
Multi-task Self-Supervised Adaptation for
Reinforcement Learning

Keyu Wu1, Zhenghua Chen1∗, Min Wu1, Shili Xiang1, Ruibing Jin1, Le Zhang2, and Xiaoli Li1
1Institute for Infocomm Research, A*STAR, Singapore

2University of Electronic Science and Technology of China, China
wu_keyu@i2r.a-star.edu.sg, chen0832@e.ntu.edu.sg

Abstract—Policy adaptation remains one of the key challenges
for reinforcement learning (RL). Thus, RL agents often fail to
generalize to unseen scenarios. In this paper, we propose to
improve the generalization of RL algorithms through multi-task
self-supervised adaptation (MSSA). The proposed method is a
general paradigm that can be implemented on top of any RL
algorithm. It better extracts high-level feature representations
from augmented observations through incorporating multiple
self-supervised learning tasks with complementary objectives.
The selected self-supervision tasks include rotation prediction,
inverse dynamics prediction and contrastive learning. It then
performs control actions based on the extracted features. The
proposed MSSA method consistently outperforms all the baseline
methods on diverse complex tasks in the DeepMind Control suite
benchmark and sets new state-of-the-art results without incurring
longer inference time. It is demonstrated that MSSA has superior
generalization capability and is robust to environmental changes.

Index Terms—reinforcement learning, policy adaptation, policy
generalization, self-supervised learning

I. INTRODUCTION

Without any labeled data, reinforcement learning (RL) can
learn from previous experiences automatically and hence has
achieved prominent success in a wide range of areas, such as
video games [1], robotics [2]–[5], data selection [6] and so
on. Currently, however, vision-based RL remains plagued by
its poor generalization ability. That is, RL agents trained in one
environment can hardly generalize to unseen scenarios typi-
cally [7]. Due to the partially-observable and high-dimensional
nature of pixel inputs, the policy adaptation problem of RL
can be further exacerbated in vision-based tasks. As a result,
the deployment of vision-based RL is significantly limited in
real-world applications.

One well explored solution is domain randomization, which
typically creates a variety of environments with random prop-
erties so as to figure out the best policy that can work across all
the environments [8]. Nonetheless, domain randomization is
sensitive to the choice of randomized parameters and can also
lead to large model complexity. Another solution is domain
adaptation, which aims to mitigate the distribution discrepancy
between the source and target domains [7], [9]. Nevertheless,
in domain adaptation, the target domain data are assumed to
be accessible during training while RL agents are typically

* Corresponding Author

required to be deployed in completely unknown environments.
In addition, data augmentation is also demonstrated to be
effective to improve the RL generalization ability recently
[10]–[12].

Instead of learning a generalizable policy that is robust
to all possible environmental changes, an unsupervised pol-
icy adaptation method, Policy Adaptation during Deployment
(PAD), is proposed in [13], which explores the use of sin-
gle self-supervision task to enable continued training during
deployment and improve the generalization of vision-based
RL. However, the online fine-tuning of PAD can result in
adaptation delay, higher memory requirement as well as longer
inference time.

In this paper, we propose a Multi-task Self-Supervised
Adaptation (MSSA) method to address the generalization
challenge for RL. MSSA jointly trains the RL policy with
multiple self-supervised objectives. The selected auxiliary self-
supervision tasks, i.e., rotation prediction [14], Contrastive
Unsupervised Representations for Reinforcement Learning
(CURL) [15] and inverse dynamics prediction [13], have
different and complementary objectives. Specifically, these
three tasks aim to improve the feature representation extraction
via better scene understanding, sample efficiency and con-
nection between observations and actions, respectively. More-
over, instead of continuing the learning during deployment,
we implement data augmentations on input observations to
further improve the generalization capability of the RL models
without adaptation delay. It is worth mentioning that MSSA
is a general paradigm that can be implemented on top of any
RL algorithm and requires almost no change to the underly-
ing algorithms. We evaluate our method on the DeepMind
Control suite benchmark [16] through deploying it in new
environments with changes that are unknown during training.
Experimental results demonstrate the superiority of MSSA
which outperforms the baselines and improves generalization
in all test environments.

To summarize, the main contributions of our work are:

• We have proposed a Multi-task Self-Supervised Adap-
tation (MSSA) method to address the generalization
challenge for RL. To the best of our knowledge, this
is the first work that combines RL with multiple self-
supervision tasks.



Feature 
Extractor
Feature 

Extractor

ID 
Network

ID 
Network

Policy 
Network

Policy 
Network

ROT 
Network

ROT 
Network

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Cross-Entropy 
Loss

MSE Loss

Contrastive Loss

Replay Buffer Observation

Data Augmentation

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning

Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Feature 
Extractor (F)

Feature 
Extractor (F)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor
Cross-Entropy Loss

MSE Loss

Contrastive Loss

Replay BufferObservation

Data Aug

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning
Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Data Aug

Augmented 
Observation Ot

Augmented 
Observation Ot+1

Augmented 
Observation Oq

Augmented 
Observation Ok

Rotated & Augmented
Observation

Observation

Action

Reinforcement Learning (SAC)

Augmented 
Observation

Feature 
Extractor
Feature 

Extractor
Q-value 1

Fully-
Connected

Fully-
Connected

Log-likelihood

Q-value 2

Fully-
Connected

Fully-
Connected

Fully-
Connected

Fully-
Connected

ROT 
Network (R)

ROT 
Network (R)

ID
Network (D)

ID
Network (D)

Policy 
Network (P)

Policy 
Network (P)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Contrastive Loss

Data Aug

Query Encoder

Key Encoder

Self-Supervised Task 3: CURL

Observation Oq

Observation Ok

Observation

Augmented 
Observation

Fig. 1: Architecture of MSSA. The policy is jointly trained with one RL objective and multiple self-supervised objectives. During training,
a batch of transitions is sampled from the replay buffer and data augmentations are applied to the observations before feeding them into the
network. The overall network consists of four parts, i.e., the feature extractor F , the policy network P , the rotation prediction network R,
and the inverse dynamics prediction network D.

• MSSA significantly improves generalization capability
without adaptation delay through combining multiple
auxiliary self-supervised learning tasks with complemen-
tary objectives and data augmentations. Moreover, MSSA
is a general paradigm that can be implemented on top
of any RL algorithm without change to the underlying
algorithms.

• We show that MSSA outperforms the state-of-the-art
baselines on the DeepMind Control suite benchmark,
which is widely used to evaluate the generalization capa-
bility of RL, by a large margin.

II. METHOD

In this section, we will introduce the proposed Multi-task
Self-Supervised Adaptation (MSSA) approach. Since MSSA
minimally modifies a base RL agent, it can be implemented
on top of any RL algorithm, both on-policy and off-policy,
that target to minimize the RL objective with respect to the
network parameters through stochastic gradient descent. In this
work, we train MSSA alongside the Soft Actor-Critic (SAC)
algorithm [17] to demonstrate its effectiveness.

A. Architecture Overview

The network architecture of MSSA is depicted in Figure
1. Generally, MSSA trains the RL network jointly with mul-
tiple auxiliary self-supervised learning networks with com-
plementary objectives, which are for improved scene under-
standing, data efficiency and connection between observations
and actions, respectively. During training, observations are
sampled from the replay buffer and are then augmented
within the batch. Since it is common in the RL setting to
stack consecutive frames as observations to infer temporal
information, we apply augmentations randomly across the
batch yet consistently across the frame stack to retain the
temporal information. Besides, we apply both the random

crop and grayscale augmentations simultaneously considering
the computation efficiency and the significance of combining
random crop with color distortion [10], [18]. The random crop
augmentation randomly crops a square patch from the original
frame while the grayscale augmentation converts the original
RGB images to grayscale images with a probability of p.

The network architecture is modified so that the RL network
and the self-supervised learning networks can share the inter-
mediate features. The overall network is split into four parts,
i.e., the feature extractor F with parameters θf , the policy
network P with parameters θπ , the rotation prediction head R
with parameters θr, and the inverse dynamics prediction head
D with parameters θd. Specifically, the feature extractor aims
to extract feature representations from the input augmented
observations and its parameters are shared by the RL network
and all the self-supervised learning networks. As shown in
Figure 2, based on the extracted features, the policy network
is used to map the representations to actions.

In the meantime, the feature representations of ot is fed into
the rotation network to predict the rotation angle as illustrated
in Figure 3, and the feature representations of ot and ot+1

are both passed to the inverse dynamics network to predict
the action as depicted Figure 4. In the CURL task which is
demonstrated in Figure 5, the anchor and positive observations
are the same stack of frames with different data augmentations
while the negative ones are from other stacks of frames. The
query and key observations are then fed into the query encoder
and key encoder, respectively, where the query encoder is the
feature extractor F while the key encoder is the momentum-
based moving average of F .

B. Self-Supervised Tasks

In this paper, the generalization capability is improved
through three different auxiliary self-supervised learning tasks,
i.e., rotation prediction task, inverse dynamics task and CURL.



Feature 
Extractor
Feature 

Extractor

ID 
Network

ID 
Network

Policy 
Network

Policy 
Network

ROT 
Network

ROT 
Network

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Cross-Entropy 
Loss

MSE Loss

Contrastive Loss

Replay Buffer Observation

Data Augmentation

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning

Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Feature 
Extractor (F)

Feature 
Extractor (F)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor
Cross-Entropy Loss

MSE Loss

Contrastive Loss

Replay BufferObservation

Data Aug

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning
Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Data Aug

Augmented 
Observation Ot

Augmented 
Observation Ot+1

Augmented 
Observation Oq

Augmented 
Observation Ok

Rotated & Augmented
Observation

Observation

Action

Reinforcement Learning (SAC)

Augmented 
Observation

Feature 
Extractor
Feature 

Extractor
Q-value 1

Fully-
Connected

Fully-
Connected

Log-likelihood

Q-value 2

Fully-
Connected

Fully-
Connected

Fully-
Connected

Fully-
Connected

ROT 
Network (R)

ROT 
Network (R)

ID
Network (D)

ID
Network (D)

Policy 
Network (P)

Policy 
Network (P)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Contrastive Loss

Data Aug

Query Encoder

Key Encoder

Self-Supervised Task 3: CURL

Observation Oq

Observation Ok

Observation

Augmented 
Observation

Fig. 2: Architecture of the reinforcement learning network.

Feature 
Extractor
Feature 

Extractor

ID 
Network

ID 
Network

Policy 
Network

Policy 
Network

ROT 
Network

ROT 
Network

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Cross-Entropy 
Loss

MSE Loss

Contrastive Loss

Replay Buffer Observation

Data Augmentation

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning

Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Feature 
Extractor (F)

Feature 
Extractor (F)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor
Cross-Entropy Loss

MSE Loss

Contrastive Loss

Replay BufferObservation

Data Aug

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning
Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Data Aug

Augmented 
Observation Ot

Augmented 
Observation Ot+1

Augmented 
Observation Oq

Augmented 
Observation Ok

Rotated & Augmented
Observation

Observation

Action

Reinforcement Learning (SAC)

Augmented 
Observation

Feature 
Extractor
Feature 

Extractor
Q-value 1

Fully-
Connected

Fully-
Connected

Log-likelihood

Q-value 2

Fully-
Connected

Fully-
Connected

Fully-
Connected

Fully-
Connected

ROT 
Network (R)

ROT 
Network (R)

ID
Network (D)

ID
Network (D)

Policy 
Network (P)

Policy 
Network (P)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Contrastive Loss

Data Aug

Query Encoder

Key Encoder

Self-Supervised Task 3: CURL

Observation Oq

Observation Ok

Observation

Augmented 
Observation

Fig. 3: Description of the rotation prediction task.

The three tasks are capable of deriving a better feature
extractor through improved scene understanding, improved
connection between observations and actions, and improved
data-efficiency, respectively.
Rotation Prediction In the rotation prediction task, we rotate
a stack of frames by either 0, 90, 180 or 270 degrees so
that the rotation prediction task can be modeled as a four-
way classification problem. Formally, if Rot(·) is the rotation
operation, then with a batch of input observations

{
oit
}nb
i=1

and their corresponding rotation labels
{
yit
}nb
i=1

, where nb and
t denote the batch size and time step respectively, the cross
entropy loss function for the rotation prediction task can be
expressed as:

Lr = −
1

nb

nb∑
i=1

log
[
σyit(R(F (Rot(o

i
t))))

]
, (1)

where σ denotes the softmax function defined as:

σi(z) =
ezi∑k
j=1 e

zj
for i = 1, . . . , k. (2)

Inverse Dynamics Prediction The inverse dynamics predic-
tion model takes the two consecutive observations, ot and
ot+1, from the transition (ot, at, ot+1) as its inputs, and
predicts the action in between. Therefore, the inverse dynamics
prediction task can be modeled as a regression problem with
the mean squared error loss function defined as:

Ld =
1

nb

nb∑
i=1

1

2

(
ait −D(F (oit), F (o

i
t+1))

)2
. (3)

CURL Using contrastive unsupervised learning, CURL is able
to learn rich representations of high-dimensional data. As in-
troduced above, the query observation oq and key observation
ok need to be generated using different augmentations. Then,
the positive observation ok+ of query observation oq is defined
as the same stack of frames with different augmentations while
the negatives are defined as the rest stacks of frames in the

Feature 
Extractor
Feature 

Extractor

ID 
Network

ID 
Network

Policy 
Network

Policy 
Network

ROT 
Network

ROT 
Network

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Cross-Entropy 
Loss

MSE Loss

Contrastive Loss

Replay Buffer Observation

Data Augmentation

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning

Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Feature 
Extractor (F)

Feature 
Extractor (F)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor
Cross-Entropy Loss

MSE Loss

Contrastive Loss

Replay BufferObservation

Data Aug

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning
Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Data Aug

Augmented 
Observation Ot

Augmented 
Observation Ot+1

Augmented 
Observation Oq

Augmented 
Observation Ok

Rotated & Augmented
Observation

Observation

Action

Reinforcement Learning (SAC)

Augmented 
Observation

Feature 
Extractor
Feature 

Extractor
Q-value 1

Fully-
Connected

Fully-
Connected

Log-likelihood

Q-value 2

Fully-
Connected

Fully-
Connected

Fully-
Connected

Fully-
Connected

ROT 
Network (R)

ROT 
Network (R)

ID
Network (D)

ID
Network (D)

Policy 
Network (P)

Policy 
Network (P)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Contrastive Loss

Data Aug

Query Encoder

Key Encoder

Self-Supervised Task 3: CURL

Observation Oq

Observation Ok

Observation

Augmented 
Observation

Fig. 4: Description of the inverse dynamics prediction task.

Feature 
Extractor
Feature 

Extractor

ID 
Network

ID 
Network

Policy 
Network

Policy 
Network

ROT 
Network

ROT 
Network

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Cross-Entropy 
Loss

MSE Loss

Contrastive Loss

Replay Buffer Observation

Data Augmentation

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning

Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Feature 
Extractor (F)

Feature 
Extractor (F)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Reinforcement Learning

Self-Supervised Learning 
(Rotation)

Contrastive Learning 
(CURL)

Self-Supervised Learning 
(Inverse Dynamics)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor
Cross-Entropy Loss

MSE Loss

Contrastive Loss

Replay BufferObservation

Data Aug

Query Encoder

Key Encoder

ROT 
Network

ROT 
Network

ID 
Network

ID 
Network

Multi-Task Self-Supervised Adaption for Reinforcement Learning
Self-Supervised Task 1: Rotation Prediction

Self-Supervised Task 2: Inverse Dynamics Prediction

Self-Supervised Task 3: CURL

Data Aug

Augmented 
Observation Ot

Augmented 
Observation Ot+1

Augmented 
Observation Oq

Augmented 
Observation Ok

Rotated & Augmented
Observation

Observation

Action

Reinforcement Learning (SAC)

Augmented 
Observation

Feature 
Extractor
Feature 

Extractor
Q-value 1

Fully-
Connected

Fully-
Connected

Log-likelihood

Q-value 2

Fully-
Connected

Fully-
Connected

Fully-
Connected

Fully-
Connected

ROT 
Network (R)

ROT 
Network (R)

ID
Network (D)

ID
Network (D)

Policy 
Network (P)

Policy 
Network (P)

Feature 
Extractor
Feature 

Extractor

Feature 
Extractor
Feature 

Extractor

Contrastive Loss

Data Aug

Query Encoder

Key Encoder

Self-Supervised Task 3: CURL

Observation Oq

Observation Ok

Observation

Augmented 
Observation

Fig. 5: Description of the CURL task.

batch with different augmentations. To measure the agreement
between query-key pairs, CURL employs the bi-linear inner-
product F (oq)TWF (ok), where W is a learned parameter
matrix. By adopting the InfoNCE loss, the contrastive loss
function in CURL can be derived as:

Lc = −
1

nb

nb∑
i=1

log
exp(FT (oiq)WF (oik+))
nb∑
j=1

exp(FT (oiq)WF (ojk))

. (4)

C. Training Framework

In this paper, we adopt the SAC, a state-of-the-art off-policy
method, as the base RL algorithm. In SAC, the policy is trained
through a maximum entropy framework with the following
objective function:

J(π) = E
τ∼ρπ

[
T∑
t=0

γt
(
rt + αH(π(·|ot))

)]
, (5)

where γ is the discount factor, H(π(·|ot)) denotes the policy
entropy and α is a temperature parameter to determine the
significance of the entropy term against the reward term.

As shown in Figure 2, besides the feature extractor, SAC
learns a policy π with parameters φ and two soft Q-functions
with parameters ψ1, ψ2 concurrently. Specifically, the critic
parameters are updated by minimizing the squared Bellman
error:

LQ(ψi) = E(ot,at,ot+1)∼D

[
1

2

(
Qψi(ot, at)

−
(
rt + T

))2]
,

(6)

where D denotes the replay buffer and T is the target value
which can be computed by:

T = mini=1,2Qψi(ot+1, ã)− αlogπφ(ã|ot+1), (7)



TABLE I: Hyperparameters used for the DMC experiments.

Hyperparameter Value

Data Augmentation random crop
grayscale

Observation rendering 100 × 100
Observation downsampling 84 × 84
Stacked frames 3
Action repeat 2 (finger)

8 (cartpole)
4 (otherwise)

Discount factor γ 0.99
Episode length 1,000
Base RL algorithm Soft Actor-Critic
Self-supervised tasks Rotation Prediction

Inverse Dynamics Prediction
CURL

Number of training step 100,000
Replay buffer size 100,000
Initial steps 1000
Optimizer (F, P, R, D) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (α) Adam (β1 = 0.5, β2 = 0.999)
Learning rate (F, P, R, D) 1e-3
Learning rate (α) 1e-4
Initial temperature 0.1
Batch size 128
Update frequency 2
Trade-off factors (λ1, λ2, λ3) 1e-3

where ã is sampled from policy πφ. Meanwhile, the parameters
of πφ can be updated through minimizing the divergence from
the exponential of the soft-Q value:

Lπ(φ) = Eot∼D,ã∼πφ
[
αlogπφ(ã|ot)−mini=1,2Qψi(ot, ã)

]
.

(8)
During training, the feature extractor is updated without the

actor loss. Therefore, the training of MSSA can be summarized
as the following optimization problem:

min
F

LQ + λ1Lr + λ2Ld + λ3Lc,

min
R

Lr,

min
D

Ld,

min
P

LQ + Lπ,

(9)

where λ1, λ2, λ3 are trade-off factors.

III. EXPERIMENTS

A. Setup

DMControl [16] a widely used benchmark dataset for RL
algorithms, contains a variety of continuous control tasks. In
this work, we evaluate RL agents on eight different tasks where
the agents can only observe raw pixels.

For benchmarking, we compare the proposed MSSA method
with three different baselines, i.e., SAC [17], RAD [10] and
PAD [13]. All methods are implemented on top of SAC.
Specifically, RAD achieves policy adaptation via data aug-
mentations while PAD achieves policy adaptation via adding
a single self-supervised objective as well as continuing the
learning during deployment. In our experiments, RAD adopts

the same data augmentations (random crop and grayscale aug-
mentations) as MSSA, and PAD employs the inverse dynamics
prediction task for self-supervision as stated in [13].

All RL agents are trained in a fixed environment as shown
in Figure 6(a) and are evaluated in unseen test environments.
Particularly, the test environments ‘color_easy’ illustrated in
Figure 6(b) and ‘color_hard’ illustrated in Figure 6(c) random-
ize the colors of background, foreground and the agent itself,
while the test environment ‘video’ replaces the background
with natural videos. Different methods are all evaluated at
100k environment steps and the hyperparameters are listed
in Table I. For each test environment, the methods are eval-
uated across three random seeds and 50 randomly initialized
episodes per seed.

In MSSA, all networks contain 11 convolutional layers with
32 filters followed by 4 fully-connected layers. Specifically, the
rotation and inverse dynamics prediction networks share all 11
convolutional layers. Meanwhile, the RL and self-supervised
learning networks share the first 8 convolutional layers. The
network structures of the baseline methods are consistent with
the architecture of MSSA.

B. Results and Discussions

The experimental results obtained in the training environ-
ment are shown in Table II, where the best result for each
task is highlighted in bold. In addition to the original MSSA
method, we also evaluated its four variations. The first three
variations adopt different combinations of the self-supervised
tasks to explore the best performing combinations in different
tasks. Specifically, MSSA (ID+CURL), MSSA (ROT+CURL)
and MSSA (ROT+ID) denote variations trained without the
rotation prediction task, inverse dynamics prediction task and
CURL task, respectively. In the last variation MSSA (w/o Gray
Aug), the grayscale augmentation is not applied while the
random crop augmentation is retained since it is also applied
in baseline methods. For better visualization, we highlight the
results of the MSSA variations in red if they are better than
the results of all the baseline methods. It is observed that the
introduction of multiple self-supervised tasks can also improve
the performance in the training environment. Although the
highest average reward is achieved by MSSA (w/o Gray Aug),
MSSA is more robust as it consistently outperforms all the
state-of-the-art methods in all tasks.

The experimental results obtained in the ‘color_easy’,
‘color_hard’ and ‘video’ environments are illustrated in Table
III, Table IV and Table V, respectively. Generally, MSSA is
much more superior compared to the baseline methods. In
particular, both MSSA and MSSA (ID+CURL) outperform the
existing methods in all the environments with randomized col-
ors. On the ‘video’ benchmark, although MSSA demonstrates
improvements over baselines, there is still large room for
improvement. A possible solution is to improve the dispersing
of task-irrelevant visual features.

Overall, some of the most important observations from
experimental results are as follows. First, since MSSA outper-
forms PAD even without the online learning, it is proved that



(a) train (b) color_easy

(c) color_hard (d) video

Fig. 6: Sample environments for DeepMind Control tasks. The agents are trained in a fixed training environment and evaluated in different
test environments.

TABLE II: Cumulative reward obtained in the training environment. The highest scores are highlighted in bold and the results of the MSSA
variations are marked in red if they are better than those of all the baselines.

MSSA MSSA MSSA MSSA MSSA
Env SAC RAD PAD

(ROT+ID+CURL) (ID+CURL) (ROT+CURL) (ROT+ID) (w/o Gray Aug)
Walker, walk 616 ± 6 562 ± 131 620 ± 76 657 ± 70 716 ± 95 744 ± 52 620 ± 132 685 ± 72
Walker, stand 946 ± 8 946 ± 17 947 ± 9 948 ± 12 947 ± 5 957 ± 11 920 ± 40 944 ± 11

Cartpole, swingup 838 ± 38 824 ± 23 858 ± 5 870 ± 8 869 ± 10 845 ± 23 867 ± 9 825 ± 34
Cartpole, balance 940 ± 24 950 ± 57 964 ± 41 989 ± 6 990 ± 9 979 ± 23 990 ± 9 983 ± 4
Ball in cup, catch 659 ± 387 556 ± 233 750 ± 277 793 ± 149 648 ± 364 669 ± 285 703 ± 299 884 ± 100

Finger, spin 732 ± 201 722 ± 103 730 ± 144 773 ± 148 788 ± 144 848 ± 15 636 ± 117 862 ± 2
Finger, turn_easy 201 ± 35 226 ± 49 303 ± 125 349 ± 104 367 ± 38 404 ± 61 296 ± 51 443 ± 77

Cheetah, run 225 ± 29 245 ± 35 219 ± 31 296 ± 54 287 ± 91 246 ± 11 229 ± 39 273 ± 22
Average 645 629 674 709 702 712 658 737

TABLE III: Cumulative reward obtained in the ‘color_easy’ test environments. The highest scores are highlighted in bold and the results of
the MSSA variations are marked in red if they are better than those of all the baselines.

MSSA MSSA MSSA MSSA MSSA
Env SAC RAD PAD

(ROT+ID+CURL) (ID+CURL) (ROT+CURL) (ROT+ID) (w/o Gray Aug)
Walker, walk 529 ± 6 515 ± 102 555 ± 95 565 ± 120 651 ± 139 652 ± 65 580 ± 142 512 ± 30
Walker, stand 894 ± 21 914 ± 30 906 ± 27 935 ± 20 939 ± 12 938 ± 11 874 ± 101 889 ± 34

Cartpole, swingup 733 ± 48 820 ± 21 761 ± 30 866 ± 8 867 ± 8 841 ± 21 860 ± 7 743 ± 39
Cartpole, balance 922 ± 31 945 ± 64 945 ± 30 981 ± 3 987 ± 7 967 ± 18 988 ± 8 959 ± 5
Ball in cup, catch 602 ± 256 608 ± 175 645 ± 236 732 ± 184 667 ± 280 540 ± 321 632 ± 357 779 ± 84

Finger, spin 711 ± 188 647 ± 202 709 ± 135 755 ± 144 770 ± 156 816 ± 20 616 ± 120 853 ± 17
Finger, turn_easy 219 ± 38 238 ± 34 305 ± 108 328 ± 103 361 ± 9 354 ± 69 255 ± 78 337 ± 66

Cheetah, run 199 ± 33 235 ± 44 180 ± 33 261 ± 25 258 ± 47 239 ± 10 212 ± 30 232 ± 58
Average 601 615 626 678 688 668 627 663

multiple self-supervised tasks can lead to better generalization
compared to one. In addition, it is observed that the original
MSSA trained with all three auxiliary tasks is the most robust
among all the variations as it consistently outperforms the
baselines. Moreover, among the self-supervised learning tasks,
CURL appears to be more essential since MSSA (ROT+ID)
generally results in worse performance, while the rotation
prediction task seems to be less critical as MSSA (ID+CURL)
does not demonstrate very obvious performance degradation.
Meanwhile, the inverse dynamics prediction task demonstrates
its importance in tasks with the ‘goal-directed’ nature, such
as the ‘catch’, ‘balance’ and ‘swingup’ tasks. Besides, it is
noticed that the grayscale data augmentation generalizes well
to the randomized color distribution, however, it generalizes
comparably worse to videos since MSSA (w/o Gray Aug)

leads to better performance in the ‘video’ environments.
Hence, better combinations of data augmentations need to be
explored. So far, we only apply the random crop and grayscale
augmentations for concept proof while it is important to find an
optimal set of augmentations. Last but not least, since MSSA
does not implement online learning during deployment, it has
no adaptation delay and its inference time is similar to that of
SAC and RAD. However, since the self-supervised learning
networks can be trained without reward signals, MSSA can
also implement online learning as PAD to achieve better
performance in more challenging scenarios.

IV. CONCLUSION

In this paper, we propose a Multi-task Self-Supervised
Adaptation (MSSA) method to address the generalization



TABLE IV: Cumulative reward obtained in the ‘color_hard’ environments. The highest scores are highlighted in bold and the results of the
MSSA variations are marked in red if they are better than those of all the baselines.

MSSA MSSA MSSA MSSA MSSA
Env SAC RAD PAD

(ROT+ID+CURL) (ID+CURL) (ROT+CURL) (ROT+ID) (w/o Gray Aug)
Walker, walk 369 ± 10 409 ± 63 408 ± 80 415 ± 93 519 ± 133 498 ± 50 486 ± 165 356 ± 22
Walker, stand 716 ± 24 827 ± 66 784 ± 25 849 ± 6 850 ± 58 864 ± 13 765 ± 141 737 ± 53

Cartpole, swingup 536 ± 122 757 ± 11 575 ± 13 801 ± 10 814 ± 30 775 ± 27 785 ± 13 520 ± 93
Cartpole, balance 819 ± 33 889 ± 91 815 ± 76 907 ± 22 922 ± 34 880 ± 85 941 ± 14 798 ± 76
Ball in cup, catch 443 ± 205 521 ± 55 488 ± 151 527 ± 288 563 ± 292 465 ± 312 667 ± 279 500 ± 112

Finger, spin 592 ± 180 563 ± 243 625 ± 121 658 ± 119 731 ± 56 658 ± 71 530 ± 131 742 ± 25
Finger, turn_easy 187 ± 30 211 ± 39 269 ± 96 305 ± 27 323 ± 9 336 ± 29 284 ± 17 343 ± 52

Cheetah, run 157 ± 13 178 ± 65 139 ± 57 198 ± 30 213 ± 13 201 ± 27 177 ± 25 165 ± 78
Average 477 544 513 583 617 585 579 520

TABLE V: Cumulative reward obtained in the ‘video’ environment. The highest scores are highlighted in bold and the results of the MSSA
variations are marked in red if they are better than those of all the baselines.

MSSA MSSA MSSA MSSA MSSA
Env SAC RAD PAD

(ROT+ID+CURL) (ID+CURL) (ROT+CURL) (ROT+ID) (w/o Gray Aug)
Walker, walk 491 ± 24 435 ± 72 520 ± 65 446 ± 88 511 ± 90 478 ± 60 464 ± 52 538 ± 38
Walker, stand 851 ± 66 787 ± 16 888 ± 54 765 ± 25 725 ± 21 724 ± 35 704 ± 46 917 ± 21

Cartpole, swingup 434 ± 113 441 ± 69 458 ± 82 523 ± 62 527 ± 19 485 ± 51 506 ± 68 474 ± 45
Cartpole, balance 747 ± 77 585 ± 93 660 ± 123 615 ± 69 599 ± 18 572 ± 25 599 ± 21 638 ± 60
Ball in cup, catch 350 ± 166 428 ± 129 261 ± 113 477 ± 89 428 ± 99 390 ± 81 547 ± 201 469 ± 64

Finger, spin 423 ± 102 303 ± 92 469 ± 120 379 ± 42 384 ± 81 390 ± 38 267 ± 93 476 ± 38
Finger, turn_easy 17 ± 26 3 ± 5 132 ± 144 211 ± 120 239 ± 91 227 ± 106 210 ± 179 299 ± 112

Cheetah, run 170 ± 6 150 ± 53 143 ± 43 145 ± 11 145 ± 20 129 ± 30 129 ± 21 179 ± 52
Average 435 392 441 445 445 424 428 499

challenge for RL agents. Our MSSA jointly trains the RL
policy with multiple self-supervised objectives. It is worth
mentioning that MSSA is a general paradigm that can be
implemented on top of any RL algorithm without incurring
longer inference time. Experimental results have demonstrated
the remarkable superiority of MSSA.

ACKNOWLEDGMENT

This research is supported by the Agency for Science, Tech-
nology and Research (A*STAR) under its Career Development
Award (Grant No. C210112046).

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] K. Wu, M. Abolfazli Esfahani, S. Yuan, and H. Wang, “Learn to steer
through deep reinforcement learning,” Sensors, vol. 18, no. 11, p. 3650,
2018.

[3] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Scalable
deep reinforcement learning for vision-based robotic manipulation,” in
Conference on Robot Learning, 2018, pp. 651–673.

[4] K. Wu, H. Wang, M. A. Esfahani, and S. Yuan, “Bnd*-ddqn: Learn
to steer autonomously through deep reinforcement learning,” IEEE
Transactions on Cognitive and Developmental Systems, 2019.

[5] K. Wu, H. Wang, M. A. Esfahani, and S. Yuan, “Learn to navigate
autonomously through deep reinforcement learning,” IEEE Transactions
on Industrial Electronics, vol. 69, no. 5, pp. 5342–5352, 2021.

[6] K. Wu, M. Wu, J. Yang, Z. Chen, Z. Li, and X. Li, “Deep reinforcement
learning boosted partial domain adaptation.”

[7] S. Gamrian and Y. Goldberg, “Transfer learning for related reinforce-
ment learning tasks via image-to-image translation,” in International
Conference on Machine Learning. PMLR, 2019, pp. 2063–2072.

[8] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 23–30.

[9] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[10] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srini-
vas, “Reinforcement learning with augmented data,” arXiv preprint
arXiv:2004.14990, 2020.

[11] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” arXiv
preprint arXiv:2004.13649, 2020.

[12] R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov, and R. Fergus,
“Automatic data augmentation for generalization in deep reinforcement
learning,” arXiv preprint arXiv:2006.12862, 2020.

[13] N. Hansen, Y. Sun, P. Abbeel, A. A. Efros, L. Pinto, and X. Wang,
“Self-supervised policy adaptation during deployment,” arXiv preprint
arXiv:2007.04309, 2020.

[14] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised repre-
sentation learning by predicting image rotations,” arXiv preprint
arXiv:1803.07728, 2018.

[15] A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsu-
pervised representations for reinforcement learning,” arXiv preprint
arXiv:2004.04136, 2020.

[16] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq et al., “Deepmind control suite,”
arXiv preprint arXiv:1801.00690, 2018.

[17] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[18] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” arXiv preprint
arXiv:2002.05709, 2020.


