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ABSTRACT

Session-based recommendation (SBR) is a challenging task, which

aims at recommending items based on anonymous behavior se-

quences. Almost all the existing solutions for SBR model user pref-

erence only based on the current session without exploiting the

other sessions, which may contain both relevant and irrelevant

item-transitions to the current session. This paper proposes a novel

approach, calledGlobalContext EnhancedGraph NeuralNetworks

(GCE-GNN) to exploit item transitions over all sessions in a more

subtle manner for better inferring the user preference of the current

session. Specifically, GCE-GNN learns two levels of item embed-

dings from session graph and global graph, respectively: (i) Session

graph, which is to learn the session-level item embedding by mod-

eling pairwise item-transitions within the current session; and (ii)

Global graph, which is to learn the global-level item embedding

by modeling pairwise item-transitions over all sessions. In GCE-

GNN, we propose a novel global-level item representation learning

layer, which employs a session-aware attention mechanism to re-

cursively incorporate the neighbors’ embeddings of each node on

the global graph. We also design a session-level item representation

learning layer, which employs a GNN on the session graph to learn

session-level item embeddings within the current session. More-

over, GCE-GNN aggregates the learnt item representations in the

two levels with a soft attention mechanism. Experiments on three

benchmark datasets demonstrate that GCE-GNN outperforms the

state-of-the-art methods consistently.
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1 INTRODUCTION

Recommendation systems play critical roles on various on-line

platforms, due to their success in addressing information overload

problem by recommending useful content to users. Conventional

recommendation approaches (e.g., collaborative filtering [11]) usu-

ally rely on the availability of user profiles and long-term historical

interactions, and may perform poorly in many recent real-world

scenarios, e.g., mobile stream media like YouTube1 and Tiktok2,

when such information is unavailable (e.g., unlogged-in user) or

limited available (e.g., short-term historical interaction). Conse-

quently, session-based recommendation has attracted extensive

attention recently, which predicts the next interested item based

on a given anonymous behavior sequence in chronological order.

Most of early studies on session-based recommendation fall into

two categories, i.e., similarity-based [11] and chain-based [12]. The

former heavily replies on the co-occurrence information of items

in the current session while neglecting the sequential behavior

patterns. The later infers all possible sequences of user choices over

all items, which may suffer from intractable computation problem

for real-world applications where the number of items is large. Re-

cently, many deep learning based approaches are proposed for the

task, which make use of pairwise item-transition information to

model the user preference of a given session [2, 4, 6, 18, 19, 21].

These approaches have achieved encouraging results, but they still

face the following issues. First, some of them infer the anonymous

user’s preference by sequentially extracting the session’s pairwise

item-transition information in chronological order using recurrent

1https://www.youtube.com/.
2https://www.tiktok.com/.
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Figure 1: A toy example of global-level item transition mod-

eling.

neural networks (RNN) (e.g., GRU4REC [2], NARM [6]) and mem-

ory networks (e.g., STAMP [8]). However, a session may contain

multiple user choices and even noise, and thus they may be insuf-

ficient in generating all correct dependencies, which suffer from

the inability of modeling the complicated inherent order of item-

transition patterns in embedding. Second, the others are based on

graph neural networks [7, 24, 25] with self-attention mechanisms

such as SR-GNN [24]. They learn the representation of the entire

session by calculating the relative importance based on the ses-

sion’s pairwise item-transition between each item and the last one,

and the performance heavily rely on the relevance of the last item

to the user preference of the current session.

Furthermore, almost all the previous studies model user prefer-

ence only based on the current session while ignoring the useful

item-transition patterns from other sessions. To the best of our

knowledge, CSRM [19] is the only work incorporating collaborative

information from the latest𝑚 sessions to enrich the representation

of the current session in end-to-end manner. CSRM treats sessions

as the minimum granularity and measure similarities between the

current and the latest 𝑚 sessions to extract collaborative infor-

mation. However, it may unfortunately encode both relevant and

irrelevant information of the other sessions into the current session

embeddings, which may even deteriorate the performance [21]. We

illustrate this with an example in Figure 1. Without loss of general-

ity, suppose the current session is “Session 2”, and the session-based

recommendation aims to recommend the relevant accessories re-

lated to “Iphone ”. From Figure 3, we observe that: (i) Utilizing the

item-transition of the other sessions might help model the user

preference of the current session. For example, we can find relevant

pairwise item-transition information for Session 2 from “Session

1” and “Session 3”, e.g., a new pairwise item-transition “[Iphone,

Phone Case]”; and (ii) Directly utilizing the item-transition infor-

mation of the entire other session may introduce noise when part

of the item-transition information encoded in such session is not

relevant to the current session. For instance, CSRM [19] may also

consider to utilize “Session 3” to help modeling the user preference

of “Session 2” if “Session 3” is one of the latest𝑚 sessions, and it

will introduce the irrelevant items (i.e., “clothes” and “trousers”)

when learning “Session 2”’s embedding as it treats “Session 3” as a

whole without distinguishing relevant item-transition from irrele-

vant item-transition, which is challenging.

To this end, we propose a novel approach to exploit the item-

transitions over all sessions in a more subtle manner for better in-

ferring the user preference of the current session for session-based

recommendation, which is namedGlobalContext EnhancedGraph

Neural Networks (GCE-GNN). In GCE-GNN, we propose to learn

two levels of item embeddings from session graph and global graph,

respectively: (i) Session graph, which is to learn the session-level

item embedding by modeling pairwise item-transitions within the

current session; and (ii) Global graph, which is to learn the global-

level item embeddings by modeling pairwise item-transitions over

sessions (including the current session). InGCE-GNN, we propose a

novel global-level item representation learning layer, which employs

a session-aware attention mechanism to recursively incorporate

the neighbors’ embeddings of each node on the global graph. We

also design a session-level item representation learning layer, which

employs a GNN on the session graph to learn session-level item

embeddings within the current session. Moreover, GCE-GNN ag-

gregates the learnt item representations in the two levels with a

soft attention mechanism.

The main contributions of this work are summarized as follows:

• To the best of our knowledge, this is the first work of exploit-

ing global-level item-transitions over all sessions to learn

global-level contextual information for session-based recom-

mendation.

• We propose a unified model to improve the recommendation

performance of the current session by effectively leveraging

the pairwise item-transition information from two levels of

graph models, i.e., session graph and global graph.

• We also propose a position-aware attention to incorporate

the reversed position information in item embedding, which

shows the superiority performance for session-based recom-

mendation.

• We conduct extensive experiments on three real-world datasets,

which demonstrate that GCE-GNN outperforms nine base-

lines including state-of-the-art methods.

2 RELATEDWORK

Markov Chain-based SBR. Several traditional methods can be

employed for SBR although they are not originally designed for

SBR. For example, markov Chain-based methods map the current

session into a Markov chain, and then infer a user’s next action

based on the previous one. Rendle et al. [10] propose FPMC to

capture both sequential patterns and long-term user preference

by a hybrid method based on the combination of matrix factoriza-

tion and first-order Markov chain for recommendation. It can be

adapted for SBR by ignoring the user latent representation as it is

not available for anonymous SBR. However, MC-based methods

usually focus on modeling sequential transition of two adjacent

items. In contrast, our proposed model converts the sequentially

item-transitions into graph-structure data for capturing the inher-

ent order of item-transition patterns for SBR.

Deep-learning based SBR. In recent years, neural network-based

methods that are capable of modeling sequential data have been



utilized for SBR. Hidasi et al. [2] propose the first work called

GRU4REC to apply the RNN networks for SBR, which adopts a

multi-layer Gated Recurrent Unit (GRU) to model item interaction

sequences. Then, Tan et al. [15] extend the method [2] by introduc-

ing data augmentation. Li et al. [6] propose NARM that incorporates

attention mechanism into stack GRU encoder to capture the more

representative item-transition information for SBR. Liu et al. [8]

propose an attention-based short-term memory networks (named

STAMP) to captures the user’s current interest without using RNN.

Both NARM and STAMP emphasize the importance of the last click

by using attention mechanism. Inspired by𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 [16], SAS-
Rec [4] stacks multiple layers to capture the relevance between

items. ISLF [13] takes into account the user’s interest shift, and

employs variational auto-encoder (VAE) and RNN to capture the

user’s sequential behavior characteristics for SBR. MCPRN [21]

proposes to model the multi-purpose of a given session by using

a mixture-channel model for SBR. However, similar to MC-based

methods, RNN-based methods focus on modeling the sequential

transitions of adjacent items [20] to infer user preference via the

chronology of the given sequence, and thus cannot model the com-

plex item-transition patterns (e.g., non-adjacent item transitions).

Recently, several proposals employ GNN-based model on graph

built from the current session to learn item embeddings for SBR.

Wu et al. [24] propose a gated GNN model (named SR-GNN) to

learn item embeddings on the session graph, and then obtain a

representative session embedding by integrating each learnt item

embedding with attentions, which is calculated according to the

relevance of each item to the last one. Following the success of

SR-GNN, some variants are also proposed for SBR, such as GC-SAN

[25]. Qiu et al. [9] propose FGNN to learn each item representa-

tion by aggregating its neighbors’ embeddings with multi-head

attention, and generate the final session representation by repeat-

edly combining each learnt embeddings with the relevance of each

time to the session. However, all these approaches only model the

item-transition information on the current session. In contrast, our

proposed model learns the item-transition information over all

sessions to enhance the learning from the current session.

Collaborative Filtering-based SBR. Although deep learning based

methods have achieved remarkable performance, collaborative fil-

tering (CF) based methods can still provide competitive results.

Item-KNN [11] can be extended for SBR by recommending items

that are most similar to the last item of the current session. KNN-

RNN [3] makes use of GRU4REC [2] and the co-occurrence-based

KNN model to extract the sequential patterns for SBR. Recently,

Wang et al. [19] propose an end-to-end neural model named CSRM,

which achieves state-of-the-art performance. It first utilizes NARM

over item-transitions to encode each session, then enriches the

representation of the current session by exploring the latest 𝑚
neighborhood sessions, and finally utilizes a fusion gating mecha-

nism to learn to combine different sources of features. However, it

may suffer from noise when integrating other sessions’ embeddings

for the current one. In contrast, our proposed method considers

the collaborative information in item-level: we use the item embed-

dings in other sessions to enrich the item embeddings of the current

session, and then integrate them into session representation for

SBR.

3 PRELIMINARIES

In this section, we first present the problem statement, and then

introduce two types of graph models, i.e., session graph and global

graph, based on different levels of pair-wise item transitions over

sessions for learning item representations, in which we highlight

the modeling of global-level item transition information as it is the

basis of global graph construction.

3.1 Problem Statement

Let 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚} be all of items. Each anonymous session,

which is denoted by 𝑆 = {𝑣𝑠1, 𝑣
𝑠
2, ..., 𝑣

𝑠
𝑙
}, consists of a sequence of

interactions (i.e., items clicked by a user) in chronological order,

where 𝑣𝑠𝑖 denotes item 𝑣𝑖 clicked within session 𝑆 , and the length

of 𝑆 is 𝑙 .
Given a session 𝑆 , the problem of session-based recommendation

aims to recommend the top-𝑁 items (1 ≤ 𝑁 ≤ |𝑉 |) from𝑉 that are

most likely to be clicked by the user of the current session 𝑆 .

3.2 Graph Models: Session Graph and Global
Graph

In this subsection, we present two different graph models to capture

different levels of item transition information over all available

sessions for item representation learning.

3.2.1 Session Graph Model. Session-based graph aims to learn

the session-level item embedding by modeling sequential patterns

over pair-wise adjacent items in the current session. Inspired by

[24], each session sequence is converted into a session graph for

learning the embeddings of items in the current session via GNN,

which is defined as follows, given session 𝑆 = {𝑣𝑠1, 𝑣
𝑠
2, ..., 𝑣

𝑠
𝑙
}, let

G𝑠 = (V𝑠 , E𝑠 ) be the corresponding session graph, whereV𝑠 ⊆ 𝑉
is the set of clicked items in 𝑆 , E𝑠 = {𝑒𝑠𝑖 𝑗 } denotes the edge set, in

which each edge indicates two adjacent items (𝑣𝑠𝑖 , 𝑣
𝑠
𝑗 ) in 𝑆 , which is

called session-level item-transition pattern. By following the work

[9], each item is added a self loop (rf. Figure 2a).

Different from [9, 24], our session graph has four types of edges

depending on the relationship between item 𝑖 and item 𝑗 which
are denoted by 𝑟𝑖𝑛 , 𝑟𝑜𝑢𝑡 , 𝑟𝑖𝑛−𝑜𝑢𝑡 and 𝑟𝑠𝑒𝑙 𝑓 . For edge (𝑣𝑠𝑖 , 𝑣

𝑠
𝑗 ), 𝑟𝑖𝑛

indicates there is only transition from 𝑣𝑠𝑗 to 𝑣
𝑠
𝑖 , 𝑟𝑜𝑢𝑡 implies there

is only transition from 𝑣𝑠𝑖 to 𝑣
𝑠
𝑗 , and 𝑟𝑖𝑛−𝑜𝑢𝑡 reveals there are both

transitions from 𝑣𝑠𝑗 to 𝑣
𝑠
𝑖 and from 𝑣𝑠𝑖 to 𝑣

𝑠
𝑗 ; 𝑟𝑠𝑒𝑙 𝑓 refers to the self

transition of an item.

3.2.2 Global GraphModel. Comparedwith traditional deep learning-

based approaches (e.g., RNN-based [6]) that focus on modeling se-

quential patterns of the entire session, session graph can efficiently

capture complicated graph patterns of a session to learn session-

level item embeddings.

However, we also aim to capture item-transition information

from other sessions for learning representations of items, which is

called global-level item transition information.

Global-level Item Transition Modeling. Here, we take into ac-

count global-level item transitions for global-level item represen-

tation learning, via integrating all pairwise item transitions over

sessions. As such, we propose a novel global graph model for learn-

ing global-level item embeddings, which breaks down sequence
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independence assumption with linking all pairs of items based on

pairwise transitions over all sessions (including the current one).

Next, we firstly present a concept (i.e., 𝜀-neighbor set) for modeling

global-level item transition, and then give the definition of global

graph.

Definition 1. 𝜀-Neighbor Set (N𝜀 (𝑣)). For any item 𝑣
𝑝
𝑖 in ses-

sion 𝑆𝑝 , the 𝜀-neighbor set of 𝑣
𝑝
𝑖 indicates a set of items, each

element of which is defined as follows,

N𝜀 (𝑣
𝑝
𝑖 ) =

{
𝑣
𝑞
𝑗 |𝑣

𝑝
𝑖 = 𝑣

𝑞

𝑖
′ ∈ 𝑆𝑝 ∩ 𝑆𝑞 ; 𝑣

𝑝
𝑗 ∈ 𝑆𝑞 ; 𝑗 ∈ [𝑖

′
− 𝜀, 𝑖

′
+ 𝜀 ];𝑆𝑝 ≠ 𝑆𝑞

}
,

where 𝑖
′
is the order of item 𝑣

𝑝
𝑖 in session 𝑆𝑞 , 𝜀 is a hyperparameter

to control the scope of modeling of item-transition between 𝑣
𝑝
𝑖

and the items in 𝑆𝑞 . Note that, parameter 𝜀 favors the modeling of

short-range item transitions over sessions, since it is helpless (even

noise, e.g., irrelevant dependence) for capturing the global-level

item transition information if beyond the scope (𝜀).

According to Definition 1, for each item 𝑣𝑖 ∈ 𝑉 , global-level
item transition is defined as {(𝑣𝑖 , 𝑣 𝑗 ) |𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 ; 𝑣 𝑗 ∈ N𝜀 (𝑣𝑖 )}.
Notably, we do not distinguish the direction of global-level item

transition information for efficiency.

Global Graph. Global graph aims to capture the global-level item

transition information, which will be used to learn item embed-

dings over all sessions. Specifically, the global graph is built based

on 𝜀-neighbor sets of items in all sessions. Without loss of gener-

ality, global graph is defined as follows, let G𝑔 = (V𝑔 , E𝑔 ) be the
global graph, whereV𝑔 denotes the graph node set that contains

all items in 𝑉 , and E𝑔 = {𝑒
𝑔
𝑖 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) |𝑣𝑖 ∈𝑉 , 𝑣 𝑗 ∈N𝜀 (𝑣𝑖 )} indicates

the set of edges, each corresponding to two pairwise items from all

the sessions. Figure 2b shows an example of constructing the global

graph (𝜀 = 2). Additionally, for each node 𝑣𝑖 , we generate weight for
its adjacent edges to distinguish the importance of 𝑣𝑖 ’s neighbors
as follows: For each edge (𝑣𝑖 , 𝑣 𝑗 ) (𝑣 𝑗 ∈ N

𝑔
𝑣𝑖 ), we use its frequency

over all the sessions as its weight of the corresponding edge; we

only keep top-𝑁 edges with the highest weights for each item 𝑣𝑖 on
graph G𝑔 due to efficiency consideration. Note that the definition

of the neighbors3 (i.e.,N
𝑔
𝑣 ) of item 𝑣 on graph G𝑔 is same asN𝜀 (𝑣).

Hence, G𝑔 is an undirected weighted graph as 𝜀-neighbor set is undi-
rected. During the testing phase, we do not dynamically update the

topological structure of global graph for efficiency consideration.

Remark. Each item in 𝑉 is encoded into an unified embedding

space at time-step 𝑡 , i.e., h𝑡𝑖 ∈ R
𝑑 (𝑑 indicates the dimension of item

embedding), which is feed with an initialization embedding h0𝑖 ∈

R
|𝑉 | , here we use one-hot based embedding and it is transformed

into 𝑑-dimensional latent vector space by using a trainable matrix

W0 ∈ R𝑑×|𝑉 | .

4 THE PROPOSED METHOD

Wepropose a novelGlobalContextEnhancedGraphNeuralNetworks

for Session-based Recommendation (GCE-GNN). GCE-GNN aims

to exploit both session-level and global-level pairwise item transi-

tions for modeling the user preference of the current session for

recommendation. Figure 3 presents the architecture of GCE-GNN,

which comprises four main components: 1) global-level item repre-

sentation learning layer. It learn global-level item embeddings over

all sessions by employing a session-aware attention mechanism to

recursively incorporate each node’s neighbors’ embeddings based

on the global graph (G𝑔 ) structure; 2) session-level item representa-

tion learning layer. It employs a GNN model on session graph G𝑠 to

learn session-level item embeddings within the current session; 3)

session representation learning layer It models the user preference of

the current session by aggregating the learnt item representations

in both session-level and global-level; 4) prediction layer. It outputs

the predicted probability of candidate items for recommendation.

We next present the four components in detail.

4.1 Global-level Item Representation Learning
Layer

We next present how to propagate features on global graph to

encode item-transition information from other sessions to help

recommendation.

Our layers are built based on the architecture of graph convo-

lution network [5], and we generate the attention weights based

on the importance of each connection by exploiting the idea of

graph attention network [17]. Here, we first describe a single layer,

which consists of two components: information propagation and

information aggregation, and then show how to generalize it to

multiple layers.

Information Propagation: An item may be involved in multiple

sessions, from which we can obtain useful item-transition informa-

tion to effectively help current predictions.

3We do not distinguish N𝜀 (𝑣) and N
𝑔
𝑣 when the context is clear and discriminative.
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next predicted item. Finally, candidate items will be scored.

To obtain the first-order neighbor’s features of item 𝑣 , one straight-
forward solution is to use mean pooling method [1]. However, not

all of items in 𝑣 ’s 𝜀-neighbor set are relevant to the user preference

of the current session, and thus we consider to utilize a session-

aware attention to distinguish the importance of items in (N𝜀 (𝑣)).
Therefore, each item in N𝜀 (𝑣) is linearly combined according to

the session-aware attention score,

hN𝑔
𝑣𝑖
=

∑

𝑣𝑗 ∈N
𝑔
𝑣𝑖

𝜋 (𝑣𝑖 , 𝑣 𝑗 )h𝑣𝑗 , (1)

where 𝜋 (𝑣𝑖 , 𝑣 𝑗 ) estimates the importance weight of different neigh-

bors. Intuitively, the closer an item is to the preference of the current

session, the more important this item is to the recommendation.

Therefore we implement 𝜋 (𝑣𝑖 , 𝑣 𝑗 ) as follows:

𝜋 (𝑣𝑖 , 𝑣 𝑗 ) = q𝑇1 LeakyRelu
(
W1 [(s � h𝑣𝑗 )‖𝑤𝑖 𝑗 ]

)
, (2)

herewe choose LeakyRelu as activation function, � indicates element-

wise product, ‖ indicates concatenation operation, 𝑤𝑖 𝑗 ∈ R1 is

the weight of edge (𝑣𝑖 , 𝑣 𝑗 ) in global graph, W1 ∈ R𝑑+1×𝑑+1 and

q1 ∈ R𝑑+1 are trainable parameters, s can be seen as the features

of current session, which is obtained by computing the average of

item representations of the current session,

s =
1

|𝑆 |

∑
𝑣𝑖 ∈𝑆

h𝑣𝑖 . (3)

Distinct from mean pooling, our approach makes the propagation

of information dependent on the affinity between 𝑆 and 𝑣 𝑗 , which
means neighbors that match the preference of current session will

be more favourable.

Then we normalize the coefficients across all neighbors con-

nected with 𝑣𝑖 by adopting the softmax function:

𝜋 (𝑣𝑖 , 𝑣 𝑗 ) =
exp

(
𝜋 (𝑣𝑖 , 𝑣 𝑗 )

)
∑

𝑣𝑘 ∈N
𝑔
𝑣𝑖
exp

(
𝜋 (𝑣𝑖 , 𝑣𝑘 )

) . (4)

As a result, the final attention score is capable of suggesting which

neighbor nodes should be given more attention.

Information Aggregation: The final step is to aggregate the item

representation h𝑣 and its neighborhood representation ℎ
𝑔
N𝑣

, we

implement aggregator function agg as follows,

h
𝑔
𝑣 = relu

(
W2 [h𝑣 ‖hN𝑔

𝑣
]
)
, (5)

where we choose relu as the activation function andW2 ∈ R𝑑×2𝑑

is transformation weight.

Through a single aggregator layer, the representation of an item

is dependent on itself and its immediate neighbors. We could ex-

plore the high-order connectivity information through extending

aggregator from one layer to multiple layers, which allows more

information related to the current session to be incorporated into

the current representation. We formulate the representation of an

item in the 𝑘-th steps as:

h
𝑔,(𝑘)
𝑣 = agg

(
h
(𝑘−1)
𝑣 , h

(𝑘−1)

N
𝑔
𝑣

)
, (6)

h
(𝑘−1)
𝑣 is representation of item 𝑣 which is generated from previous

information propagation steps, h
(0)
𝑣 is set as h𝑣 at the initial propa-

gation iteration. In this way, the 𝑘-order representation of an item

is a mixture of its initial representations and its neighbors up to 𝑘
hops away. This enables more effective messages to be incorporated

into the representation of the current session.

4.2 Session-level Item Representation Learning
layer

The session graph contains pairwise item-transitions within the

current session. We next present how to learn the session-level

item embedding.

As the neighbors of item in session graph have different impor-

tance to itself, we utilize attention mechanism to learn the weight

between different nodes. The attention coefficients can be computed

through element-wise product and non-linear transformation:

𝑒𝑖 𝑗 = LeakyReLU
(
a	𝑟𝑖 𝑗

(
h𝑣𝑖 � h𝑣𝑗

))
, (7)



where 𝑒𝑖 𝑗 indicates the importance of node 𝑣 𝑗 ’s features to node 𝑣𝑖
and we choose LeakyReLU as activation function, 𝑟𝑖 𝑗 is the relation

between 𝑣𝑖 and 𝑣 𝑗 and a∗ ∈ R𝑑 are weight vectors.

For different relations, we train four weight vectors, namely 𝑎𝑖𝑛 ,
𝑎𝑜𝑢𝑡 , 𝑎𝑖𝑛−𝑜𝑢𝑡 and 𝑎𝑠𝑒𝑙 𝑓 . As not every two nodes are connected in

the graph, we only compute 𝑒𝑖 𝑗 for nodes 𝑗 ∈ N𝑠
𝑣𝑖 to inject the graph

structure into the model, where N𝑠
𝑣𝑖 is the first-order neighbors of

𝑣𝑖 . And to make coefficients comparable across different nodes, we

normalize the attention weights through softmax function:

𝛼𝑖 𝑗 =
exp

(
LeakyReLU

(
a	𝑟𝑖 𝑗

(
h𝑣𝑖 � h𝑣𝑗

)))

∑
𝑣𝑘 ∈N

𝑠
𝑣𝑖
exp

(
LeakyReLU

(
a	𝑟𝑖𝑘

(
h𝑣𝑖 � h𝑣𝑘

) ) ) . (8)

In Eq. (8) the attention coefficients 𝛼𝑖 𝑗 is asymmetric, as their neigh-

bors are different, which means the contribution they make to each

other are unequal. Next we obtain the output features for each node

by computing a linear combination of the features corresponding

to the coefficients:

h𝑠𝑣𝑖 =
∑

𝑣𝑗 ∈N𝑠
𝑣𝑖

𝛼𝑖 𝑗h𝑣𝑗 . (9)

The item representations in session graph is aggregated by the fea-

tures of item itself and its neighbor in the current session. Through

the attention mechanism, the impact of noise on the session-level

item representation learning is reduced.

4.3 Session Representation Learning Layer

For each item, we obtain its representations by incorporating both

global context and session context, and its final representation is

computed by sum pooling,

h
𝑔,(𝑘)
𝑣 = dropout

(
h
𝑔,(𝑘)
𝑣

)

h′𝑣 = h
𝑔,(𝑘)
𝑣 + h𝑠𝑣,

(10)

here we utilize dropout[14] on global-level representation to avoid

overfitting.

Based on the learnt item representations, we now present how

to obtain the session representations. Different from previous work

[8, 24, 25] which mainly focus on the last item, in this paper we

propose a more comprehensive strategy to learn the contribution

of each part of the session for prediction.

In our method, a session representation is constructed based on

all the items involved in the session. Note that the contribution of

different items to the next prediction is not equal. Intuitively, the

items clicked later in the session are more representative of the

user’s current preferences, which shows their greater importance

for the recommendation. Moreover, it is important to find the main

purpose of the user and filter noise in current session [6]. Hence we

incorporate reversed position information and session information

to make a better prediction.

After feeding a session sequence into graph neural networks,

we can obtain the representation of the items involved in the ses-

sion, i.e., H =
[
h′
𝑣𝑠1
, h′

𝑣𝑠2
, ..., h′

𝑣𝑠
𝑙

]
. We also use a learnable position

embedding matrix P = [p1, p2, ..., p𝑙 ], where p𝑖 ∈ R𝑑 is a posi-

tion vector for specific position 𝑖 and 𝑙 is the length of the current

session sequence. The position information is integrated through

concatenation and non-linear transformation:

z𝑖 = tanh
(
W3

[
h′𝑣𝑠𝑖

‖ p𝑙−𝑖+1

]
+ b3

)
, (11)

where parameters W3 ∈ R𝑑×2𝑑 and b3 ∈ R𝑑 are trainable pa-

rameters. Here we choose the reversed position embedding be-

cause the length of the session sequence is not fixed. Comparing

to forward position information, the distance of the current item

from the predicted item contains more effective information, e.g.,

in the session {𝑣2 → 𝑣3 →?}, 𝑣3 is the second in the sequence

and shows great influence to prediction, however in the session

{𝑣2 → 𝑣3 → 𝑣5 → 𝑣6 → 𝑣8 →?}, the importance of 𝑣3 would be

relatively small. Therefore the reversed position information can

more accurately suggest the importance of each item.

The session information is obtained by computing the average

of item representations of the session,

s′ =
1

𝑙

𝑙∑
𝑖=1

h′𝑣𝑠𝑖
. (12)

Next, we learn the corresponding weights through a soft-attention

mechanism:

𝛽𝑖 = q	2 𝜎
(
W4z𝑖 +W5s

′ + b4
)
, (13)

whereW4,W5 ∈ R𝑑×𝑑 and q2, b4 ∈ R𝑑 are learnable parameters.

Finally, the session representation can be obtained by linearly

combining the item representations:

S =
𝑙∑

𝑖=1

𝛽𝑖h
′
𝑣𝑠𝑖
. (14)

The session representation S is constructed by all the items in-

volved in the current session, where the contribution of each item

is determined not only by the information in the session graph, but

also by the chronological order in the sequence.

4.4 Prediction Layer

Based on the obtained session representations S, the final recom-

mendation probability for each candidate item based on their initial

embeddings as well as current session representation, and we first

use dot product and then apply softmax function to obtain the

output ŷ:

ŷ𝑖 = Softmax
(
S	h𝑣𝑖

)
, (15)

where ŷ𝑖 ∈ ŷ denotes the probability of item 𝑣𝑖 appearing as the

next-click in the current session.

The loss function is defined as the cross-entropy of the prediction

results ŷ:

L(ŷ) = −

𝑚∑
𝑖=1

y𝑖 log (ŷ𝑖 ) + (1 − y𝑖 ) log (1 − ŷ𝑖 ) , (16)

where y denotes the one-hot encoding vector of the ground truth

item.

5 EXPERIMENTS

We have conducted extensive experiments to evaluate the accuracy

of the proposed GCE-GNN method by answering the following five

key research questions:

• RQ1: Does GCE-GNN outperform state-of-the-art SBR base-

lines in real world datasets?



Table 1: Statistics of the used datasets.

Dataset Diginetica Tmall Nowplaying

# click 982,961 818,479 1,367,963

# train 719,470 351,268 825,304

# test 60,858 25,898 89,824

# items 43,097 40,728 60,417

avg. len. 5.12 6.69 7.42

• RQ2: Does global graph and global-level encoder improve

the performance of GCE-GNN? How well does GCE-GNN

perform with different depth of receptive field 𝑘?

• RQ3: Is reversed position embedding useful?

• RQ4: How well does GCE-GNN perform with different ag-

gregation operations?

• RQ5: How do different hyper-parameter settings (e.g., node

dropout) affect the GCE-GNN’s accuracy?

5.1 Datesets and Preprocessing

We employ three benchmark datasets, namely, 𝐷𝑖𝑔𝑖𝑛𝑒𝑡𝑖𝑐𝑎4,𝑇𝑚𝑎𝑙𝑙5

and 𝑁𝑜𝑤𝑝𝑙𝑎𝑦𝑖𝑛𝑔6. Particularly, Diginetica dataset is from CIKM

Cup 2016, consisting of typical transaction data. Tmall dataset

comes from IJCAI-15 competition, which contains anonymized

user’s shopping logs on Tmall online shopping platform. Nowplay-

ing dataset comes from [26], which describes the music listening

behavior of users.

Following [24, 25], we conduct preprocessing step over the three

datasets. More specifically, sessions of length 1 and items appearing

less than 5 times were filtered across all the three datasets. Similar to

[8], we set the sessions of last week (latest data) as the test data, and

the remaining historical data for training. Furthermore, for a session

𝑆 = [𝑠1, 𝑠2, ..., 𝑠𝑛], we generate sequences and corresponding labels

by a sequence splitting preprocessing, i.e., ([𝑠1] , 𝑠2), ([𝑠1, 𝑠2] , 𝑠3),
..., ([𝑠1, 𝑠2, ..., 𝑠𝑛−1] , 𝑠𝑛) for both training and testing across all the

three datasets. The statistics of datasets, after preprocessing, are

summarized in Table 1.

5.2 Evaluation Metrics

Weadopt twowidely used ranking basedmetrics:P@N andMRR@N

by following previous work[8, 24].

5.3 Baseline Algorithms

We compare our method with classic methods as well as state-of-

the-art models. The following nine baseline models are evaluated.

POP: It recommends top-𝑁 frequent items of the training set.

Item-KNN[11]: It recommends items based on the similarity be-

tween items of the current session and items of other ones.

FPMC[10]: It combines the matrix factorization and the first-order

Markov chain for capturing both sequential effects and user pref-

erences. By following the previous work, we also ignore the user

latent representations when computing recommendation scores.

4https://competitions.codalab.org/competitions/11161
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
6http://dbis-nowplaying.uibk.ac.at/#nowplaying

GRU4Rec7 [2]: It is RNN-based model that uses Gated Recurrent

Unit (GRU) to model user sequences.

NARM8 [6]: It improves over GRU4Rec[2] by incorporating at-

tentions into RNN for SBR.

STAMP9 [8]: It employs attention layers to replace all RNN en-

coders in previous work by fully relying on the self-attention of

the last item in the current session to capture the user’s short-term

interest.

SR-GNN10 [24]: It employs a gated GNN layer to obtain item em-

beddings, followed by a self-attention of the last item as STAMP[8]

does to compute the session level embeddings for session-based

recommendation.

CSRM11 [19]: It utilizes the memory networks to investigate the

latest 𝑚 sessions for better predicting the intent of the current

session.

FGNN12 [9]: It is recently proposed by designing a weighted atten-

tion graph layer to learn items embeddings, and the sessions for

the next item recommendation are learnt by a graph level feature

extractor.

5.4 Parameter Setup

Following previous methods [6][8][24], the dimension of the latent

vectors is fixed to 100, and the size for mini-batch is set to 100 for all

models. We keep the hyper-parameters of each model consistent for

a fair comparison. For CSRM, we set the memory size to 100 which

is consistent with the batch size. For FGNN, we set the number

of GNN layer to 3 and the number of heads is set to 8. For our

model, all parameters are initialized using a Gaussian distribution

with a mean of 0 and a standard deviation of 0.1. We use the Adam

optimizer with the initial learning rate 0.001, which will decay by

0.1 after every 3 epoch. The L2 penalty is set to 10−5 and the dropout
ratio is searched in {0.1, 0.2, ..., 0.9} on a validation set which is a

random 10% subset of the training set. Moreover, we set the number

of neighbors and the maximum distance of adjacent items 𝜀 to 12

and 3, respectively.

5.5 Overall Comparison (RQ1)

Table 2 reports the experimental results of the 9 baselines and

our proposed model on three real-world datasets, in which the

best result of each column is highlighted in boldface. It can be

observed that GCE-GNN achieves the best performance (statistically

significant) across all three datasets in terms of the two metrics

(with N=10, and 20) consistently, which ascertains the effectiveness

of our proposed method.

Among the traditional methods, POP’s performance is the worst,

as it only recommends top-𝑁 frequent items. Comparing with POP,

FPMC shows its effectiveness on three datasets, which utilizes first-

order Markov chains and matrix factorization. Item-KNN achieves

the best results among the traditional methods on the Diginetica and

7https://github.com/hidasib/GRU4Rec
8https://github.com/lijingsdu/sessionRec_NARM
9https://github.com/uestcnlp/STAMP
10https://github.com/CRIPAC-DIG/SR-GNN
11https://github.com/wmeirui/CSRM_SIGIR2019
12https://github.com/RuihongQiu/FGNN



Table 2: Effectiveness comparison on three datasets.

Dataset Diginetica Tmall Nowplaying

Methods P@10 P@20 MRR@10 MRR@20 P@10 P@20 MRR@10 MRR@20 P@10 P@20 MRR@10 MRR@20

POP 0.76 1.18 0.26 0.28 1.67 2.00 0.88 0.90 1.86 2.28 0.83 0.86

Item-KNN 25.07 35.75 10.77 11.57 6.65 9.15 3.11 3.31 10.96 15.94 4.55 4.91

FPMC 15.43 22.14 6.20 6.66 13.10 16.06 7.12 7.32 5.28 7.36 2.68 2.82

GRU4Rec 17.93 30.79 7.73 8.22 9.47 10.93 5.78 5.89 6.74 7.92 4.40 4.48

NARM 35.44 48.32 15.13 16.00 19.17 23.30 10.42 10.70 13.6 18.59 6.62 6.93

STAMP 33.98 46.62 14.26 15.13 22.63 26.47 13.12 13.36 13.22 17.66 6.57 6.88

CSRM 36.59 50.55 15.41 16.38 24.54 29.46 13.62 13.96 13.20 18.14 6.08 6.42

SR-GNN 38.42 51.26 16.89 17.78 23.41 27.57 13.45 13.72 14.17 18.87 7.15 7.47

FGNN 37.72 50.58 15.95 16.84 20.67 25.24 10.07 10.39 13.89 18.78 6.8 7.15

FGNN(reported)1 - 51.36 - 18.47 - - - - - - - -

GCE-GNN 41.16 54.22 18.15 19.04 28.01 33.42 15.08 15.42 16.94 22.37 8.03 8.40

𝑝-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01
1 The codes of FGNN model released by the author are incomplete. For fairness, we compare our method with our re-implemented FGNN model as
well as the results reported in original paper.

Nowplaying datasets. Note it only applies the similarity between

items and does not consider the chronological order of the items

in a session, and thus it cannot capture the sequential transitions

between items.

Compared with traditional methods, neural network based meth-

ods usually have better performance for session-based recommen-

dation. In sprite of preforming worse than Item-KNN on Diginetica,

GRU4Rec, as the first RNN based method for SBR, still demonstrates

the capability of RNN in modeling sequences. However, RNN is

designed for sequence modeling, and session based recommenda-

tion problems are not merely a sequence modeling task because

the user’s preference may change within the session.

The subsequentmethods, NARMand STAMPoutperformGRU4REC

significantly. NARM combines RNN and attention mechanism,

which uses the last hidden state of RNN as the main preference

of user, this result indicates that directly using RNN to encode the

session sequence may not be sufficient for SBR as RNN only mod-

els one way item-transition between adjacent items in a session.

We also observe that STAMP, a complete attention-based method,

achieves better performance than NARM on Tmall, which incorpo-

rates a self-attention over the last item of a session to model the

short-term interest, this result demonstrates the effectiveness of

assigning different attention weights on different items for session

encoding. Compared with RNN, attention mechanism appears to be

a better option, although STAMP neglects the chronological order

of items in a session.

CSRM performs better than NARM and STAMP on Diginetica

and Tmall. It shows the effectiveness of using item transitions from

other sessions, and also shows the shortcomings of the memory

networks used by CSRM that have limited slots, additionally CSRM

treats other sessions as a whole one without distinguishing the

relevant item-transitions from the irrelevant ones encoded in other

sessions.

Among all the baseline methods, the GNN-based methods per-

form better on the Diginetica and Nowplaying datasets. By mod-

eling every session sequence as a subgraph and applying GNN to

encode items, SR-GNN and FGNN demonstrate the effectiveness

of applying GNN in session-based recommendation. This indicates

that the graph modeling would be more suitable than the sequence

modeling, RNN, or a set modeling, the attention modeling for SBR.

Our approach GCE-GNN outperforms SR-GNN and FGNN on all

the three datasets. Specifically, GCE-GNN outperforms the SR-GNN

by 6.86% on Diginetica, 16.34% on Tmall and 15.71% on Nowplay-

ing on average. Different from SR-GNN and FGNN, our approach

integrates information from global context, i.e., other session, and

local context, i.e., the current session, and also incorporates relative

position information, leading to consistent better performance.

5.6 Impact of Global Feature Encoder (RQ2)

We next conduct experiments on three datasets to evaluate the ef-

fectiveness of global-level feature encoder and session-level feature

encoder. Specially, we design four contrast models:

• GCE-GNN w/o global: GCE-GNN without global-level fea-

ture encoder and only with local feature

• GCE-GNN w/o session: GCE-GNN without session-level

feature encoder and only with global feature

• GCE-GNN-1-hop: GCE-GNN with global-level feature en-

coder, which sets the number of hop to 1.

• GCE-GNN-2-hop: GCE-GNN with global-level feature en-

coder, which sets the number of hop to 2.

Table 3 shows the comparison between different contrast models. It

is clear that with global-level feature encoder, GCE-GNN achieves

better performance. Comparing with GCE-GNN w/o global context,

GCE-GNN with 1-hop and 2-hop global-level feature encoder can

explore item-transition information from other sessions, which

helps the model to make more accurate predictions. It can also be

observed that GCE-GNN with 2-hop performs better than GCE-

GNN with 1-hop on Diginetica, indicating that high-level exploring

might obtain more effective information from global graph. In ad-

dition, GCE-GNN with 1-hop performs better than GCE-GNN with

2-hop on Tmall, and this indicates that higher-level exploring might

also introduce noise.



Table 3: The performance of contrast models.

Dataset Diginetica Tmall Nowplaying

Measures P@20 MRR@20 P@20 MRR@20 P@20 MRR @20

w/o global 54.08 18.76 32.96 14.72 23.11 7.55

w/o session 51.46 17.34 32.96 12.41 19.10 8.15

1-hop 54.04 18.90 33.42 15.42 22.37 8.40

2-hop 54.22 19.04 32.58 14.83 22.45 8.29

Table 4: The performance of contrast models.

Dataset Diginetica Tmall Nowplaying

Measures P@20 MRR@20 P@20 MRR@20 P@20 MRR @20

GCE-GNN-NP 50.45 17.65 31.16 14.71 19.42 6.05

GCE-GNN-SA 51.68 17.94 25.80 12.94 21.40 7.18

GCE-GNN 54.22 19.04 33.42 15.42 22.37 8.40

Table 5: Effects of different aggregation operations.

Dataset Diginetica Tmall Nowplaying

Measures P@20 MRR@20 P@20 MRR@20 P@20 MRR @20

Gate Mechanism 53.84 18.83 32.80 15.33 22.47 7.83

Max Pooling 47.69 16.44 31.87 15.39 19.13 6.71

Concatenation 51.72 17.03 31.55 14.89 19.88 7.93

Sum Pooling 54.22 19.04 33.42 15.42 22.37 8.40

5.7 Impact of Position Vector (RQ3)

The position vector is used to drive GCE-GNN to learn the contri-

bution of each part in the current session. Although SASRec [4]

has injected forward position vector into the model to improve per-

formance, we argue that forward position vector has very limited

effect on the SBR task. To verify this and evaluate the effectiveness

of using the position vector in a reverse order, which is proposed

in GCE-GNN, we design a series of contrast models:

• GCE-GNN-NP: GCE-GNN with forward position vector re-

placing the reverse order position vector.

• GCE-GNN-SA: GCE-GNN with self attention function re-

placing the position-aware attention.

Table 4 shows the performance of different contrast models. We ob-

serve that our attention network with reversed position embedding

performs better than the other two variants.

GCE-GNN-NP does not perform well on all datasets. That is

because the model cannot capture the distance from each item to

the predicted item, which will mislead the model when training for

sessions of various lengths.

GCE-GNN-SA performs better than GCE-GNN-NP on three

datasets, indicating that the last item in a session contains the

most relevant information for recommendation. However, it does

not performwell on Tmall dataset, as it lacks a more comprehensive

judgment of the contribution of each item.

Comparing with the two variants, reversed position embedding

demonstrates its effectiveness. This confirms that the reversed po-

sition information can more accurately suggest the importance of

each item. Moreover, though the attention mechanism, we filter

the noise in the current session, which makes the model perform

better.

(a) Diginetica (b) Tmall

Figure 4: Comparison of overall expert finding performance.

5.8 Impact of Aggregation Operations (RQ4)

As we use local feature encoder and global feature encoder, it is

meaningful to compare GCE-GNN with different aggregation op-

erations, i.e.,, gating mechanism, max pooling and concatenation

mechanism.

For gating mechanism, we use a linear interpolation between

local feature representation ℎ𝑙 and global feature representation

ℎ𝑔 :

r𝑣 = 𝜎 (W𝑠h
𝑠
𝑣 +W𝑔h

𝑔
𝑣 )

h′𝑣 = r𝑣h
𝑔
𝑣 + (1 − r𝑣)h

𝑠
𝑣,

(17)

where 𝜎 is the sigmoid activation function and r𝑣 is learned to

balance the importance of two features.

For max pooling, we take the maximum value of every dimension

for each feature, and the 𝑖−th dimension of an item representation

h′𝑣𝑖 is formulated as

h′𝑣𝑖 = max(h
𝑔
𝑣𝑖 , h

𝑠
𝑣𝑖 ) . (18)

For the concatenation operation, the final representation is the

concatenation of vectors h
𝑔
𝑣 and h𝑠𝑣 :

h′𝑣 = M
(
[h

𝑔
𝑣 ‖h

𝑠
𝑣]
)

(19)

whereM ∈ R𝑑×2𝑑 is the transformer weight.

Table 5 shows the performance of different aggregation opera-

tions on the three datasets. It can be observed that GCE-GNN with

sum pooling outperforms other aggregation operations on Diginet-

ica and Tmall in terms of Recall@20 and MRR@20. Max pooling’s

performance is the worst on Diginetica but it performs better than

the other two aggregators on Tmall in terms of MRR@20. Despite of

using additional parameters, Gate mechanism and Concatenation’s

performance is also worse than sum pooling, possibly because too

many parameters may lead to overfitting.

5.9 Impact of Dropout Setting (RQ5)

To prevent GCE-GNN from overfitting, we employ dropout [14]

regularization techniques, which have been shown to be effective

in various neural network architectures including graph neural

networks[22][23]. The key idea of dropout is to randomly drop

neurons with probability 𝑝 during training, while using all neu-

rons for testing. Figure 4 shows the impact of dropout in Equation

(10) on Diginetica and Tmall datasets. We can observe that when

dropout ratio is small, the model does not perform well on both



datasets, as it is easy to overfit. It achieves the best performance

when dropout ratio is set to 0.4 on Diginetica and 0.6 on Tmall.

However, when dropout ratio is big, the performance of the model

starts to deteriorate, as it is hard for the model to learn from data

with limited available neurons.

6 CONCLUSION

This paper studies the problem of session-based recommendation,

which is a challenging task as the user identities and historical

interactions are often unavailable due to privacy and data protec-

tion concern. It proposes a novel architecture for session-based

recommendation based on graph neural network. Specifically, it

first converts the session sequences into session graphs and con-

struct a global graph. The local context information and global

context information are subsequently combined to enhance the

feature presentations of items. Finally, it incorporates the reversed

position vector and session information to empower the proposed

model to better learn the contribution of each item. Comprehensive

experiments demonstrate that the proposed method significantly

outperforms nine baselines over three benchmark datasets consis-

tently.
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