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Abstract

In this paper, we propose a decentralized learning algorithm to restore communication connectivity in multi-agent
formation control. The time-varying connectivity profile of a mobile multi-agent system represents the dynamic
information exchange capabilities among agents. While connected to the neighbors, each mobile agent in the proposed
scheme learns to raise the team connectivity. When the inter-agent communication is lost, the associated trained neural
network generates appropriate control actions to restore connectivity. The proposed learning technique leverages an
adaptive control formalism, wherein a neural network tries to mimic the negative gradient of a value that relies on
the agent-to-neighbor distances. All agents use the conventional consensus protocol during the connected multi-agent
dynamics, and under communication loss, only the lost agent executes the neural network predicted actions to come
back to the fleet. Simulation results demonstrate the effectiveness of our proposed approach for single/multiple agent
loss even in the presence of velocity disturbances.
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1. INTRODUCTION

In the field of automatic control and robotics, multi-agent system (MAS) has been one of the most active research
areas with a wide range of applications including distributed control of robots, resource allocation and management,
search and object retrieval, surveillance and rescue operations, and target tracking and formation [1, 2, 3]. A dynamic
fleet of multiple cooperative agents works most efficiently upon reaching a consensus [1, 4]. Essentially, the infor-
mation sharing capability among all team members relies on its communication connectivity. A cooperative mission
mandates a positive connectivity enabling information flow among multiple agents to take appropriate actions. A
strong connectivity enhances the robustness of a multi-agent network while improving its dynamic stability [4, 5]. On
the contrary, loss of agent(s) deteriorates the team performance and might even lead to a mission failure. Earlier works
have contributed in designing control laws for maximizing connectivity [5, 6], maintaining and improving connectiv-
ity during formation control [7], and devising potential fields to preserve and increase connectivity [8, 9]. However,
a little attention has been paid on restoring it after there is a loss of inter-agent communication. This work presents a
decentralized strategy to bring back the lost/disconnected agent(s) during a formation control task.

A cooperative task like formation control demands connected multi-agent configurations throughout the dynamics
[4, 2, 7, 10]. A major concern is: what happens if agents get disconnected during a mission due to various reasons
including faults and attacks [11, 12]? There exist ways to drive the disconnected agents to a desired formation using
the global localization [13], though the same problem becomes intractable when agent movements rely on the relative
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localization. Previous research has established resilient connectivity during multi-agent flocking [11] and target track-
ing [14], without addressing agent attrition and recovery related concerns. A distributed and online framework was
developed in [15] for temporal logic path planning and intermittent communication control, where agents can only
communicate at their meeting locations. To solve the distributed synchronization problem of a networked system,
previous research [16] leveraged stochastic modeling to capture intermittent communications among agents under
random occurring update laws in their adaptive controllers. In [17], a distributed coordination strategy is proposed to
establish intermittent communication among agents while monitoring an environment. In search and rescue applica-
tions, Bayesian frameworks [18, 19] proved to be effective in finding the lost target(s) by maximizing the cumulative
probability of detection. Nevertheless, the Bayesian approach does not suggest any direction for the lost agent to
come back to (reconnect with) other teammates. A neural network-based learning mechanism was exploited in [20]
to recover lost agent(s) using global localization, although this study was limited to navigation along a circle.
Current Limitation: The existing research attempted to solve the consensus recovery problem for a multi-agent sys-
tem under node (agent) failure [12, 21, 22], without paying attention to recovering the lost agent(s). In [12], the
concept of connecting neighbor set was proposed to reconfigure agents for merging the sub-graphs resulting from an
external attack, while keeping a balance between improving the communication robustness against external attacks
and enhancing the convergence speed for achieving consensus. Previous researchers [21] designed a monotonically
non-decreasing weight to reconnect the neighbors of a failed agent (placed at cut-node), which belong to different sub-
graphs. To further increase connectivity and achieve fast consensus post recovery, a recent approach tried to reconnect
the disconnected set of neighbors with highest degrees [22]. Nevertheless, the achieved maximum connectivity was
less than the perfect case (no failure), since their research did not account for getting back the failed agent. Recently,
a history following algorithm is proposed in [23] to recover disconnected agents during multi-agent dynamics, which
moves memory enabled agents towards the ideal (predefined) consensus point until their communication gets restored.
However, it might not be feasible to have prior knowledge of an ideal consensus in real-world nonlinear and stochastic
dynamics. To execute the history following algorithm [23], agents not only need memory of an ideal consensus but
also they need to communicate when there is a communication loss and who is lost; such information are difficult to
pass among agents in a decentralized control framework. Clearly, there exists ample scope of research in recovering
the lost agents during multi-agent formation control.
Motivation: In decentralized control of cooperative multi-agent systems, it is not easy to teach the agents since each
one has only access to its neighbor information (data) as long as the entire team is connected via at least one spanning
tree [24]. Severe problem arises when there is a loss of inter-agent communication. A lost agent has no neighbors and
can not receive information from any other teammates. Hence, there emerges the need for a memory-based mapping
technique [25, 26, 27]. Also, in adaptive control formalism [28, 29, 30], neural networks (NNs) have been utilized to
approximate complex mappings involved in solving nonlinear Hamilton-Jacobi-Bellman equations. Previous studies
have shown that an NN-based Adaptive Dynamic Programming facilitates in designing the optimal tracking controller
to drive an unknown nonlinear dynamics towards the desired direction [31, 32]. Such approximations motivate us to
call for a neural network to predict the appropriate control actions for connectivity restoration. Learning an absolute
position-based mapping requires a large amount of training data, so we teach the agents a relative displacement-
based mapping. A learning approach using predefined trajectories lacks generality to offer adaptive solutions. It
is cumbersome to generate various reference trajectories for different initial conditions; especially in the current
problem, agent movements rely on their relative locations where any sudden change causes them to deviate from the
intended paths. Therefore, we prefer an approach that learns relative displacement mapping from the data collected
on the fly.

No previous works, as far as the authors are aware of, addressed the problem of connectivity restoration during
multi-agent formation control, which we attempt to solve here. The contributions of our work are highlighted in the
following.

• The present work adopts a realistic communication model to account for time-varying information exchange
among agents.

• We propose a decentralized learning technique to enable agents taking appropriate actions continually in real-
time, by utilizing only neighborhood based information during the connected dynamics.

• Our proposed approach trains agents to cope with the future risk of connectivity loss along with their coordi-
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nated movements according to a consensus dynamics.

• In our formulation, the lost agent predicts the learnt direction to come back to a mobile fleet, while other
teammates are still engaged in pursuing a formation without looking out for the lost.

The above contributions are supported by simulations while considering single/multiple agent loss(es) along with
the effect of disturbances. The remainder of the paper is organized as follows. In Section 2, we explain the related
multi-agent communications along with concise graph theory basics and relevant information on state-dependent
connectivity. The underlying multi-agent dynamics is discussed and the effect of inter-agent communication loss is
investigated in Section 3. In Section 4, we explain our contributions elaborately and include the current problem
statement, a motivating example, and the proposed decentralized learning algorithm. Section 5 presents the obtained
numerical results, and finally, Section 6 concludes the current work.

2. Multi-agent Communication

2.1. Graph Representation

In this section, we explain a realistic mathematical model to analyze a dynamic multi-agent system (MAS) comprised
of point-mass agents, which leverages a time-varying graph representation, G(t), with a fixed number of nodes or
agents and variable number of edges or communication links. Let, xi ∈ ℜm×1 and x j ∈ ℜm×1 denote the position state
vectors of the ith and the jth agents, respectively; ri j ∈ ℜm×1 denotes the relative displacement vector between agents
(i, j); Ru and Rl are the upper and lower bounds on the communication range of each agent, respectively.
There are total n agents with identical communication ranges and the inter-agent communication links are bidirec-
tional, so the multi-agent graph of order n, i.e. Gn(t), is an undirected time-varying graph. An agent i gets connected
to a neighbor j when their separation, ri j = ∥ri j∥, lies within the communication range, Ru, where the neighborhood
of the ith agent is defined as: Ni(t) = {( j ̸= i) ∈V : ri j = ∥ri j∥=∥ xi −x j ∥≤ Ru}.
The time-varying connections among agents are captured using a time-varying Laplacian matrix [7, 33], whose ele-
ments depend on the separations between the corresponding agents. A state dependent Laplacian matrix of order n
is given as: Ln(X(t)) = Dn(X(t))−An(X(t)), where X(t) denotes the vector comprised of all agent states, Dn is the
Degree matrix, and An is the Adjacency matrix. In accordance with an exponential communication model [5, 6, 7],
the elements of a weighted adjacency matrix (ai j) are given as

ai j(t) =


0 if i = j ;
1 if j ∈ Ni & ri j < Rl ;

e−τ(
ri j−Rl
Ru−Rl

) if j ∈ Ni & Rl ≤ ri j ≤ Ru ;
0 if i ̸= j & ri j > Ru ,

(1)

where τ is a positive constant denoting the rate of decay of the communication strength over distance [7]. The
connection between two agents (i, j) is of maximum strength when their separation ri j is below a lower bound on the
range Rl , it is lost beyond an upper bound on the range Ru, and it varies exponentially within the range from Rl to Ru.

The Degree matrix is a diagonal matrix with elements given as: di(t) =
n
∑

j(̸=i)=1
ai j(t). Consequently, the Laplacian

matrix (Ln = Dn −An) elements can be expressed as

li j(t) =


−ai j(t) for i ̸= j ;

n
∑

j(̸=i)=1
ai j(t) for i = j . (2)

The Laplacian (Ln(t)) for a weighted undirected graph (Gn(t)) is a positive semidefinite symmetric matrix. The
smallest eigenvalue of the Laplacian matrix, λ1 is zero, and the corresponding eigenvector is 1.
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2.2. State-dependent Connectivity

The second smallest eigenvalue of L(t), i.e. λ2(t), is called the algebraic connectivity of the graph, and the
corresponding eigenvector is known as the Fiedler vector [24]. λ2(t) provides a quantitative measure of the entire
network’s connectivity representing the level of information sharing capability among agents at time t.
The communication connectivity measure, λ2(t) of a dynamic MAS, changes with the varying connections among
agents. The algebraic connectivity lies in 0 < λ2(t) ≤ n as long as there exists at least one spanning tree in the
multi-agent graph, indicating any two agents can communicate through direct and/or indirect links. λ2(t) increases
or decreases as the number and/or the strength of inter-agent connections increases or decreases. Intuitively, the state
functional connectivity changes in a concave manner as described below.

2.2.1. Optimal Change in Connectivity
Consider a state-dependent Laplacian matrix Ln(X(t)). λ2(Ln) in fact [5], is a concave function of Ln in the space

1⊥ and it is the infimum of a set of linear functions in Ln given by

λ2(Ln)vT v ≤ vT Lnv, ∀v ∈ 1⊥

or, λ2(Ln) = infv∈1⊥{
vT Lnv

vT v } . (3)

The unit eigenvector of Ln corresponding to the eigenvalue λ2(Ln) is denoted by vF , so vT
F LnvF = vT

F λ2(Ln)vF = λ2
since ∥vF∥ = 1. Note that vF can be computed in a decentralized way by sharing Laplacian row information among
neighbors, according to the Decentralized Orthogonal Iteration Algorithm [5, 34]. After applying a perturbation, the
base Laplacian Ln turns into L̃n.

vT
F(L̃n)vF = vT

F LnvF +vT
F(L̃n −Ln)vF

= vT
F λ2(Ln)vF +vT

F(L̃n −Ln)vF

= λ2(Ln)+< vF vT
F ,(L̃n −Ln)> , (4)

where <> denotes the inner product of two matrices. Also, (3) boils down to the inequality: λ2(L̃n)vT
F vF ≤ vT

F L̃nvF .
Moving forward, (4) leads to the following relation.

λ2(L̃n)≤ λ2(Ln)+< vF vT
F ,(L̃n −Ln)> (5)

In (5), the outer product vF vT
F = Gs represents the supergradient of λ2(Ln), which unveils the optimal direction of

connectivity increase. Therefore, in order to maximize the connectivity, the Laplacian matrix update must abide by

Ln(t +1) = Ln(t)+β (t)Gs(t) . (6)

The above update (6) converges to the optimal solution if the step-size, β (t)> 0, follows the coefficient of a square-
summable series [6].

2.2.2. Optimal Change in Laplacian Elements
Let us now inspect how the optimal change in the connectivity reflects in the Laplacian matrix elements. The Laplacian
matrix Ln can be decomposed as [5]:

Ln = ∑
i=1,2,...,n ; j>i

Cij pi j , (7)

where Ci j ∈ ℜn×n is defined for each pair of agents (i, j): Ciji j = Cij ji = 1, Cijii = Cij j j =−1 if i and j are neighbors,

and 0 otherwise for rest of the entries; pi j = Lni j are the elements of a vector, p ∈ ℜ
n(n−1)

2 ×1, comprised of all the
off-diagonal entries of Laplacian Ln.
At this point, the connectivity maximization problem can be viewed as:

max
X

λ2(Ln(X))≡ max
p

λ2( ∑
i=1,2,...,n ; j>i

Cij pi j) . (8)
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Using the decomposition (7) of λ2(p) in (5), we obtain

λ2(p̃)≤ λ2(p)+ ∑
i=1,2,...,n ; j>i

< vF vT
F ,Cij(p̃i j − pi j)>

= λ2(p)+ ∑
i=1,2,...,n ; j>i

(vT
F Cij

T vF)(p̃i j − pi j) . (9)

According to (9), the supergradient vector g for p is:

gT = [vT
F C12

T vF , ...,vT
F Cij

T vF , ...,vT
F Cn−1,n

T vF ] .

For each element pm = pi j, the relative supergradient takes shape as: gi j = vT
F Cij

T vF = −(vFi − vFj)
2. The update

rule for each element of the vector p is deduced below.

pi j(t +1) = pi j(t)+ γ(t)gi j(t) ; gi j(t) =−(vFi − vFj)
2, (10)

where γ(t) is the coefficient of the supergradient gi j(t) such that γ(t)gi j(t)< 0 ensures pi j(t+1)< pi j(t) [5]. Equation
(10) reveals that the optimal change in the (i, j)th element of Ln depends on the ith and jth entries of the corresponding
Fiedler vector.
To understand how the supergradient affects the evolution of states, (10) can further be reshaped using the definition
of pi j:

ai j(t +1) = ai j(t)− γ(t)gi j(t) ,

or, e−τ r̃i j(t+1) = e−τ r̃i j(t)− γ(t)gi j(t) ; 0 ≤ r̃i j = (
ri j−Rl
Ru−Rl

)≤ 1 . (11)

3. Multi-agent Dynamics

In this section, we explain the main concepts associated with multi-agent motion and control, and investigate the
influence of connectivity in a multi-agent position consensus. We consider a swarm of n agents with the dynamics of
each agent being governed by

ẋi(t) =
[

ẋi(t)
ẏi(t)

]
=

[
vxi(t)
vyi(t)

]
= ui(t) , (12)

where xi(t) = [xi(t), yi(t)]T denotes the two-dimensional position of an agent i at time t, vi(t) = [vxi(t), vyi(t)]
T is

its velocity coordinates and θi(t) = tan−1(
vyi (t)
vxi (t)

) is the heading angle, and ui(t) is the control input. Note that the ith

agent’s position coordinates represent its state in (12), and the associated heading angle changes implicitly with the
changes in states.

3.1. Dynamics of Connected MAS

The following describes a traditional formation controller that works properly for connected multi-agent configu-
rations.
Traditional Consensus Control: Let x̃i(t) = xi(t)− x f i represent the deviation of the current state xi(t) of agent i
from the desired final state x f i. In order to drive a MAS to a position consensus when inter-agent communication is
present, the traditional control objective is to design a control law ui(t) ∀ i such that x̃i(t)− x̃ j(t)→ 0 or xi(t)−x j(t)→
x f i −x f j as t → ∞ for j ∈ Ni. The feedback control action of each agent is given by

ui = ẋi(t) = −α ∑
j∈Ni(t)

ai j(t)(x̃i(t)− x̃ j(t)) , (13)

where ui = ˙̃xi(t) = ẋi(t) ∈ ℜm×1 is the velocity control action applied to agent i; j ̸= i is a neighbor of the ith agent
and Ni(t) represents its neighborhood at time t, ai j(t) is the time-varying weighting factor between the neighbors
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(i, j), and α > 0 is the control gain. Equation (13) governs the dynamics of the ith agent based on its neighborhood
information, which can be extended for all agents using a matrix algebraic form as follows

U = Ẋ(t) =−α(Ln ⊗ Im)X̃(t) , (14)

where X, X̃, U ∈ ℜmn×1; X̃(t) = X(t)−X f , where X(t) = [x1(t),x2(t), ...,xn(t)]T is the total agent state vector
containing all member states at time t and X f = [x f 1,x f 2, ...,x f n]

T is the total final desired state; U = [u1,u2, ...,un]
T

is the total control input vector; ⊗ symbol stands for the Kronecker product; and Im ∈ ℜm×m denotes an identity
matrix. The decentralized controller (14) drives the evolving relative displacement vectors, xi(t)−x j(t), to the desired
displacements, x f i −x f j, without requiring any global localization (reference) for the final formation. Note that each
agent shares only its state information with the neighbor(s). The closed-loop stability analysis of a connected MAS is
available in the Appendix section.

3.2. Change in Dynamics due to Communication Loss
Here, we investigate the change in the multi-agent dynamics due to an inter-agent communication loss. The effect

of a mobile agent in the entire MAS dynamics can be analyzed by segregating the corresponding row and column
from the whole Laplacian matrix. To explain further, the associated Laplacian matrix is decomposed to reshape (14)
as 

ẋ1
ẋ2
.
.

ẋn−1
ẋn

=−α




Ln−1 +Bn−1 −bn−1

−bT
n−1 cn

⊗ Im




x̃1
x̃2
.
.

x̃n−1
x̃n

 , (15)

where Ln−1 ∈ℜn−1×n−1 represents the Laplacian matrix consisting of (n−1) agents, Bn−1 = diag(bn−1)∈ℜn−1×n−1

with bn−1 = [an1,an2, ...,an,n−1]
T ∈ ℜn−1×1, and cn = ∑

n−1
j=1 an j. Note that altering the sequence of nodes in a multi-

agent graph preserves its eigenvalues [33]. Hence, the nodes in a multi-agent graph can be reordered to treat an agent
of concern as the end node. Suppose the lost agent is not placed at the cut-node of a multi-agent graph, and losing it
does not result in two disjoint sub-graphs. In other words, the rest of the team members can still communicate among
themselves even if the concerned agent gets disconnected.

All the agents move according to the governing dynamics (15) as long as the multi-agent graph remains connected,
i.e. λ2(Ln(t)) > 0 for 0 < t < tdc sec. When an agent loses connection at t = tdc sec, then λ2(Ln(t)) = 0 for t ≥ tdc
sec. So, the governing equation of motion takes shape as follows.

ẋ1
ẋ2
.
.

ẋn−1
ẋn

=−α




Ln−1 0

0T 0

⊗ Im




x̃1
x̃2
.
.

x̃n−1
x̃n

+


0
0
.
.
0
vc

 . (16)

In (16), vc denotes the critical velocity of the n’th agent at t = tdc sec. Without any interventions, the disconnected
agent continues moving at vc and gradually diverges from the rest of the teammates.

4. Formulation and Methodology

4.1. Problem Statement and Approach

The present work aims to restore the communication connectivity during a multi-agent dynamics in case of link
failure(s). In accordance with the adopted decentralized consensus controller, agents pursue a position consensus
using only their relative localizations. The relative displacement states evolve with time and finally converge to the
desired separation vectors. However, each agent is aware of its position with respect to a global coordinate frame. So,
the challenge is: how to bring back a lost agent into the fleet by utilizing its own and last known nearest neighbor’s
positions?
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The involved processes are: (i) During the connected phase of the dynamics (14), each agent i ∈ [1,n] learns to
increase connectivity and cope with the future risk of communication loss by training a function approximator NNi:
ûi = g(xi); NNi training objective needs information on agent i’s own state xi and its neighbor state(s) x j for j ∈ Ni.
(ii) When an agent κ is disconnected, then it uses the learnt function approximation to predict the required control
action ûκ to get back to the team and restore connectivity. This prediction does not require any neighbor’s state
information. (iii) Once the connectivity is restored, then all the agents follow the consensus protocol (14) to reach the
desired symmetric formation. A schematic of the proposed methodology is captured in Fig. 1.
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Figure 1: Schematic for restoring connectivity during multi-agent formation control. Here, the blue colored items (lines and boxes) are encountered
during NN training and the red colored items are encountered during NN prediction. Note: the inputs xi (in blue) and xk (in red) are not fed to the
NN, concurrently; xi of each agent i is passed during training (T) and xk of the lost agent k is passed during prediction (P).

4.2. Increasing Connectivity by Function Approximator

Recall that the connectivity, λ2(Ln(X(t))), is a state functional. The update rule in (11) states how the relative distance
between (i, j) decreases along the supergradient direction, although it involves the Fiedler vector elements that are
difficult to estimate. This estimation problem can be mitigated by adopting a potential-based control strategy [5].
Without any communication loss, previous research [5] has proved that the negative gradient of a decentralized value
can imitate the connectivity supergradient direction (10). However, their potential-based control can not maximize
connectivity of a dynamic MAS under inter-agent communication loss, to overcome which, we call for a function
approximator like Neural Network (NN) in our research.

The existing concept of potential (value) is adopted in the objective to train the currently employed NN. An un-
derlying assumption is that the training is over prior to losing connectivity. According to the universal approximation
theory [25], NN can approximate unknown dynamics in finite time. When agent(s) gets disconnected, the learnt NN
predicts the control actions required to restore connectivity. For instance, thanks to the mapping approximated by a
trained NN, a reasonable velocity prediction, v̂c = g(xn) in (16), can still be achieved when t > tdc. At the time of
reconnection t = trc > tdc, agent n links with at least one of the rest (o), which reflects as a non-zero element lno of Ln,
hence ẋn = g(xn) = α aon(xo −xn) satisfies at t = trc.
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4.2.1. A Motivating Example
Here, we analyze how the relative displacements between different agents evolve during the MAS dynamics. Let

k is the concerned agent that gets disconnected from its only neighbor i after tdc secs. Now, consider a candidate value
function: Vk(t) = 1

2∥rki∥2 = 1
2 (xk −xi)

T (xk −xi), which is always positive except where the separation between (k, j)
agents is zero. The time-derivative of Vk is given by

V̇k = (xk −xi)
T (ẋk − ẋi) . (17)

In current formalism, agent k learned to minimize its separation ∥rki∥ from agent i when they were connected. During
a mission, the value Vk can be computed only for t < tdc, when agent k learns the negative gradient of Vk with respect
to its state, which is proportional to: − ∂Vk

∂xk
=−(xk −xi).

After agent k gets disconnected, then it moves along the learnt direction. Therefore

ẋk = g(xk) =−η(xk −xi)+ ε ; η > 0 , (18)

where ε = 0 is the prediction error. Note that the last known neighbor (i) of the disconnected agent (k) is dynamic
though its state evolution is governed by the consensus protocol. Consequently, agent i’s states do not change abruptly
and the evolution pattern is captured within the trained NN. Thus, the disconnected agent is expected to move along
the approximated direction (18).
Here, agent i is still connected to the rest of the team. Suppose, it has a neighbor agent j. Hence, in accordance with
the consensus dynamics

ẋi =−αai j(xi −x j) . (19)

By substituting (18) and (19) into (17), we obtain

V̇k = (xk −xi)
T (−η(xk −xi)+ ε +αai j(xi −x j))

or, V̇k =−(η +αai j)∥rki∥2 +αai j(xk −xi)
T (xk −x j)+(xk −xi)

T
ε . (20)

The first term on the right side of (20) is always negative since ∥rki∥2 > 0 and (η +αai j) > 0, and the last term
is negligible considering an accurate prediction. However, the second term on the right side of (20) is concerning
towards establishing the negative definiteness of V̇k, which implies that the separation between agents k and i decreases.
According to (20), V̇k < 0 if (xk − xi)

T (xk − x j) ≤ 0, which indicates a specific geometric configuration where the
angle between the vectors (xk −xi) and (xk −x j) lies in 90 ≤ ∠(xk −xi),(xk −x j) ≤ 270 degrees. This condition is
visually explained in Fig. 2.

The location of the last known neighbor of agent k is called as the datum. Recall that agents i and j are neighbors
and their coordinated movements are bound to the consensus dynamics, therefore, they are likely to be on the same
side with reference to a location (datum) already visited by agent i. Thus, it is possible to maintain the angle between
(xk − xi) and (xk − xi) within a range of 90− 270 degrees towards ensuring V̇k < 0. To tackle more challenging
scenarios due to multiple agent losses, we adopt a generic learning approach as explained in the following. Also, it is
worth noting that the NN-predicted velocity commands are applied with respect to the datum as it is contained within
the spatial domain used to train NN.

4.3. Decentralized Learning Method

This section illustrates the value-action based decentralized learning algorithm to restore connectivity during multi-
agent formation control.

Consider a function approximator, NNκ , assigned to the concerned agent κ , which takes its states xκ as input and
outputs the required control actions ûκ . NNκ consists of only one hidden layer with nh number of neurons. The NN
forward propagation is governed by

ûκ = σ2(W T
2 z+b2), z = σ1(W T

1 xκ +b1),

8



agent 𝑖

agent 𝑘 at datum

agent 𝑗

𝒙𝒊

𝒙𝒌

𝒙𝒋

(0,0)

900 ≤ 𝜃 ≤ 2700

Figure 2: An explanatory vector diagram: the angle between the relative displacement vectors (xk − xi) and (xk − x j) with reference to the
disconnected agent k located at datum.

where W1 ∈ ℜm×nh , b1 ∈ ℜnh×1 denote input to hidden layer weight matrix and bias vector, and W2 ∈ ℜnh×m, b2 ∈
ℜm×1 are hidden layer to output weight matrix and bias vector, σ1 and σ2 stand for input and output activation
functions, respectively.
The value function Vκ is computed in a decentralized way during the connected multi-agent dynamics, as follows.

Vκ(t) = ∑ j∈Nκ (t){∥rκ j(t)∥−Rl}2

= ∑ j∈Nκ (t){∥xκ(t)−x j(t)∥−Rl}2 . (21)

In (21), the value Vκ for agent κ depends on its own and neighbors state information. The associated training error is
defined as

Eκ = ∥ûκ −u∗
κ∥2 ; u∗

κ =−η
∂Vκ

∂xκ

. (22)

Here, u∗
κ represents the desired action along the negative gradient of a decentralized value Vκ , and η > 0 is a con-

stant. By minimizing the error Eκ iteratively, NNκ learns a mapping from ‘the states’ to ‘the negative gradient of a
decentralized value’.
The weight matrices and bias vectors are updated iteratively according to the back propagation law given as

W it+1
1 =W it

1 −βNNκ
∗dW1, bit+1

1 = bit
1 −βNNκ

∗db1,

W it+1
2 =W it

2 −βNNκ
∗dW2, bit+1

2 = bit
2 −βNNκ

∗db2,

where dW1,dW2,db1,db2 are vectorized forms of weight matrix and bias vector differentials; dW1 = ∂Eκ

∂W1
, db1 =

∂Eκ

∂b1
, dW2 = ∂Eκ

∂W2
, db2 = ∂Eκ

∂b2
, and βNNκ

is NN’s learning rate. A simple gradient descent method is adopted in the
back-propagation to minimize the training error. Eκ decreases over iterations as NNκ learns, and ûκ → u∗

κ when
W1 →W ∗

1 , W2 →W ∗
2 , b1 → b∗

1, b2 → b∗
2. This trained NN with steady state weights and biases, is used for prediction

purpose. The lost agent κ triggers NNκ action prediction after it reaches its last known nearest neighbor’s location
(datum). NNκ generates actions, ûκ = g(xκ) = σ2(W T

2 .σ1(W T
1 xκ +b1)+b2), to reconnect agent κ with the rest of

the teammates.
Note that every agent tied to a distinct NN learns to cope with the future risk of connectivity loss; however, only

the lost agent(s) executes NN-predicted actions to reconnect with others. The proposed method is summarized in
Algorithm 1.

Algorithm 1: Learn to Restore Connectivity
• Initialize all agent positions in 2D space

• Set parameters: motion, communication and neural network (NN)

• NN training time: ttr , time of disconnection: tdc > ttr , time of reconnection: trc > tdc, final time: t f .
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• while t < t f

• Determine state-dependent Laplacian matrix: Ln(t) (2)

• Evaluate current connectivity measure: λ2(Ln(t))

• Directional Guidance:

• if 0 ≤ t < tdc and λ2(t)> 0

• Update ∀ i agent states using Consensus Protocol (13)

• if t < t∗tr
• Compute value function Vi (21)

• Train NNi: ûi = g(xi), by minimizing error Ei (22)

• end if

• elseif t ≥ tdc and 0 ≤ λ2(t)< λb

• if ∥xκ −xdatum∥> δ

• Send lost agent i = κ to the datum by proportional guidance

• else

• Update i = κ lost agent state using action prediction ûκ (t)

• end if

• Update i ̸= κ other agent states using Consensus Protocol (13)

• elseif t ≥ trc and λ2(t)≥ λb

• Update all agent states using Consensus Protocol (13)

• end if

• Update time axis: t → t +∆t

• end while
∗ NNκ training time ttr lies in 0 < ttr < tdc for the first encountered scenario and it equals to 0 in other scenarios.

5. Numerical Results

In simulations, we consider a swarm of five agents flying at a constant altitude to attain a symmetric formation.
The total simulation time is t f = 37 secs, with an increment of ∆t = 0.001 sec. Simulation parameters are itemized as
follows.

• Motion: α = 1e−3, velocity bounds from −7 to 7 m/s.

• Communication: Rl = 5 m, Ru = 40 m, σ =−5, and δ = 0.2.

• Action-NNs: βNN2 = 1e−7, βNN4 = 8e−6, βNN5 = 8e−7 nh = 10, η = 1e−3, ttr = 1.5 sec, and activation ‘tanh’.

• Desired formation: Regular pentagon with a separation of 5 m and a relative angle of 2π

5 with respect to the center.

With the same initial condition shown in Table 1, we considered five different scenarios. Scenario 0 in Fig. 3
represents the ideal case without any communication loss throughout a mission; Scenario 1 and Scenario 2 represent
two different multi-agent dynamics with single agent loss and recovery; Scenario 3 and Scenario 4 represent two dif-
ferent multi-agent dynamics with double agents loss and recovery, as shown in Fig. 4. The time-varying connectivity
profiles for all the scenarios are captured in Fig. 5.

Table 1: Initial positions of five agents.

Agent 1 2 3 4 5
x(t0)(m) -68.35 -53.98 -74.01 -83.19 -83.65
y(t0)(m) 101.57 123.48 138.32 131.30 115.55

Single Agent Loss & Recovery: In Scenario 1, agent 2 gets disconnected after 1.7 sec has passed while the rest four
agents {1,3,4,5} are pursuing a position consensus. Agent 2 being disconnected at [−100, 107]T , can not access
any other’s information, and so it first goes back to its last known nearest neighbor’s location (datum) and then starts
searching for other team members using NN2’s action prediction. Fig. 4a shows that the predicted action elegantly
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maneuvers agent 2 from the datum towards restoring connectivity. In Fig. 4a, agent 2’s trajectory has four intermediate
triangle markers; the path between 1st and 2nd ▲s is due to the drift caused by an anomaly and the path between 3rd
and 4th ▲s is due to the action-NN2 prediction. In Scenario 2, agent 2 gets disconnected at the same time but drifts to
another location [0, 220]T ; however, the same action-NN2 prediction enables it to take an appropriate turn (right from
datum) to restore connectivity, as shown in Fig. 4b.
Double Agent Loss & Recovery: In Scenario 3, agent 2 gets disconnected at 1.7 s and agent 4 gets disconnected at
3.0 s. The associated NN2 and NN4 predict the required control actions after the lost agents reach their corresponding
datum locations, as shown in Fig. 4c. In Scenario 4, agent 2 and agent 5 get disconnected at time instants 1.7 and
2.5 s, respectively. NN2 starts predicting control actions for agent 2 after it reaches its last known nearest neighbor’s
(agent 5) location. NN5 predicts control actions for agent 5 after it reaches its last known nearest neighbor’s (agent
1) location. Fig. 4d shows that the lost agent 5 is able to maneuver smoothly from the datum towards restoring
connectivity. Note that Scenario 4 is very challenging to solve as the last known nearest neighbor of a lost agent
also gets disconnected after a while. All the five agents’ velocity profiles/control inputs are shown in Fig. 6a. Fig.
6b presents the evolution of training errors involved in NN2 and NN5 for corresponding agents 2 and 5, respectively.
Agent legends are coherent in Fig. 3, Fig. 4 and Fig. 6.

The lost agent uses NN predictions to move in the direction of connectivity increase until λ2 ≥ λb = 0.5, when
the connectivity is restored. After this, all the agents follow the traditional consensus protocol to pursue the desired
formation. Fig. 5 shows that the team connectivity measures in Scenarios 1, 2, 3, and 4 are restored around 22, 30, 27
and 25 s, respectively. As expected, the desired formations in Scenarios 1-4 are achieved later than that of Scenario 0.
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Figure 3: Agent trajectories in scenario 0

5.1. Validating Robustness

To verify the robustness of the proposed method, we vary the time of agent loss, tdc, in different scenarios and
record the successful occasions. Precisely, we draw 50 random tdc instances within a range of 1.5 to 10 s, without
changing the lost agents’ dispersed locations. The success rates reported in Table 2, reveal that Algorithm 1 performs
quite well in Scenarios (1 & 3) with single and double agent loss. For Scenario 3, the success rate is lower and the
mean convergence time is higher than Scenario 1, due to the complexity in recovering more agents. In support of the
effectiveness of our proposed approach, various ablation studies are presented below.

5.1.1. Performance Comparison
For Scenario 1, we compare the performance of Algorithm 1 with two naive approaches: (N1) After communi-

cation loss, all the agents come back to their initial (t0) configuration by individual proportional navigation and then
use the consensus controller, (N2) The lost agent comes back to the datum and applies its past velocity command
just before disconnection. The N2 approach fails to restore the MAS connectivity, as depicted in Fig. 7a. Fig. 7a

11



-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50

Agent x co-ord (m)

95

100

105

110

115

120

125

130

135

A
g

e
n

t 
y
 c

o
-o

rd
 (

m
)

drifted

location

datum

connection

breaks 

connection

restores

(a) Agent trajectories in scenario 1

-120 -100 -80 -60 -40 -20 0 20 40

Agent x co-ord (m)

100

120

140

160

180

200

220

A
g

e
n

t 
y
 c

o
-o

rd
 (

m
)

(b) Agent trajectories in scenario 2

-100 -90 -80 -70 -60 -50 -40 -30

Agent x co-ord (m)

85

90

95

100

105

110

115

120

125

130

135

A
g

e
n

t 
y
 c

o
-o

rd
 (

m
)

(c) Agent trajectories in scenario 3
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(d) Agent trajectories in scenario 4

Figure 4: Agent trajectories in different scenarios; ◦ - initial positions, ∗ - final positions, and ▲ - intermediate positions.

Table 2: Algorithm 1 performance in different scenarios.

Scenario Single-agent Loss Double-agent loss
Success rate (%) 100 86

t f mean (s) 27.71 33.54
variance 1.78 2.67

exhibits that the achieved connectivity profiles with Algorithm 1 have less transient behavior than those achieved with
the naive approaches, also, our algorithm can produce faster response with proper parameter tuning (λb = 0.1 and
α = 0.003). Note that Algorithm 1 verifies the resilience of NN by restricting any possible communication on the way
(from lost location) to datum, and there onward, it applies the NN-predicted commands to the lost agent for restoring
connectivity.

Further, we compare the proposed algorithm’s performance with the existing history-following approach [23],
where the lost agent moves towards a predefined consensus point until it gains communication with others. In this
case, we consider that agent 2 loses communication at 1.7 sec due to a drift at location [−200,−55]. The proportional
gain in each agent dynamics is selected as α = 0.002, and a disturbance of +1 m/s is injected into all agent velocities.
In Fig. (7b), the connectivity profile achieved with Algorithm 1 (δ = 1) increases faster than that achieved with the
history-following approach. Thus, Algorithm 1 is able to cope with the disturbance better than the history-following
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Figure 6: Simulation details of Scenario 4
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Figure 7: Different connectivity profiles achieved with Algorithm 1, naive approaches, and history-following.

and it offers relatively faster consensus convergence. Also, in practice, Algorithm 1 is more viable than the history-
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Figure 8: Learning performance with a different initial configuration.
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Figure 9: Effect of velocity disturbance in NN2 training and connectivity for Scenario 2.

following approach because: (i) a predefined consensus point might not be available in an unknown or unexplored
area, whereas, the last known nearest neighbor’s location (datum) can easily be available to a lost agent; (ii) it is
cumbersome to pass information on who is lost and when it is lost to an entire mobile fleet in a decentralized control
framework.

5.1.2. Learning to Adapt
Here, we investigate the adaptability of the trained neural networks and the generality of the associated function

approximations. While considering a practical situation, we train the associated NNs by collecting data on the fly
when connected agents are engaged in pursuing a position consensus. In other words, data is collected in a sample-
by-sample manner at every time instant during the connected phase of the MAS dynamics. However, the trained
NN for an agent can be applied to different scenarios. In other words, the learnt direction for an agent to restore
connectivity, can be utilized for different conditions like initial configuration and time of loss. In this scenario, we use
the NN2 trained in Scenario 1, and exploit its predictions for a different initial condition with a different time of loss.
Fig. 8 reveals that the learnt direction is able to adapt to new scenario for connectivity restoration.
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(a) Localization noise: ±0.1 m (b) Localization noise: ±0.2 m

(c) Localization noise: ±0.5 m (d) Localization noise: ±1 m

Figure 10: Evolution training errors different noise levels.

5.1.3. Effect of Noise
Further, to validate the performance of the proposed learning approach in the presence of disturbance, we inject

Gaussian randomness ±5% vmax into agent velocities (2D) for slow (α = 0.002) and fast (α = 0.003) agent dynamics
in Scenario 2. Fig. 9 justifies that the associated NN is able to learn even if agent velocities contain disturbances to
some extent. The effect of disturbance reduces when the multi-agent dynamics is comparatively faster.

To examine the effect of localization noise in the proposed decentralized learning, we add different magnitudes
of Gaussian noise in agent states. The initial configuration remains the same as mentioned in Table I. In the presence
of localization noise, agent 5 gets disconnected at 2.5 sec. The associated NN5 is trained for the initial 1.5 sec of the
dynamics. Interestingly, NN5 predicted actions are able to steer agent 5 effectively to restore connectivity. In this
case, we reduced the reference magnitude with η = 0.001/200 to train NN5. Fig. 10 shows the learning performance
with different amounts of noise ranging from ±0.1 to ±1 m. The agent trajectories along with the connectivity profile
obtained for a localization noise of ±0.1 m, are presented in Fig 11.

5.1.4. Scalability
Moreover, we consider the initial configuration as mentioned in Table I. In this scenario, three agents get discon-

nected consecutively. Agent 2, 5 and 4 are lost at 1.7, 2.5 and 3.1 sec, respectively. The associated NN2, NN5 and
NN4 are trained for the initial 1.3 sec of the dynamics, and the predictions are executed after the lost agents reach their
corresponding datum locations. Fig. 12 shows that the NN-predicted actions are able to steer the lost agents towards
restoring connectivity.
Discussion: Simulation results justify that the proposed neural network based decentralized learning strategy effec-
tively drives the lost agents to the locations of connectivity restoration. Interestingly, the associated neural networks
are able to quickly learn the required mapping to raise connectivity, even in the presence of disturbances. Nevertheless,
it is tough for one agent to raise the entire team’s connectivity up to a desired level without accessing any neighbor’s
information. During a mission, a function approximator associated with each agent is trained with the data collected
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(a) Agent trajectories (b) NN error evolution

Figure 11: Agent trajectories and connectivity profile with a localization noise of ±0.1 m.

(a) Agent trajectories (b) NN error evolution

(c) Agent velocities (d) Connectivity profile

Figure 12: Decentralized learning performance in connectivity restoration with three agent loss and recovery; ◦ - initial positions, ∗ - final positions,
and △ - intermediate positions.
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on the fly; however, the learnt mapping that steers an agent along the optimal direction to restore connectivity, is
preserved and can adapt to different scenarios. Therefore, the same NN2 trained online during Scenario 1 works for
Scenario 2 as well. Such a learning strategy is not restricted to robots with known kinematics only.

6. CONCLUSION

This work presents a proof-of-concept to show the impact of a decentralized learning method in tackling sudden
changes in communication during multi-agent formation control. Simulation results demonstrate that our proposed
strategy offers appropriate maneuvers to recover single and double disconnected agents while others are engaged in
pursuing a position consensus. Neural network generated coordinated movements are effective even in the presence of
disturbance, without accessing any neighborhood-based information. To this end, we have established a unique idea
to restore connectivity during formation control by leveraging the power of function approximation when information
sharing is impossible in a cooperative mission.

In the future, we plan to extend the study to a large team with many link failures, which demands finer approxima-
tions that can be achieved by incorporating deep neural architecture and employing advanced optimization techniques
in back-propagation.

7. Appendix

Closed-loop Stability of Connected MAS: The dynamic stability of the closed-loop system governed by (14) can be
established by using Lyapunov theory. Consider a Lyapunov candidate function, V (t)> 0 for all X̃(t) ̸= 0, as follows.

V (t) =
1
2

X̃T (t) X̃(t) (23)

Now, we take time-derivatives on both sides of (23) and substitute the underlying dynamics (14), which leads to

V̇ (t) = X̃T (t) Ẋ(t) = X̃T (t){−α(Ln ⊗ Im)X̃(t)}
or, V̇ (t) =−α X̃T (t)(Ln ⊗ Im)X̃(t) . (24)

V̇ (t) in (24) is negative for all X̃(t), except V (t) = 0 at X̃(t) = c×1nm for c ∈ ℜ1. Thus, the asymptotic stability of the
closed-loop system is ensured, i.e. X̃(t)→ c×1nm as t → 0, which implies (Ln(t)⊗Im)X̃(t)→ 0 =⇒ x̃i(t)− x̃ j(t)→ 0
or, xi(t)−x j(t)→ x f i −x f j.
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