-max normalization is
used to normalize all sensor data. Following [38], we also
employ the piece-wise linear for RUL values. Specifically,
we set the maximal RUL value as 125. To improve the RUL
prediction, we also concatenate the operation settings with the
raw inputs signals together and forward them into the raw
input signal stream. The network structure for each stream is
set as the same. During the training process, the training data
is divided into 5 folds. In each training epoch, 4 folds are
selected from these 5 folds for training.

B. Network Hyper-parameters

The hidden number for the first and the second Bi-LSTM
layer is 16 and 32, respectively. The hidden number for the two

where N is the number of samples, r; and g; are the predicted
RUL value and the true RUL value, respectively.

2) Scoring Function. The score function is proposed in the
C-MAPSS dataset. It is defined based on the real industry
situations. In practice, late predictions may cause more serious
consequences than early predictions. In view of this, the
scoring function gives a higher penalty on the late estimation
than the early estimation. This scoring function is computed

as below:
5= {

D. Comparison with Other Methods

9i=Tj

(6 13

(e"'ifgi

N
Zi:l

N
Zi:l

-1,
71)7

i < Gi (13)

T 2> g

In this subsection, we compare our Bi-LSTM based two-
stream network with other state-of-the-art methods in Table 1.
Among our proposed fusion methods, the element-wise addi-
tion method achieves the best performances. We compare our
Bi-LSTM based two-stream network which uses the addition
fusion module, with other methods.

As listed in Table I, we compare our method with
other state-of-the-art methods: HDNN [32], CNN-LSTM [33],
BLCNN [34], DCNN [5], BiLSTM-ED ([35], LSTM-BS [36],
ATS2S [16], and CNN-BILSTM [8] in four subsets of the
C-MAPSS dataset. We re-implement our preliminary method
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TABLE III: Ablation study for our proposed Bi-LSTM based two-steam network.

FDO001 FD002 FDO003 FD004
Method RMSE Score RMSE Score RMSE Score RMSE Score
Raw Stream (baseline) 12.58 228.07 14.05 1040.85 12.81 224.74 15.25 916.96
HFF Stream 13.65 298.39 14.36 879.24 15.32 339.53 18.78 1818.05
Late Fusion 13.14 229.19 14.54 797.33 14.06 223.95 18.13 1245.09
Concatenation Fusion 14.69 301.52 14.37 744.51 15.44 312.55 14.49 910.53
Addition Fusion 11.96 206.33 14.48 726.82 13.41 223.36 15.11 892.39

MF-LSTM [18] and improve the data pre-processing part,
which further improves the performances of our MF-LSTM.
Compared with other methods, our proposed Bi-LSTM based
two-stream network surpasses other methods on most sub-
sets, and sets new state-of-the-art performances. The CNN-
BiLSTM [8] which is a hybrid method, performs good on the
two simple subsets, i.e., FDOO1 and FD0O03, where our pro-
posed method can achieve comparable performance. Besides,
our proposed method significantly outperforms it on the two
challenging and complex subsets, i.e., FD002 and FD004, in
terms of both RMSE and score.

E. Ablation Study

To show the effectiveness of our proposed fusion meth-
ods, the ablation study is performed in this subsection. The
experimental results are listed in Table III. Our proposed Bi-
LSTM based two stream network is composed of two streams:
raw stream and HFF stream. To show the effectiveness of
our proposed fusion method, we firstly show each stream
performances on four different subsets. Then, we list the three
different fusion method performances.

As listed in Table III, our raw stream is treated as our
baseline, which is composed of two consecutive Bi-LSTM
layer and a fully connected layer. After that, another fully
connected layer is used as a regressor to produce the RUL
prediction. Benefited from our improved data pre-processing,
our baseline Bi-LSTM shows a good RUL prediction accuracy
on four subsets. FDOO1 and FDOO3 are relatively simple. Our
baseline achieves a RMSE of 12.58 and a score of 228.07
on FDOO1, and a RMSE of 12.81 and a score of 224.74 on
FDO003. In FD002 and FDO0OO04 subsets, more conditions and
fault modes are included, which increases the difficulty in
the RUL prediction. In the FD002 subset, our baseline gets a
RMSE of 14.05 and a score of 1040.85. In the FD004 subset,
our baseline achieves a RMSE of 15.25 and a score of 916.96.

Our HFF stream only utilizes our proposed HFFs to predict
the RUL. Since our HFFs are generated according to the
aggregation across a sequence of signals, the signal values
at the last time step are not available. This makes the HFF
stream difficult to predict the RUL accurately. However, our
HFF is able to suppress the noise existing in the raw signals,
which enables it to achieve satisfactory performances and to
even surpass our raw stream on the FD002 subset (879.24
Score v.s. 1040.85 Score).

To integrate our proposed HFFs with the raw input signals,
three fusion methods are proposed by us. These fusion meth-
ods predict the RUL based on the two streams, and these fusion
performances are affected by the RUL prediction accuracy of

each stream. In this paper, the fusion method is expected to
extract the useful information, filter out the wrong features,
and achieve a better performance than each single stream. We
will evaluate the effectiveness of our three fusion methods with
the aspects discussed above.

According to Table III, our proposed late fusion method
performs better than each single stream on FD001, FD002, and
FDO003. However, it performs inferior to our raw stream on the
FDO004. This may be because that our HFF stream performs
worse than our raw stream on the FD004, which affects the
late fusion method performances. Our late fusion method only
combines both stream on the result level, which limits its
fusion effectiveness. To solve this problem, we investigate
another two feature level fusion methods: concatenation fusion
and element-wise addition fusion.

As listed in Table III, after applying our concatenation
fusion method, the performances on the FD002 and FD004
are improved. This indicates that the our concatenation fusion
method can more effectively integrate our HFFs with the
raw input signals by combining two streams on the feature
level. However, the performances of our concatenation fusion
method on the FD0OO1 and FDOO3 are surpassed by our late
fusion methods. The reason may be that the concatenation
operation expands the feature dimension, and increases the
training difficulty. Since the training trajectory number in
FDOO1 and FDOO3 are smaller than that in FD002 and FD004,
our concatenation fusion method is not fully trained. This
limits our concatenation fusion performances. To mitigate this
issue, we propose the element-wise addition fusion method.
From Table III, it can be seen that our addition fusion
method shows the best performances among four subsets.
Especially for the FD004, our addition fusion method effective
combines features from both streams and sets state-of-the-art
performances on the C-MAPSS dataset.

F. RUL Prediction Result Analysis

To analyze the RUL accuracy on the C-MAPSS dataset
in details, we visualize the detailed prediction results of our
proposed method on the C-MAPSS dataset.

In Fig. 7, the prediction results for all test engines on four
subsets are visualized. As shown in Fig. 7, the RUL prediction
accuracy of our method increases when the true RUL decreases
to zero. This character fulfills the industrial requirement in
practice, that the RUL prediction system should accurately
raise an alert when the industry tends to fall into failures.
In the C-MAPSS dataset, compared with FD002 and FD004,
FDO0O01 and FDOO3 subsets involve fewer test trajectories. Our
approach shows better performances on FDOO1 and FD003
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Fig. 7: Illustration for the RUL prediction results on test sets.

than FD00O2 and FDO0O04. Since FD002 and FDO004 include
more complex scenarios, the RUL prediction accuracy is not
stable. We will investigate to solve this problem by considering
condition information in the future.

Apart from it, we also visualize several examples of life-
time prediction results in Fig. 8. Among four subsets in
the C-MAPSS, FD002 and FD004 are difficult and complex,
which include different conditions. To show the effectiveness
of our approach, we visualize two examples for the life-time
predictions on these two subsets, respectively, in Fig. 8. In
Fig. 8, it can be found that our proposed Bi-LSTM based two-
stream network is able to predict the RUL accurately under
various scenarios.

V. CONCLUSION AND FUTURE WORK

This paper has proposed a series of new handcrafted feature
flows (HFFs) and a novel Bi-LSTM based two-stream network
for the RUL prediction. The proposed HFFs not only suppress
the noise in the raw input signals, but also provides clear
sequential information. To effectively integrate our HFFs,
three different fusion methods are proposed. Through experi-
ments, our proposed method is able to effectively improve the
RUL prediction, and sets a new state-of-the-art performance
compared with other benchmark methods on the C-MAPSS
dataset.

In this paper, our handcrafted features have been shown
to be effective in the RUL prediction. In future works, more
effective handcrafted features will be investigated for further
improving the performance of RUL prediction. Besides, the
CNN-LSTM based approaches [8] have shown better feature
representation capability than the LSTM based methods on the
RUL prediction task. Thus, we will try to integrate the CNN-
LSTM based neural network with our proposed two-stream
network architecture to boost the RUL prediction performance.
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