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Abstract

Multi-Task Learning (MTL) can enhance the classi-
fier’s generalization performance by learning multi-
ple related tasks simultaneously. Conventional MTL
works under the offline or batch learning setting and
suffers from the expensive training cost together with
the poor scalability. To address such inefficiency is-
sues, online learning technique has been applied to
solve MTL problems. However, most existing algo-
rithms for online MTL constrain task relatedness in-
to a presumed structure via a single weight matrix,
a strict restriction that does not always hold in prac-
tice. In this paper, we propose a general online MTL
framework that overcomes this restriction by decom-
posing the weight matrix into two components: the
first component captures the correlative structure a-
mong tasks in a low-rank subspace, and the second
component identifies the personalized patterns for the
outlier tasks. A projected gradient scheme is de-
vised to learn such components adaptively. Theoret-
ical analysis shows that the proposed algorithm can
achieve a sub-linear regret with respect to the best
linear model in hindsight. Experimental investiga-
tion on a number of real-world datasets also verifies
the efficacy of our approach.

1 Introduction

Multi-Task Learning (MTL) aims to enhance the
overall generalization performance by learning mul-
tiple related tasks simultaneously. It has been exten-
sively studied from various points of view [1, 2, 3, 4].
As an example, the common tastes of users (tasks)
with respect to movies (instances) can be harnessed
into a movie recommender system using MTL [5].
Most MTL methods work under the offline learning
setting where the training data for each task is avail-
able beforehand. However, offline learning methods
are generally inefficient, as suggested by their high
training cost and poor scalability. This is especially
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true when it comes to large-scale data and streaming
data. As a remedy, MTL has been studied under the
online learning setting, where the model works on a
sequence of data by processing them one by one [6].
After updating model in each round, the current in-
put data will be discarded to save space. As a result,
online learning algorithms are efficient and scalable.
They have been successfully applied on a couple of
MTL applications [7, 8, 9, 10, 11].

In this paper, we investigate MTL under the on-
line learning setting. Existing online MTL methods
work under an assumption that all tasks are related
with each other and simply constrain the relationship
among multiple tasks via a presumed structure [7, 9].
However, such constraint may be too restrictive and
rarely holds in the real-life applications, as the per-
sonalized tasks with individual traits often exist [12].
We attempt to address this drawback through a cre-
ative formulation of online MTL which incorporates
two components. The first component captures a low-
rank correlative structure over the related tasks. And
the second one represents the personalized patterns
specific to individual tasks.

Specifically, our algorithm learns a weight ma-
trix which can be decomposed into two components
as aforementioned. A trace-norm regularization is
imposed on the first component to induce a low-rank
correlative structure over the related tasks. A group
lasso penalty over all individual tasks is applied on
the second component through a regularization term
to identify personalized patterns. The resulting non-
smooth convex optimization problem is solved using
an online projected gradient scheme. We show that
a closed-form solution can be obtained for both the
correlative and personalized components. This gives
our algorithm two advantages: 1) it is very efficient
as it can make prediction and update model in a real
time manner; 2) it can achieve a good trade-off for
learning several tasks jointly. We provide a theoreti-
cal evaluation of our algorithm by giving a proof that
our algorithm can achieve a sub-linear regret com-
pared with the best linear model in hindsight. We



also perform comparative experiment against a va-
riety of state-of-the-art techniques on three real-life
datasets. The experimental results confirm the effica-
cy of our method. To the best of our knowledge, we
are the first to construct robust online MTL classifier
by combining correlative parameters with personal-
ized one.

The rest of this paper is organized as follows.
Section 2 introduces related work. The problem
setting and the proposed algorithm with analysis are
presented in Section 3 and Section 4, respectively.
Section 5 provides experimental results. Section 6
concludes this paper.

2 Related Work

We briefly introduce work related to MTL in the
offline and online learning settings, respectively.

Conventional offline or batch learning MTL algo-
rithms can be generally grouped into two categories:
explicit parameter sharing and implicit parameter
sharing. All tasks can be made to share some com-
mon parameters explicitly. Such common parameters
include hidden units in neural networks [13], prior in
hierarchical Bayesian models [14, 15], feature map-
ping matrix [16] and classification weight [17]. The
shared structure can also be captured in an implicit
way by imposing a low rank subspace [18, 19], or a
common set of features [20, 21, 22].

Compared to offline learning, online learning
technique is more efficient and suitable to handle
massive and sequential data [23, 24, 25]. Task
structure has been exploited by using a global loss
function to evaluate the prediction [26], or assuming
that a few experts can perform well on the entire task
set [27, 28]. Instead of fixing task relationship via a
presumed structure [9], a recent work introduces an
adaptive interaction matrix which quantifies the task
relevance [7]. A selective sampling strategy has also
been applied to learn the online multitask model by
querying a few informative labels [29]. The algorithm
presented in this paper differs from existing ones
in that it learns a common low-rank structure and
individual outlier tasks simultaneously.

3 Problem Setting

In this section, we first describe our notations, fol-
lowed by the problem setting of the online MTL.

3.1 Notations Lowercase letter is used as scalar,
lowercase bold letter as vector, uppercase letter as
element of a matrix, and bold-face uppercase letter
as matrix. xi and xij denote the i-th column and

the (i, j)-th element of a matrix X. Euclidean and
Frobenius norms are denoted by ∥ · ∥ and ∥ · ∥F . In
particular, for every q, p ≥ 1, we define the (q, p)-

norm of A ∈ Rd×m as ∥A∥q,p = (
∑m
i=1 ∥ai∥pq)

1
p . The

subdifferential set of a function f evaluated at w is
denoted by ∂f(w) and a particular subgradient by
f

′
(w) ∈ ∂f(w). When the function is differentiable,

we denote its gradient by ∇f(w).

3.2 Problem Setting According to the online
MTL setting, we are faced with m different but
related classification problems, also known as tasks.
Each task has a sequential instance-label pairs, i.e.,
{(xit, yit)}

1≤i≤m
1≤t≤T , where xit ∈ Rd is a feature vector

drawn from a single feature space shared by all tasks,
and yit ∈ {±1}. The algorithm maintains m separate
models in parallel, one for each of the m tasks.
On round t, m instances {x1

t , . . . ,x
m
t } are presented

at one time. Given the i-th task instance xit, the
algorithm makes prediction using a linear model zit,
i.e., ŷit = sign(p̂it), where p̂

i
t = zi⊤t xit and zit is the

weight parameter on round t. The true label yit is
revealed until then. A hinge-loss function is applied
to evaluate the prediction,

(3.1) f it (z
i
t) = [1− yitp̂

i
t]+ = [1− yitz

i
t · xit]+,

where [a]+ = max{0, a}. The cumulative loss over all
m tasks on round t is defined as

(3.2) Ft(Zt) =
m∑
i=1

f it (z
i
t),

where Zt = [z1t , . . . , z
m
t ] ∈ Rd×m is the weight matrix

for all tasks. Inspired by the Regularized Loss Mini-
mization (RLM) in which one minimizes an empirical
loss plus a regularization term jointly [30], we formu-
late our online MTL to minimize the regret bound
compared to the best linear model in hindsight,
(3.3)

Rϕ ,
T∑
t=1

[Ft(Zt) + g(Zt)]− inf
Z∈Ω

T∑
t=1

[Ft(Z) + g(Z)],

where Ω ⊂ Rd is a closed convex subset and the reg-
ularizer g : Ω → R is a convex regularization func-
tion that constraints Ω into simple sets, e.g., hyper-
planes, balls, bound constraints, etc. For instance,
g(Z) = ∥Z∥1 constrains Z into a sparse matrix.
ϕt(Z) = Ft(Z) + g(Z) is a non-smooth convex func-
tion provided in the following.

4 Algorithm

We propose to solve the online MTL problem in (3.3)
by two steps: 1) to learn the correlative and person-



alized patterns over multiple tasks; 2) to achieve an
optimal solution for the proposed objective function.

4.1 Correlative and Personalized Structures
As mentioned above, restricting task relatedness to
a presumed structure via a single weight matrix [7]
is too strict and not always plausible in practical ap-
plications. To overcome this problem, we decompose
the weight matrix Z into two components: correla-
tive matrix U and personalized matrix V , and define
a new weight matrix,

(4.4) Ω = {W |W =

[
U
V

]
, U ∈ Rd×m, V ∈ Rd×m},

where wi =

[
ui

vi

]
∈ R2d is the i-th column of the

weight matrix W = [w1, . . . ,wm] ∈ R2d×m. Denoted
by matrix Z the summation of U and V , we obtain

(4.5) Z = U + V =
[
Id, Id

]
W,

where Id ∈ Rd×d is an identity matrix. Given an in-
stance (xit, y

i
t) , the algorithm makes prediction based

on both the correlative and personalized parameters,

(4.6)
p̂it = zit · xit

(4.5)
= (

[
Id, Id

]
wi
t) · xit

= (uit + vit)
⊤xit,

with the corresponding loss function,

f it (z
i
t) = f it (

[
Id, Id

]
wi
t) = [1− yit(u

i
t + vit)

⊤xit]+.

We thus can reformat the cumulative loss function
over all m tasks with respect to W as

(4.7) Lt(Wt) = Ft(Zt)
(4.5)
= Ft(

[
Id, Id

]
Wt).

To exploit the correlative and personalized pat-
terns over multiple tasks, we impose a regularizer on
U and V ,
(4.8)

r(W ) = g(
[
Id, Id

]
W ) , λ1∥U∥∗ + λ2∥V ∥2,1,

where λ1 and λ2 are non-negative trade-off parame-
ters. The ∥U∥∗ imposes a trace norm [18] on U to
represent multiple tasks (ui, i ∈ [1,m]) by a small
number (i.e. n) of the basis (n ≪ m). Intuitive-
ly, a model performing well on one task is likely to
perform well on the similar tasks. Thus, we expect a
best model can be shared across several relative tasks.
However, the assumption that all tasks are correlated
may not hold in real applications. Thus, we impose
the (2, 1)-norm [31] on V , which favors a few non-zero

columns in the matrix V to capture the personalized
tasks. Note that our algorithm is able to detect per-
sonalized patterns, unlike the algorithms [27, 28, 32].
Although prior work [12] considers detecting the per-
sonalized task, it is designed for offline setting, which
is different from our algorithm since we learns per-
sonalized pattern adaptively with online technique.

Substitute equations (4.7) and (4.8) into the re-
gret (3.3), the online MTL problem can be formatted
as
(4.9)

Rϕ ,
T∑
t=1

[Lt(Wt) + r(Wt)]− inf
W∈Ω

T∑
t=1

[Lt(W ) + r(W )],

where ϕt(W ) = Lt(W ) + r(W ) is a non-smooth
convex function. We next show how to achieve an
optimal solution to problem (4.9).

4.2 Online Task Relationship Learning In-
spired by [33], we can solve the problem (4.9) by a
subgradient projection,

(4.10) argmin
W∈Ω

∥W − (Wt − η∇ϕt(Wt))∥,

where η > 0 is the learning rate. In the following
lemma, we show that the problem (4.10) can be
turned into a linearized version of the proximal
algorithm [34]. To do so, we first introduce a
Bregman-like distance function [35],

Bψ(W,Wt) = ψ(W )− ψ(Wt)− ⟨W −Wt,∇ψ(Wt)⟩,

where ψ is a differentiable and convex function.

Lemma 4.1. Assume ψ(·) = 1
2∥ · ∥2F , then the algo-

rithm (4.10) is equivalent to a linearized form with a
step-size parameter η > 0,

Wt+1 = argmin
W∈Ω

⟨∇ϕt(Wt),W −Wt⟩+
1

η
Bψ(W,Wt).

Intuitively, above linearized formulation prompts the
model to perform well on the current instances as far
as possible, while still staying close to the previous
estimate. Instead of balancing this trade-off individ-
ually for each of the multiple tasks, we balance for all
the tasks jointly. However, the subgradient of a com-
posite function, i.e., ∇ϕt(Wt) = ∇Lt(Wt) +∇r(Wt)
cannot lead to a desirable effect, since we should con-
strain the projected gradient (i.e. Wt − η∇ϕt(Wt))
into a restricted set. To address this issue, we refine
the optimization function by adding a regularizer on

3



W ,

(4.11)

Wt+1 , argmin
W∈Ω

⟨∇Lt(Wt),W −Wt⟩

+
1

η
Bψ(W,Wt) + r(W ).

Note that the formulation (4.11) is different from the
Mirror Descent (MD) algorithm [36], since we do not
linearize the regularizer r.

Given that W =
[
U⊤, V ⊤]⊤, we show that the

problem (4.11) can be reformatted in terms of U and
V by the lemma below.

Lemma 4.2. Assume that ψ(W ) = 1
2∥W∥2F and

W =

[
U
V

]
, the problem (4.11) turns into an equiv-

alent form in terms of U and V ,
(4.12)

(Ut+1, Vt+1) , argmin
U,V ∈Ω

λ1∥U∥∗ + λ2∥V ∥2,1

+
1

2η1
∥U − Ut∥2F +

1

2η2
∥V − Vt∥2F

+ ⟨∇ULt(Ut), U − Ut⟩+ ⟨∇V Lt(Vt), V − Vt⟩,

where the parameters η1 and η2 control previous
learned knowledge retained by U and V .

Proof. Assume that ψ(W ) = 1
2∥W∥2F , we obtain:

(4.13)

Bψ(W,Wt) =
1

2
∥W∥2F − 1

2
∥Wt∥2F − ⟨W −Wt,Wt⟩

=
1

2
∥W −Wt∥2F

(4.4)
=

1

2
∥U − Ut∥2F +

1

2
∥V − Vt∥2F .

The linearized gradient form can be rewritten as:
(4.14)

⟨∇Lt(Wt),W −Wt⟩
(4.4)
= ⟨

[
∇ULt(Ut)
∇V Lt(Vt)

]
,

[
U − Ut
V − Vt

]
⟩

=⟨∇ULt(Ut), U − Ut⟩+ ⟨∇V Lt(Vt), V − Vt⟩.

Substitute (4.13), (4.14) and (4.8) into problem
(4.11), we complete this proof.

We next present how to optimize above non-smooth
convex problem with a closed-form solution.

4.3 Optimization Our objective function (4.12)
is composite with both smooth and non-smooth
terms. Although such composite problem can be
solved by [37], composite function with linear con-
strains have not been investigated to solve the MTL

problem. We employ a projected gradient scheme [38,
39] to optimize the problem (4.12). Specifically, by
omitting the terms unrelated to U and V , the prob-
lem (4.12) can be rewritten as a projected gradient
schema,

(Ut+1, Vt+1) = argmin
U,V ∈Ω

1

2η1
∥U − Ût∥2F + λ1∥U∥∗

+
1

2η2
∥V − V̂t∥2F + λ2∥V ∥2,1.

where

Ût = Ut − η1∇ULt(Ut), V̂t = Vt − η2∇V Lt(Vt).

Due to the decomposability of above objective func-
tion, the solution for U and V can be optimized sep-
arately,

(4.15) Ut+1 = argmin
U∈Ω

1

2η1
∥U − Ût∥2F + λ1∥U∥∗.

(4.16) Vt+1 = argmin
V ∈Ω

1

2η2
∥V − V̂t∥2F + λ2∥V ∥2,1.

This has two advantages: 1) there is a close form
solution for each update; 2) the update for the U and
V can be performed in parallel.

4.3.1 Computation of U Inspired by [38], we
show that the optimal solution to (4.15) can be
obtained via solving a simple convex optimization
problem in the following theorem.

Theorem 1. Denote by the eigendecomposition of
Ût = P Σ̂Q⊤ ∈ Rd×m where r =rank(Ût), P ∈
Rd×r, Q ∈ Rm×r, and Σ̂ =diag(σ̂1, . . . , σ̂r) ∈ Rr×r.
Let {σi}ri=1, σi ≥ 0 be the solution of the following
problem,

(4.17) min
{σi}r

i=1

1

2η1

r∑
i=1

(σi − σ̂i)
2 + λ1

r∑
i=1

σi.

Denote by Σ =diag(σ1, . . . , σr) ∈ Rr×r, then the
optimal solution to Eq. (4.15) is given by,

(4.18) U∗ = PΣQ⊤,

where the solution to Eq. (4.17) is σ∗
i = [σ̂i− η1λ1]+

for i ∈ [1, r].

4.3.2 Computation of V We rewrite (4.16) by
solving an optimization problem for each column,

(4.19) min
vi∈Rd

m∑
i=1

1

2η2
∥vi − v̂i∥2 + λ2

m∑
i=1

∥vi∥2.



Algorithm 1 ROMCO

1: Input: a sequence of instances (xit, y
i
t, ), ∀t ∈

[1, T ], and the parameter η1, η2, λ1 and λ2.
2: Initialize: ui0 = 0,vi0 = 0 for ∀i ∈ [1,m];
3: for t = 1, . . . , T do
4: for i = 1, . . . ,m do
5: Receive instance pair (xit y

i
t);

6: Predict ŷit = sign[(uit + vit) · xit];
7: Compute the loss function f it (w

i
t);

8: end for
9: if ∃i ∈ [1,m], f it (w

i
t) > 0 then

10: Update Ut+1 with Eq. (4.18);
11: Update Vt+1 with Eq. (4.20);
12: else
13: Ut+1 = Ut and Vt+1 = Vt;
14: end if
15: end for
16: Output: wi

T for i ∈ [1,m]

where v̂i ∈ Rd denotes the i-th column of V̂t =
Vt − η2∇V Lt(Vt) = [v̂1, . . . , v̂m]. The above optimal
operator problem (4.19) admits a close form solution
with time complexity of O(dm) [40],

(4.20) vit+1 = max(0, 1− η2λ2
∥v̂it∥2

)v̂it, ∀i ∈ [1,m].

Thus, the two quantities Vt and Ut can be updated
according to a closed-form solution on each round t.

4.4 Theoretical Analysis We call our algorithm
“Robust Online Multi-task learning with Correlative
and persOnalized structure”, ROMCO for short. It
is summarized in Alg. 1. Note that our algorithm
adopts a mistake-driven update rule: it performs an
update only when an error occurs (ŷit ̸= yit).

We next evaluate the performance of our algo-
rithm ROMCO in terms of regret bound. We first
show the regret bound of the algorithm (4.11) and
its equivalent form in the following lemma, which is
essentially the same as Theorem 2 in the paper [41]:

Lemma 4.3. Let {Wt} be updated according to
(4.11). Assume that Bψ(·, ·) is α-strongly convex
w.r.t. a norm ∥ · ∥p and its convex conjugate ∥ · ∥q
with 1

p +
1
q = 1, for any W ∗ ∈ Ω,

(4.21)

Rϕ ≤ 1

η
Bψ(W

∗,W1) + r(W1) +
η

2α

T∑
t=1

∥∇Lt(Wt)∥2q.

Remark 4.1. We show that the regret in (4.21)
is O(

√
T ) with respect to the best linear model in

hindsight. Suppose that the functions Ft are Lipschitz
continuous, then ∃Gq such that maxt ∥∇Lt(Wt)∥q ≤
Gq. Then we obtain:

Rϕ ≤ 1

η
Bψ(W

∗,W1) + r(W1) +
Tη

2α
G2
q.

We also assume that r(W1) = 0. Then by setting
η =

√
2αBψ(W ∗,W1)/(

√
TGq), we have Rϕ ≤√

2TBψ(W ∗,W1)Gq/
√
α. Given that Gq is constant,

setting η ∝ 1/
√
T , we have Rϕ = O(

√
T ).

Lemma 4.4. The general optimization problem
(4.11) is equivalent to the two step process of setting

W̃t = argmin
W∈Ω

1

η
Bψ(W,Wt) + ⟨∇Lt(Wt),W ⟩,

Wt+1 = argmin
W∈Ω

1

η
{Bψ(W, W̃t) + r(W )}.

Proof. The optimal solution to the first step satisfies,
∇ψ(W̃t)−∇ψ(Wt) + η∇Lt(Wt) = 0, so that

(4.22) ∇ψ(W̃t) = ∇ψ(Wt)− η∇Lt(Wt).

Then look at the optimal solution for the second step.
For some r′(Wt+1) ∈ ∂r(Wt+1), we have

(4.23) ∇ψ(Wt+1)−∇ψ(W̃t) + ηr′(Wt+1) = 0.

Substitute Eq. (4.22) into Eq. (4.23), we obtain

1

η
(∇ψ(Wt+1)−∇ψ(Wt)) +∇Lt(Wt) + r′(Wt+1) = 0,

which satisfies the optimal solution to the one-step
update of (4.11).

We next show that ROMCO can achieve a sub-
linear regret in the following theory.

Theorem 2. The algorithm ROMCO (Alg. 1) run-
s over a sequential instances for each of m tasks.
Assume that r(0) = 0, i.e., W1 = 0 and
maxt ∥∇Lt(Wt)∥ ≤ G2, U, V ∈ Rd×m, then the fol-
lowing inequality holds for all W ∗ ∈ Ω,

(4.24)
Rϕ ≤ 1

2η
∥W ∗∥2F + TηG2

2

= O(G2∥W ∗∥
√
T ).

Proof. Let ψ(·) = 1
2∥·∥

2
F , the solutions in subgradient

projection (4.15) and (4.16) is equivalent to the one
in form of the general optimization (4.11) according

5



to Lemma 4.4. According to the Lemma 4.3, given
any U∗ ∈ Ω,

Rϕ ≤ 1

η
Bψ(W

∗,W1) + r(W1) +
η

2α

T∑
t=1

∥∇Lt(Wt)∥2q.

Because that ψ(·) = 1
2∥ · ∥2F (i.e., p = q = 2),

∥∇Lt(Wt)∥ ≤ G2. Assume W1 = 0, we obtain
r(W1) = 0 and Bψ(W

∗,W1) =
1
2∥W

∗∥2F . Thus,

Rϕ ≤ 1

2η
∥W ∗∥2F +

Tη

2
G2

2.

By setting η = ∥W∗∥√
TG2

, we have Rϕ = O(G2∥W ∗∥
√
T ).

5 Experimental Results

We evaluate the performance of our algorithm on
three real-life datasets. We start by introducing the
experimental data and benchmark setup, followed by
discussion on the results.

5.1 Data and Benchmark Setup

5.1.1 Experimental Dataset We use three real-
life datasets to evaluate our algorithm:
Spam Email1: A dataset hosted by the Internet
Content Filtering Group contains 7068 emails collect-
ed from mailboxes of 4 users (i.e., 4 tasks). Each mail
entry is converted to a word document vector using
the TF-IDF representation. The task is to classify
each email message into two categories: legitimate or
spam for each user. Since the email dataset has no
time-stamp, each email list is shuffled into a random
sequence.
Human MHC-I2: It is a binary labeled human
MHC-I dataset, containing 18664 peptide sequences
for 12 MHC-I molecules. Each peptide sequence is
converted to a 400 dimensional feature vector follow-
ing [42]. The goal is to determine whether a pep-
tide sequence (instance) is binder or non-binder to a
MHC-I molecule (task). There are a total of 18664
samples with 400 features for 12 tasks.
EachMovie3: It contains 72916 users who rate a
subset of 1628 movies. We randomly select 30 users
(tasks) who viewed exactly 200 movies with their rat-
ing as target classes. Given each of 30 users, we then
select 1783 users who viewed the same 200 movies and
use their ratings as the feature of the movies. The

1http://labs-repos.iit.demokritos.gr/skel/i-config/
2http://web.cs.iastate.edu/ honavar/ailab/
3http://goldberg.berkeley.edu/jester-data/

Table 1: Statistics of three datasets
Spam Email MHC-I EachMovie

#Tasks 4 12 30
#Sample 7068 18664 6000

#Dimesion 1458 400 1783
#MaxSample 4129 3793 200
#MinSample 710 415 200

six possible ratings (i.e., {1, . . . , 6}) are converted in-
to binary classes (i.e., like or dislike) based on the
rating order. Finally we obtain 200 instances (1783
features) for each of 30 tasks. Tab. 1 summarizes the
statistics of three datasets.

5.1.2 Baseline We compare our ROMCO algo-
rithm with two batch learning methods: multi-task
feature learning (MTFL) [43], and trace-norm regu-
larized multi-task learning (TRML) [44], as well as
three online learning algorithms: online multi-task
learning (OMTL) [45], online passive-aggressive algo-
rithm (PA) [46], and confidence-weighted online col-
laborative multi-task learning (CW-COL) [42]. Due
to the high computational cost of the batch models,
we modify MTFL and TRML to handle online data
by periodically retraining them after observing 100
samples. All parameters for MTFL and TRML are
set as default values. To further examine the effec-
tiveness of learning multiple related tasks jointly, we
make two variations of the PA algorithm as below:
1) PA-Global : It learns a single classification model
from all tasks data. 2) PA-Unique: It trains a per-
sonalized classifier for each task using its own data.
The parameter C is set to 1 for all PA variation-
s and OMTL. All parameters for the CW-COL are
tuned with a grid search on a held-out random shuf-
fle. The four parameters η, τ , λ1 and λ2 for ROMCO
are tuned by a grid search {10−7,. . . ,103} on a held-
out random shuffle as well.

5.1.3 Evaluation Metrics We evaluate the per-
formance of aforementioned algorithms by two met-
rics: 1) Cumulative error rate: the ratio of predict-
ed errors over a sequence of instances. It reflects
the prediction accuracy of online learners. 2) F1-
measure: the harmonic mean of precision and recall.
It is suitable for evaluating the learner’s performance
on class-imbalanced datasets. We randomly shuffle
the ordering of samples for each dataset, and repeat
experiment 10 times with new shuffles. The average
result and its standard deviation are reported below.

5.2 Comparison Result Tab. 2 shows the com-
parison results on three datasets in terms of average



Table 2: Cumulative error rate (%) and F1-measure (%) on three datasets
Spam Email MHC-I EachMovie

Error Rate F1-measure Error Rate F1-measure Error Rate F1-measure
MTFL 13.40 (3.47) 88.39 (4.67) 43.84 (0.50) 51.04 (0.40) 27.51 (12.25) 79.18 (12.87)
TRML 16.21 (3.77) 86.02 (5.27) 44.26 (0.52) 50.50 (0.46) 26.58 (11.82) 79.89 (12.49)

PA-Global 7.08 (2.28) 94.04 (2.28) 44.70 (0.40) 45.44 (0.34) 31.80 (5.87) 74.43 (8.61)
PA-Unique 6.35 (2.04) 94.71 (1.70) 41.62 (0.21) 51.08 (0.28) 19.68 (7.39) 82.97 (9.35)
CW-COL 5.94 (1.67) 94.93 (1.93) 41.32 (0.37) 50.89 (0.49) 25.45 (6.96) 78.89 (9.30)
OMTL 6.20 (2.31) 94.79 (2.19) 41.56 (0.20) 51.13 (0.28) 19.44 (7.28) 83.18 (9.29)

ROMCO 4.97 (2.00) 95.92 (1.55) 37.55 (0.24) 55.43 (0.31) 18.03 (6.57) 84.68 (8.39)

Figure 1: Cumulative error rate on the Email Spam dataset along the entire online learning process
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cumulative error rate and F1-measure (standard de-
viation is shown in brackets). Fig. 1 and Fig. 2 de-
pict the detailed evolution of cumulative error rate
along the entire online learning process of the Email
Spam dataset and EachMovie dataset, respectively.
In all figures, the horizontal-axis represents the on-
line learning round, while the vertical-axis is the cu-
mulative error rate or F1-measure, averaging over 10
times of shuffling order. In addition, the run-time of
each algorithm, i.e., the time consumed during the
whole online learning process, is shown in Tab. 3.

It can be seen that the proposed ROMCO outper-
forms others over all three datasets. In particular, the
ROMCO always enjoys smaller error rates and higher
F1-measures compared to other baselines. It shows
that our algorithm can maintain a high quality of pre-
dicted accuracy. We believe that the good result is
generally due to two reasons: First, the personalized
and correlative patterns are effective to discover the
personalized tasks and task relativeness, and these
patterns are successfully captured in three real-world
datasets. Second, once an error occurs from the m
tasks, ROMCO would update the whole matrix. This
would benefit other related tasks as the shared sub-
spaces would be updated by the errors.

In addition, online methods (ROMCO and
OMTL) are always better than that of the two batch
learning algorithms (MTFL and TRML). Compared
to online learner that conducts an update with cur-
rent instance, offline learner updates with a substan-
tial amount of samples. Consequently, ROMCO runs

Table 3: Run-time (in seconds) for each algorithm
Spam Email MHC-I EachMovie

TRML 202.19 361.42 4804.25
MTFL 271.84 198.90 8548.12

PA-Global 0.86 1.79 11.27
PA-Unique 0.73 1.53 11.46
CW-COL 0.86 3.13 10.65
OMTL 24.62 42.92 50.01

ROMCO 11.49 11.45 17.92

Figure 2: Average error rate F1-measure on the
EachMovie dataset over 30 tasks along the entire
online learning process
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faster than offline methods as observed in Tab. 3.
Finally, we observe that ROMCO is slightly

slower than CW-COL algorithm. This is expected
as ROMCO has to update two component weight
matrices. However, the extra computational cost is
worth considered the significant improvement over
two measurements has been achieved by using the
two components.
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Figure 3: Sensitivity study on the effect of the
parameter λ1 and λ2 in terms of error rate
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5.3 Effect of the Regularization Parameters
We use Spam Email and Human MHC-I dataset
as the cases for parameter study. In Spam Email
dataset, by fixing λ2 = 0.0001 as well as varying
the value of λ1 in tuning set, i.e., [10−6, . . . , 102], we
study how the parameter λ1 affects the classification
performance of ROMCO; by fixing λ1 = 0.0001 as
well as varying the value of λ2 in tuning set of
[10−7, . . . , 10], we study how the parameter affects
the performance of ROMCO. Similarly, in Human
MHC-I dataset, we study the pair of (λ1, λ2) by fixing
λ2 = 0.0001 with tuning set of λ1 [10−5, . . . , 103]
and by fixing λ1 = 100 with tuning set of λ2
[10−6, . . . , 102]. In Fig. 3, we show the classification
performance of ROMCO in terms of error rate for
each pair of (λ1, λ2). From Fig. 3, we observe that
the performance is worse with an increment of either
λ1 or λ2 over Spam Email dataset. It indicates a weak
relativeness among the tasks and many personalized
tasks existing in Email dataset. In Human MHC-I,
the bad performance is triggered by a small value of
λ1 or a large value of λ2. Compared with Email data,
MHC-I contains fewer personalized tasks, meanwhile
most tasks are closely related and well represented by
a low-dimensional subspace.

6 Conclusion

We propose an online MTL method which can iden-
tify sparse personalized patterns for outlier tasks,
meanwhile captures a shared low-rank subspace for
correlative tasks. As an online technique, the pro-
posed algorithm can achieve a low prediction error

rate via leveraging previous learned knowledge. As
a multitask approach, it can balance the trade-off
between the personalized model and the knowledge
learned from other tasks. We show that it is able
to achieve a sub-linear regret bound with respect to
best linear model in hindsight. This can be regard-
ed as a theoretical support for the proposed algo-
rithm. Meanwhile, the empirical results demonstrate
that our algorithms outperform other state-of-the-art
techniques on three real-life applications.
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