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Abstract— Automatic sleep stage classification is of
great importance to measure sleep quality. In this paper,
we propose a novel attention-based deep learning archi-
tecture called AttnSleep to classify sleep stages using
single channel EEG signals. This architecture starts with
the feature extraction module based on multi-resolution
convolutional neural network (MRCNN) and adaptive fea-
ture recalibration (AFR). The MRCNN can extract low and
high frequency features and the AFR is able to improve
the quality of the extracted features by modeling the
inter-dependencies between the features. The second mod-
ule is the temporal context encoder (TCE) that leverages
a multi-head attention mechanism to capture the temporal
dependencies among the extracted features. Particularly,
the multi-head attention deploys causal convolutions to
model the temporal relations in the input features. We eval-
uate the performance of our proposed AttnSleep model
using three public datasets. The results show that our
AttnSleep outperforms state-of-the-art techniques in terms
of different evaluation metrics. Our source codes, experi-
mental data, and supplementary materials are available at
https://github.com/emadeldeen24/AttnSleep.

Index Terms— Sleep stage classification,multi-resolution
convolutional neural network, adaptive feature recalibra-
tion, temporal context encoder, multi-head attention.

I. INTRODUCTION

SLEEP is a vital process for humans, as it affects all the
aspects in their daily activities. Studies show that humans

having good quality of sleep enjoy better health and brain
functions [1]. On the other hand, interrupted sleep periods
can cause some sleep disorders, such as insomnia or sleep
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apnea [2]. In particular, sleep stages (e.g., light sleep and deep
sleep) are important for immune system, memory, metabolism,
etc. [3]–[5]. Therefore, it is highly desired to measure sleep
quality through sleep monitoring and sleep stage classification.

Sleep specialists usually determine the sleep stages based
on the polysomnography (PSG), which consists of electroen-
cephalogram (EEG), electrooculogram (EOG), anelectromyo-
gram (EMG) and electrocardiogram (ECG) [6]. Single-channel
EEG has recently become attractive for sleep monitoring due
to its ease-of-use. In particular, PSG or single-channel EEG
recordings are usually divided into 30-second segments and
each segment is manually checked by sleep specialists and
then classified into one of the six stages, i.e., wake (W),
rapid eye movement (REM) and four non-REM stages (N1,
N2, N3 and N4) [7]. This manual process is very exhaustive,
tedious, and time-consuming. As such, automatic sleep stage
classification systems are required to assist sleep specialists.

Many studies have adopted conventional machine learning
methods to classify EEG signals into corresponding sleep
stages. These methods usually consist of two steps, namely,
manual feature extraction and sleep stage classification. First,
they design and extract various features from time and fre-
quency domains. Feature selection algorithms are often applied
to further select the most discriminative features. Second,
the selected features are then fed into conventional machine
learning models for sleep stage classification, such as Naive
Bayes [8], support vector machines (SVM) [9], [10], random
forest (RF) [7], [11], or even ensemble learning based classi-
fiers [12]. However, these methods require domain knowledge
to extract the best representative features.

Recently, deep learning has been employed in different areas
and shown its superiority over conventional machine learning
models without the need of domain knowledge. This motivates
researchers to exploit deep learning techniques for automatic
sleep stages classification. Several studies have designed con-
volutional neural networks (CNNs) [13]–[18] for this task.
For example, successive convolution and pooling layers with
fully-connected layers were used to perform this classification
task in [13]. In [14], the authors used 12 convolution layers
together with 2 fully connected layers. Additionally in [16],
the authors used 2D convolution along with MaxPooling layers
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Fig. 1. Overall framework of the proposed AttnSleep model for automatic sleep stage classification.

to classify the raw data from three channels (i.e., EEG, EOG,
and EMG). In [15], the authors designed a relatively deep
CNN architecture to show that a better performance can
be achieved by relying on network depth. In [17], authors
converted each raw signal into a log-power spectra and used a
CNN to perform a joint classification and prediction task for
identifying sleep stages. Generally, the CNN models above
have achieved good performance for sleep stage classification.
However, most of them are not able to effectively model the
temporal dependencies among the EEG data.

Recurrent Neural Networks (RNNs) were proposed to cap-
ture temporal dependencies in time-series EEG data. For
example, [19] used a cascaded RNN architecture to classify
sleep stages. Some researchers combined CNN with RNN by
using CNN for features extraction and RNN for modelling
the time dependencies [20]–[23]. For example, [20] used
a CNN architecture to extract features from the raw data,
and then exploited the long short-term memory (LSTM) to
learn transition rules through sleep stages. Similarly, in [23],
the authors also used a successive blocks of CNN followed by
LSTM to classify raw EEG signals. In addition, [24] used an
LSTM based encoder-decoder with an attention mechanism
after the encoder to find out the most relevant parts in
input sequences. However, RNNs also have limitations due
to their recurrent nature, i.e., they usually have high model
complexity and it is thus difficult to train them in parallel.
Some works used attention mechanism completely instead of
using RNN. For example, [25] segmented the EEG epochs
and used self-attention to learn both intra-epoch features, and
inter-epoch temporal features.

Aside from selecting classification models, sleep staging
also needs to address the data imbalance problem, since
humans spend different time periods in each stage. Oversam-
pling is a common strategy to address this issue. For example,
the studies in [13], [17], [20] replicated the minority classes for
model training. The authors in [24] applied Synthetic Minority
Over-sampling TEchnique (SMOTE) [26] for oversampling to
balance the data. However, oversampling techniques expand
the training data and thus increase the training time.

To address the above issues, we propose a novel architecture
called AttnSleep for automatic sleep stages classification.
First, we propose a novel feature extraction module based
on multi-resolution CNN (MRCNN) and adaptive feature

recalibration (AFR). The MRCNN extracts features corre-
sponding to low and high frequencies from different frequency
bands, and the AFR models the features inter-dependencies
to enhance the feature learning. Second, we propose a novel
temporal context encoder (TCE) that deploys a multi-head
attention with causal convolutions to efficiently capture the
temporal dependencies in the extracted features. We also
design a class-aware loss function to effectively address
the data imbalance issue without additional computations.
We perform extensive experiments on three public datasets
and experimental results demonstrate that our AttnSleep model
outperform the state-of-the-arts for sleep stage classification.

Overall, the main contributions of our proposed model can
be summarized as follows.

1) We propose a novel feature extraction technique, i.e.,
a multi-resolution CNN module, to extract features cor-
responding to low and high frequencies from different
frequency bands, and an adaptive feature recalibration
to learn the features interdependencies and enhance the
representation capability of the extracted features.

2) We propose a novel temporal context encoder that
deploys a multi-head self-attention with causal convo-
lutions to efficiently capture the temporal dependencies
in the extracted features.

3) We design a class-aware loss function to efficiently han-
dle the class imbalance without introducing additional
computations.

4) These novel components are supported by extensive
experiments over three public datasets. The results
demonstrate that our proposed model outperforms state-
of-the-arts in sleep stage classification.

The rest of the paper is organized as follows: Section II
illustrates the details of the proposed model. In Section III,
we introduce the datasets, evaluation metrics, experimental
setup and the baseline methods. We then present the com-
parison results against the baseline methods and the ablation
study of our AttnSleep model, as well as a sensitivity analysis
of the choice of the number of heads in the MHA. Finally,
the conclusion of the paper is presented in Section IV.

II. PROPOSED METHOD

In this section, we introduce our proposed AttnSleep model
for sleep stage classification from single-channel EEG data.
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A. Overview of AttnSleep Model
Fig. 1 illustrates the overall framework of our AttnSleep

model. It consists of three main blocks, namely, 1) feature
extraction, 2) temporal context encoder and 3) classification.

First, the MRCNN with two-branch CNN architectures is
exploited to extract the features from a 30-second EEG signal.
In particular, it extracts high-frequency features by the small
kernel convolutions and low-frequency features by the wide
kernel convolutions. Following MRCNN, we propose an AFR
module to model the inter-dependencies among the features
extracted by MRCNN. Moreover, AFR can adaptively select
and highlight the most important features, which helps to
enhance the classification performance. Second, we develop
a TCE module to capture the long-term dependencies in the
input features. The core component of TCE is the multi-head
attention supported by causal convolutions. Third, the clas-
sification decision is done by a fully connected layer with
a softmax activation function. We also leverage a class-aware
cost-sensitive loss function to handle the data imbalance issue.
In the following subsections, we will introduce each block in
details.

B. Feature Extraction
Fig. 2 shows the MRCNN and AFR modules for feature

extraction from raw single-channel EEG signals.
1) Multi-Resolution CNN: To extract different types of fea-

tures, we develop a multi-resolution CNN architecture as
shown in Fig. 2. We implement two branches of convolutional
layers with different kernel sizes, where the choice of the
kernel sizes is related to the sampling rate of the EEG signals
and aims to explore different frequency bands. This is inspired
by some previous works that used multiple CNN kernel sizes
to extract different frequency features (i.e., low- and high-
frequencies) such as [27], [28]. Additionally, different sleep
stages are characterized by different frequency ranges [7], and
thus, it is becoming important to address different frequency
bands to improve the extracted features. Therefore, we use dif-
ferent kernel sizes to capture different ranges of timesteps, and
hence address features from different sleep-related frequency
bands. To further explain this, we consider a dataset with a
sampling rate of 100 Hz (100 timesteps are sampled in one
second) to justify the selection of the kernel sizes of the two
branches. First, the wide kernel (with a kernel of 400) captures
timesteps with 4-second windows, and thus captures a whole
cycle of sinusoidal signal down to ∼0.25 Hz (T = 1/F).
This range corresponds to delta band. Second, for the smaller
kernel (with a kernel of 50), each convolution window captures
50 samples (0.5 second), thus it will be able to capture a whole
cycle of sinusoidal signal down to ∼2 Hz, which means that
data corresponds to alpha and theta bands.

On the other hand, such a combination of features is
important for the non-stationary characteristic of EEG signals
that requires exploring different kinds of features. As shown in
Fig. 2, each branch consists of three convolutional layers and
two max-pooling layers, where each convolution layer includes
a batch normalization layer [29] and uses a Gaussian Error
Linear Unit (GELU) as the activation function. In particular,

Fig. 2. The MRCNN and AFR modules for feature extraction. Each
convolution block is followed by a Batch Normalization.

Conv1D (64, 50, 6) in Fig. 2 refers to using 1D convolution
layer with 64 filters, a kernel size of 50 and a stride of 6.
Similarly, MaxPooling (8, 2) refers to a maxpooling layer with
a kernel size of 8 and a stride of 2. To reduce overfitting,
we also apply dropout after the first maxpooling in both
branches and after the concatenation of both branches as
shown in Fig. 2.

2) Adaptive Feature Recalibration (AFR): AFR aims to
recalibrate the features learned by MRCNN for improv-
ing its performance. In particular, the AFR models the
inter-dependencies between the features and adaptively selects
the most discriminative features through a residual squeeze
and excitation (residual SE) block [30]. The SE block helps
the lower layers of the network to exploit more contextual
information outside its local receptive field by a context
aware mechanism. In residual SE block, we implement two
convolutions Conv1D (30,1,1) with both the kernel and stride
size as 1 and ReLU as the activation function. Given a feature
map I ∈ R

L×d learned by MRCNN, we apply two convolution
operations to I such that F = Conv2( Conv1(I ) ), where
F = {F1, . . . , FN } ∈ R

N×d , N is the total number of features,
d is the length of Fi (1 ≤ i ≤ N), and Conv1 and Conv2 are
the two convolution operations in AFR module.

Next, the global spatial information is squeezed by using
adaptive average pooling that shrinks F ∈ R

N×d to s =
{s1, . . . , sN }, where si is the average of the d data points
in Fi ∈ R

d , 1 ≤ i ≤ N . Two fully connected (FC) layers
are then applied to make use of the aggregated information.
In particular, the first layer is followed by a ReLU activation
function to perform dimensionality reduction, and the second
layer is followed by a smoothing sigmoid activation function
to perform dimensionality increasing as shown in Equation 1.

e = σ(W2 (δ(W1(s)))) ∈ R
N×d , (1)
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Fig. 3. Structure of proposed multi-head attention.

where σ and δ refer to sigmoid and ReLU activation functions
respectively, and W1 and W2 represent the two FC layers in
AFR. Then, the feature map F is scaled by e as follows:

O = F ⊗ e ∈ R
N×d , (2)

where ⊗ refers to the point-wise multiplication between F and
e. We also add a shortcut connection to combine the original
input I with the enhanced selected features learned from the
residual SE block. The final output of the AFR module is:

X = I + O ∈ R
N×d . (3)

Note that we use GELU activation function in the MRCNN
module as it allows some negative weights of the input to
pass through. These negative weights might be important for
the following AFR module, leading to different decisions.
Compared to ReLU, GELU should perform better, as ReLU
suppresses all the negative weights to zeros, and thus the
AFR module will not be able to make use of them. However,
we use ReLU in the AFR module itself as ReLU aims to avoid
exploding/vanishing gradient besides making the computations
faster and easier to converge [31]. On the other hand, GELU
can be a better choice over some other activation functions
that also pass negative values, such as Leaky-ReLU and
PReLU. The reason is that these activation functions allow
strong negative activations to generate undesirable impact
on the sum of activations feeding the next layers, which
generates undesirable effects. Differently, GELU shows more
control to bound the effect of these negative activations. These
conclusions are supported with experiments in Table S.1 in the
supplementary materials.

C. Temporal Context Encoder (TCE)
The TCE layer aims to capture temporal dependencies in

the input features. As shown in Fig. 1, TCE layer consists of
a multi-head attention (MHA) layer, a normalization layer and
two FC layers. Moreover, TCE stacks two identical structures
to generate the final features. As attention mechanism is a key
part in the TCE module, we first introduce the self-attention
mechanism, and then we introduce each component in the TCE
layer.

1) Self-Attention: We use self-attention to quantify the inter-
dependence within input features, at which higher weights are
assigned to the regions of interest according to each position in
the input, while lower weights are assigned for less interesting
regions. In particular, given an input Z = {z1, . . . , zN } ∈
R

N×d where N is the total number of features, and d is the
length of xi , 1 ≤ i ≤ N , this input is transformed into another
space using a transforming function φ(·). In our AttnSleep
model, φ(·) is a causal convolution function.

Next, we calculate a score αi j that indicates the weight at
which i -th position is attending to j -th position, as follows:

αi j = exp
�
si j

�
�d

k=1 exp (sik )
, (4)

si j = φ(zi )φ(z j )
ᵀ. (5)

Each attention output element ai is computed as weighted sum
of the transformed input elements:

ai =
d�

j=1

αi j φ(x j ). (6)

The output of the attention layer is A = (a0, a1, . . . , ad) ∈
R

N×d .
2) Multi-Head Attention (MHA): MHA is inspired by the

Transformer model [32], which shows great success in
machine translation applications due to its ability to learn
long range relationships in sentences [33]. MHA improves the
self-attention in two main aspects. First, it expands the model’s
capability to focus on different positions, as the encoding
of each head knows about the encodings of the other heads
as well. This improves the model ability to learn temporal
dependencies. Second, splitting the input features into
different partitions increases the representation subspaces.
Therefore, the generated attention weights for each subspace
are more representative to the importance of each partition,
and concatenating these representations produces better overall
representation, which enhances the classification accuracy. In
our AttnSleep model, MHA leverages the causal convolutions
to encode the positional information of input features and
capture their temporal relations. The causal convolutions have
an advantage of fast and parallel processing, which signifi-
cantly reduces the model training time compared with RNNs.
Next we illustrate how MHA works in our AttnSleep model.

The output of the AFR module, denoted as X =
{x1, . . . , xN } ∈ R

N×d , serves as the input of MHA as shown
in Fig. 3. Here, N is the total number of features, and d is
the length of xi , 1 ≤ i ≤ N . More specifically, MHA takes
three duplicates of X as inputs. First, the causal convolutions
generate �X from X , i.e., �X = φ(X). Second, we pass the
three matrices of �X to calculate the attention in Equation 7
according to [32].

AT T (�X , �X , �X) = Sof tmax(
�X · �X T

√
d

) · �X , (7)

where (·) is the multiplication operation.
We further expand the attention over H heads for each of the

three matrices. In particular, each matrix �X is split into H sub-
spaces, i.e., �X = {X1, · · · , X H }, �Xh ∈ R

N× d
H , 1 ≤ h ≤ H .
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In each subspace h, we calculate the attention Ah similarly in
Equation 8.

Ah = AT T (�Xh, �Xh , �Xh) ∈ R
N× d

H . (8)

Finally, all the H representations are concatenated together
to produce the final output as follows:

M H A(�X , �X , �X) = Concat (A1, · · · , AH ) ∈ R
N×d . (9)

3) Add and Normalize Layer: The TCE has two Add &
Normalize layers, which add the output of the previous layer
to the input of that layer through a residual connection, and
then normalize the sum. This operation can be expressed as
Layer Norm(x +SubLayer(x)), where Layer Norm refers to
applying layer normalization [34], SubLayer refer to either
the MHA or the two FC layers as shown in Fig. 1, and x is the
input of the SubLayer . Using the residual connections helps
the model to utilize the lower-layer features by propagating
them to the higher layers if they are useful. Additionally,
the normalization operation helps to speed up the training
process.

4) Feed-Forward Layer: The outputs of the MHA layer are
fed into a feed-forward neural network, which is a combination
of two FC layers. This layer employs ReLU activation function
to break the non-linearity in the model and consider the
interactions among latent dimensions. This operation can be
modeled as Fout = W4( δ(W3(x)) ), where W3 and W4 refer
to the the two FC layers in the TCE module, as shown in
Fig. 1.

D. Class-Aware Loss Function and Optimization
Basically, we can apply the standard multi-class

cross-entropy in Equation 10 as the loss function for
our model.

L = − 1

M

K�
k=1

M�
i=1

yk
i log(�yi

k), (10)

where yk
i is the actual label for i -th sample and �yi

k is the
predicted probability of i -th sample for the class k, M is the
total number of samples and K is the number of classes. Note
that various sleep datasets are imbalanced, i.e., the amount
of data for each class varies a lot. The loss function in
Equation 10 equally penalizes the miss-classification of all the
classes, and thus the trained model may be biased towards the
majority classes.

We propose a class-aware loss function to address the above
issue, which uses a weighted cross-entropy loss as follows:

L = − 1

M

K�
k=1

M�
i=1

wk yk
i log(�yi

k), (11)

wk = μk · max(1, log(μk M/Mk )), (12)

where wk represents the weight assigned to the class k, μk

is a tunable parameter, and Mk is the number of samples in
class k.

The choice of the class weight wk relies on two factors i.e.
the number of samples of this class (controlled by M/Mk ), and
the distinctness of this class (controlled by μk). With analyzing

Fig. 4. The amplitude of the extracted features differs among 5 classes.
This snapshot is from Sleep-EDF-20 dataset [36].

the public sleep data, we can reach out to two conclusions.
First, class N2 has a large number of samples, while classes
N1 and N3 have much fewer number of samples (i.e., N1 and
N3 are minority classes). Second, we observe that signals of
N3 have significantly higher magnitude than other classes as
shown in Fig. 4. Hence, the model can easily make correct
predictions for N3 samples. Meanwhile, N1 samples are not
distinguishable from those in classes N2 and REM as shown in
Fig. 4. Therefore, we assign the highest μk to N1, the lowest
to N3 and assign similar values to the other three classes W,
N2 and REM as follows.

μk =

⎧⎪⎨
⎪⎩

a/K k = N3

b/K k = W, N2, RE M

c/K k = N1

where a, b, c are hyperparameters that change for each dataset.
To fulfill the above recommendation, we chose a < b < c.
Note that we use μk to scale down the M/Mk value so we
keep the values of μk less than 1 by dividing them by K . As
such, the values of a, b, c are better to be kept less than K to
scale down the weights. Additional experiments on the effect
of the different variants of a, b, and c values are provided in
Section S.II the supplementary materials.

Finally, we use Adam [35] as the optimizer to minimize our
class-aware loss in Equation 11 and learn model parameters.

III. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setup.
Then, we demonstrate the evaluation results of our proposed
AttnSleep.

A. Datasets and Evaluation Metrics
In our experiments, we used three public datasets, namely,

Sleep-EDF-20, Sleep-EDF-78 and Sleep Heart Health
Study (SHHS) as shown in Table I. For each dataset, we used
a single EEG channel for various models in our experiments.

Sleep-EDF-20 and Sleep-EDF-78 were obtained from
the PhysioBank [36]. Sleep-EDF-20 contains data files for
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TABLE I
DETAILS OF THREE DATASETS USED IN OUR EXPERIMENTS (EACH SAMPLE IS A 30-SECOND EPOCH)

20 subjects, while Sleep-EDF-78 is an expanded version with
78 subjects. The participants were involved in two studies. The
first is Sleep Cassette (SC* files), which studies age effects on
sleep and it was conducted on healthy participants aged from
25 to 101 years. The second is Sleep Telemetry (ST* files),
which addressed the temazepam effects on sleep in 22 Cau-
casian males and females without having any other medication.
For these two datasets, each PSG file contains two EEG
channels (Fpz-Cz, Pz-Oz) with a sampling rate of 100 Hz, one
EOG channel and one chin EMG channel. Following previous
studies [13], [15], [17], [18], [37], we adopted the data from
Sleep Cassette study and used the single Fpz-Cz channel as
the input for various models in our experiments.

SHHS [38], [39] is a multi-center cohort study of the
cardiovascular and other consequences of sleep-disordered
breathing. The subjects suffer from various diseases including
lung diseases, cardiovascular diseases and coronary diseases.
To minimize the impact of these diseases, we followed the
study in [40] to select subjects, who are considered to have a
regular sleep (e.g., Apnea Hypopnea Index or AHI less than
5). Eventually, 329 out of 6,441 subjects were selected for our
experiments. Notably, we selected the C4-A1 channel with a
sampling rate of 125 Hz. Further details about the datasets
can be found in Section S.III in our supplementary materials.
For the three datasets, we applied the following preprocessing
steps. First, we excluded any UNKNOWN stages that don’t
belong to any of the sleep stages. Second, we merged stages
N3 and N4 into one stage (N3) according AASM standard.
Third, we include only 30 minutes of wake periods before
and after the sleep periods to add more focus on the sleep
stages [20].

We adopted four metrics to evaluate the performance of var-
ious models for sleep stage classification, namely, the accuracy
(ACC), macro-averaged F1-score (MF1), Cohen Kappa (κ)
[41], and the macro-averaged G-mean (MGm). Both MF1 and
MGm are common metrics to evaluate the performance of the
models on imbalanced datasets [42]. Given the True Positives
(T Pi ), False Positives (F Pi ), True Negatives (T Ni ) and False
Negatives (F Ni ) for the i -th class, the overall accuracy ACC,
MF1 and MGm are defined as follows.

ACC =
�K

i=1 T Pi

M
, (13)

M F1 = 1

K

K�
i=1

2 × Precisioni × Recalli

Precisioni + Recalli
, (14)

TABLE II
CONFUSION MATRIX OF PROPOSED MODEL APPLIED ON FPZ-CZ

CHANNEL FROM EDF-20 DATASET

TABLE III
CONFUSION MATRIX OF PROPOSED MODEL APPLIED ON FPZ-CZ

CHANNEL FROM EDF-78 DATASET

TABLE IV
CONFUSION MATRIX OF PROPOSED MODEL APPLIED ON

C4-A1 CHANNEL FROM SHHS DATASET

MGm = 1

K

K�
i=1

�
Speci f ici tyi × Recalli , (15)

where Precisioni = T Pi
T Pi +F Pi

, Recalli = T Pi
T Pi+F Ni

and

Speci f ici tyi = T Ni
T Ni +F Pi

. M is the total number of samples
and K is the number of classes or sleep stages.

We also used per-class precision (PR), per-class recall
(RE), per-class F1-score (F1), and per-class G-mean (GM)
to evaluate each our model. They are calculated as in binary
classification by considering one class as the positive class and
the other four classes as the negative class.

B. Scoring Performance of AttnSleep
Tables II, III and IV show the confusion matrices of the

proposed model applied on the Fpz-Cz channel in both
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TABLE V
COMPARISON AMONG ATTNSLEEP AND STATE-OF-THE-ART MODELS. THE BEST VALUES ON EACH DATASET ARE HIGHLIGHTED IN BOLD

Sleep-EDF datasets and on C4-A1 channel in SHHS dataset.
The confusion matrix is calculated by adding up all the scoring
values of the testing data through the 20 folds. Each row
represents the number of samples classified by experts, while
each column represents the number of epochs predicted by
our model. The tables also show the per-class precision, recall,
F1 score and G-mean value for each class.

Notably, stage N1 achieves the lowest performance with the
F1 less than 50%, where it is often misclassified to classes
W, REM and N2. In counterpart, class N3 achieves the best
performance for Sleep-EDF-20 and SHHS datasets, but it
decreases for Sleep-EDF-78 as it is the minority class on this
dataset. Most of the misclassifications in the different datasets
are with class N2 as it is the majority class.

C. Baselines and Experimental Setup
In our experiments, we compared our model with five

baselines, namely, DeepSleepNet [20], SleepEEGNet [24],
ResnetLSTM [43], MultitaskCNN [17] and SeqSleepNet [37].
Brief descriptions for each baseline are as follows.

• DeepSleepNet [20] exploits a custom CNN architecture
followed by an LSTM with a residual connection for sleep
stage classification.

• SleepEEGNet [24] employs the same CNN architecture
as DeepSleepNet [20] followed by an encoder-decoder
with attention mechanism.

• ResnetLSTM [43] implements a ResNet architecture for
feature extraction, followed by an LSTM to classify EEG
signals into different sleep stages.

• MultitaskCNN [17] starts by converting the raw EEG
signals into power spectrum images, and then applies
a joint classification and prediction technique using a
multi-task CNN architecture for identifying sleep stages.

• SeqSleepNet [37] also converts the raw EEG signal into
power spectrum images and then uses a hierarchical RNN
structure to classify multiple epochs at once.

In particular, we used the published codes for DeepSleepNet
[20], SleepEEGNet [24], MultitaskCNN [17] and SeqSleepNet

Fig. 5. Training and testing accuracy and loss comparison for a random
fold (i.e. fold 10 on subject 16) in Sleep-EDF-20 dataset.

[37], and re-implemented ResnetLSTM [43]. To evaluate the
performance of various models, we adopted a subject-wise
20-fold cross-validation by dividing the subjects in each
dataset into 20 groups. For example, subject-wise 20-fold
cross-validation on Sleep-EDF-20 dataset with 20 subjects is
thus leave-one-subject-out (LOSO) cross-validation. For each
round, we selected one group of subjects as testing data and
the remaining 19 groups as training data. Eventually we com-
bined the predicted sleep stages for the testing samples from
all the 20 rounds to calculate various performance metrics.
We chose the neural network hyperparameters based on the
performance across these folds. In addition, we noticed that
AttnSleep performance stabilizes before reaching 100 epochs,
so we trained all the models for 100 epochs in each round
to fairly compare their average training time. Fig. 5 shows
the performance graph of our model showing both the loss
and accuracy during AttnSleep training. Our model shows
a stable performance during training, and we notice that
it converges quickly. Additionally, it can be seen that the
validation loss stabilizes even with the continual decrement in
the training loss, which reflects the robustness of our model
against overfitting.

We built our model using PyTorch 1.4 and trained it on
a Tesla K40 GPU. We applied a batch size of 128, and the
Adam optimizer with the learning rate starting with 1e-3 then
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reducing to 1e-4 after 10 epochs. The weight decay of Adam
was set to 1e-3, the betas (b1, b2) were used as (0.9, 0.999)
respectively, the epsilon value was 1e-08 and the amsgrad
was set to true. All the convolutional layers were initialized
using a Gaussian distribution with a mean of 0 and a variance
of 0.02. For the TCE module, we used 5 heads in MHA
and the dimension of each feature d was 80 for Sleep-EDF
dataset, and 100 for SHHS dataset because of its higher
sampling rate, and hence its longer signal length. For the
two fully connected layers, the input dimension was d and
the output dimension was set to 120, and vice versa for
the second fully connected layer. A detailed description can
also be found in Table S.3 in our supplementary materials.
Our source codes and supplementary materials are publicly
available at https://github.com/emadeldeen24/AttnSleep.

D. Comparison With State-of-the-Art Approaches
We evaluated the performance of our AttnSleep model

against various state-of-the-art approaches. We compared their
performance in terms of overall accuracy, macro F1-score,
cohen kappa, macro G-mean and the average training time
on three datasets.

Table V shows the comparison among DeepSleepNet
[20], SleepEEGNet [24], ResnetLSTM [43], MultitaskCNN
[17] and our AttnSleep. We observe that our AttnSleep
achieves better classification performance than the other four
approaches, due to its powerful feature extraction module
as well as the TCE with attention mechanism. In particular,
our AttnSleep achieves better MF1 and MGm on Sleep-EDF-
78 and SHHS, indicating that the designed cost-sensitive loss
function is helpful to handle imbalanced data. In addition,
we can observe that our AttnSleep achieves lower performance
for class N1 than [20], [24]. As shown in Fig. 4, W, REM and
N1 have similar features in our framework. Therefore, our
AttnSleep tends to misclassify N1 as other classes including
W and REM, which is also demonstrated in the confusion
matrices in Tables II, III and IV.

Note that all the five methods in Table V use a single epoch
(i.e., 30-second EEG signal) as the model input. Differently,
SeqSleepNet [37] takes 3 epochs as input and then predicts the
label for the middle epoch. For fair comparison, we compare
our AttnSleep with SeqSleepNet in Table VI by using 3 epochs
as input. As shown in Table VI, our AttnSleep outperforms
SeqSleepNet in terms of all the four metrics (ACC, MF1, κ and
MGm). By comparing Tables V and VI, we also observe that
using more epochs as input includes more temporal relations
and helps our AttnSleep model to achieve better performance.

In addition, the training time of our method is much less
than other methods as shown in Tables V and VI. First,
DeepSleepNet [20], SleepEEGNet [24] and SeqSleepNet [37]
all exploit LSTMs which slow down the training due to
the recurrent processing in LSTM. Second, MultitaskCNN
[17] and SeqSleepNet [37] require additional computation to
pre-train a DNN-based filter bank before training the main
model. Differently, our AttnSleep model captures the temporal
dependency among EEG data using TCE instead of LSTM,
and can thus benefit from parallel computation to achieve the
reduced training complexity.

Fig. 6. Ablation study conducted on Sleep-EDF-20 dataset.

E. Ablation Study
Note that our AttnSleep consists of MRCNN, AFR and

TCE modules together with the class-aware loss function.
To analyze the effectiveness of each module in our AttnSleep,
we present an ablation study conducted on Sleep-EDF-
20 dataset as shown in Fig. 6. Specifically, we derive five
model variants as follows and the first four variants do not
use the class-aware loss function.

1) MRCNN: MRCNN module only.
2) MRCNN+AFR: MRCNN and AFR without TCE.
3) MRCNN+TCE: MRCNN and TCE without AFR.
4) MRCNN+AFR+TCE: training MRCNN, AFR and

TCE together, without the class-aware loss function.
5) AttnSleep: training MRCNN, AFR and TCE together,

with the class-aware loss function.

We can draw the following three conclusions based on
the ablation study as shown in Fig. 6. First, AFR can
enhance the classification performance, which demonstrates
the necessity of modeling the feature inter-dependencies. This
is further demonstrated by comparing the third and fourth
variants (i.e., MRCNN+TCE vs. MRCNN+AFR+TCE). Sec-
ond, by comparing MRCNN and MRCNN+TCE (similarly
MRCNN+AFR vs. MRCNN+AFR+TCE), we conclude that
capturing the temporal dependencies with TCE is impor-
tant for sleep stage classification. Moreover, TCE is even
more important than AFR as MRCNN+TCE outperforms
MRCNN+AFR. Third, AttnSleep achieves significantly better
MF1 and MGm than other four variants, indicating that the
proposed class-aware cost-sensitive loss function can effec-
tively address the data imbalance issue without any added
computation overhead. We also conduct the ablation study
for Sleep-EDF-78 and SHHS dataset, which can be found
in Fig. S.3 and S.4 in our supplementary materials.

F. Sensitivity Analysis for the Number of Heads in MHA
As MHA is one key component of our model, it is impor-

tant to study how the number of heads affects the model
performance. In particular, we fix the other parameters and
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TABLE VI
COMPARISON OF THE PERFORMANCE OF ATTNSLEEP AGAINST SEQSLEEPNET WITH 3 EPOCHS AS INPUT

Fig. 7. The performance of our AttnSleep model on Sleep-EDF-
20 dataset by using different number of heads in MHA.

test different number of heads in MHA. Note that the number
of heads should be dividable by the length of features d .
As d is 80 for Sleep-EDF-20 dataset, we run our model
using 1, 2, 4, 5, 8 and 10 heads. Fig. 7 shows the model
performance on Sleep-EDF-20 dataset in terms of accuracy
and MF1 score. Overall, the model performance is quite stable
when we use different number of heads. With increasing the
number of heads from 1, 2 to 4 and 5, we can observe a
slight improvement on the performance, since using more
heads allows the model to find more meaningful features and
feature interactions. Meanwhile, when the number of heads
further increases (H equals to 8 and 10), i.e., the length of
features in each head becomes smaller, which leads to a slight
performance decrease. In our experiments, we eventually set H
as 5 on Sleep-EDF-20 dataset. For other two datasets, we also
set H as 5, and the detailed sensitivity analysis can be found
in Fig. S.5 and S.6 in our supplementary materials.

IV. CONCLUSION

We proposed a novel architecture for sleep stage
classification from single channel raw EEG signals called
AttnSleep. The AttnSleep relies on extracting the features
from EEG signals using two modules: the multi-resolution
convolutional neural network (MRCNN) and the adaptive
feature recalibration (AFR). These two modules are followed
by the temporal context encoder (TCE) module, which
captures the temporal dependencies among the extracted
features by using a multi-head attention (MHA) mechanism.
We also proposed a class-aware cost-sensitive loss function
to handle the issue of data imbalance. The experimental
results on three public datasets demonstrated that our model

outperforms state-of-the-art methods under various evaluation
matrices. Besides, an ablation study was performed to show
the effectiveness of each module in the proposed method.
Finally, we conducted a sensitivity analysis to demonstrate the
impact of the number of heads in MHA. The results indicated
that our method is quite stable with different number of
heads. For future directions, we will consider transfer learning
and domain adaptation techniques, which adapt the model
trained on labeled dataset to classify the unlabeled sleep data
in other datasets.
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