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Abstract—Sleep-wake detection is of great importance for the
measurement of sleep quality. In this article, a novel ensemble
deep learning framework is proposed to detect sleep-wake states
based on heart rate variability (HRV) and acceleration. We firstly
design a local feature based long short-term memory (LF-LSTM)
network to encode temporal dependency and learn features from
acceleration data with high sampling frequency. In the meantime,
some handcrafted features are extracted from HRV which has a
special data format. After that, we develop a unified framework
to integrate these two types of features, i.e., the features extracted
from HRV and the features learned by LF-LSTM from accelera-
tion, to form a complete feature set. Finally, an efficient ensemble
learning scheme is proposed to further boost the performance of
sleep-wake classification. A real dataset has been collected to verify
the effectiveness of the proposed approach. We also compare with
some well-known benchmark approaches for sleep-wake detection.
The results demonstrate that the proposed ensemble deep learning
method outperforms all the benchmark approaches.

Index Terms—Sleep-wake detection, Sensor data, Local features,
LSTM, Ensemble deep learning.

I. INTRODUCTION

S LEEP, as an important physiological function for human,
affects the performance of various daily activities, including

attention, learning, memory and productivity [1]. Inadequate
sleep increases the risk of heart disease, stoke and type 2
diabetes. Sleep restrictions and disorders are also linked to the
physical and mental health conditions of human [2]. To maintain
good health conditions and improve daily performance, it is thus
highly desirable to measure both the sleep duration and quality
through sleep monitoring and sleep-wake stage detection.

Polysomnography (PSG) [3] is often considered as the gold
standard for sleep stage detection. However, it is a labour-
intensive and costly procedure to use PSG for sleep monitoring.
Electroencephalogram (EEG) can also be used for sleep stage
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monitoring based on the captured data for brain activity [4].
Recently, economical wearable sensors including actigraphy and
accelerometer units are widely used to measure the physical ac-
tivities and further reflect the sleep patterns [5], [6]. Commercial
products including FitBit, Jawbone and Basis have actigraphy
or accelerometer units embedded within a watch for activity and
sleep monitoring. Other wearable sensors, which collect heart
rate variability (HRV) data from electrocardiogram (ECG) or
respiratory data, have also been utilized for sleep-wake detection
and sleep tracking [7], [8]. Both acceleration and HRV data
have been shown to be effective for sleep-wake classification.
Meanwhile, they can be treated as two different indicators, i.e.,
physical and physiological, for the detection of sleep and wake
states. Therefore, the combination of these two types of data
may be able to boost the performance of sleep-wake detection.

A plethora of methods have been developed for the detection
of sleep and wake stages. These methods can be divided into
two categories, i.e., shallow methods and deep methods. Shallow
methods usually consist of two steps: 1) feature extraction from
the sensory data, and 2) sleep-wake classification by applying
traditional machine learning algorithms. Such machine learning
algorithms include linear discriminant (LD) classifier [9], [10],
decision tree (DT) [5], support vector machine (SVM) [8], [11],
artificial neural network (ANN) [5], [7], random forest (RF) [12]
and conditional random fields (CRF) [13]. Meanwhile, deep
methods [14], [15] directly take the raw wearable sensor data
as inputs for sleep-wake classification. For example, a convolu-
tional neural network (CNN) and a bidirectional long short-term
memory (Bi-LSTM) were implemented to classify sleep-wake
states in [16] and [17].

In this paper, we work on sleep-wake detection by leverag-
ing both HRV and acceleration. However, there are two main
technical challenges for this problem, shown as follows.

Firstly, as the acceleration data is a typical time series with
temporal dependency, the long short-term memory (LSTM)
network with strong capacity for modeling time series data
can be an idea candidate. However, as the accelerometer has a
high sampling frequency, each sample is thus an extremely long
sequence which cannot be processed by the conventional LSTM
(or Bi-LSTM [17]), given the limited computational power and
memory.

Secondly, acceleration and HRV have different properties and
formats. Fig. 1 is an illustration of real streams for acceleration
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Fig. 1. An illustration of real acceleration and HRV data with 10 minutes
interval. For HRV data, the number of HRV data points per minute (i.e., heart
rate) is also shown to indicate its special format. Note that the sampling rate of
acceleration is 100 Hz.

and HRV data. We understand that the number of data points for
acceleration data in a fixed time window is also fixed. However,
as HRV data shows the time intervals between heart beats, the
number of data points for HRV data in a fixed time window may
be changing over time. For example, the numbers of HRV data
points in the first 4 1-min windows (i.e., the heart rates in first 4
minutes) are 97, 104, 94 and 93 as shown in Fig. 1. Therefore,
it is difficult to automatically learn features from HRV data by
using deep learning techniques. It is also challenging to integrate
these two types of sensory data into a unified deep learning
architecture for the task of sleep-wake classification.

To address these two issues, we firstly design a local feature
based LSTM (LF-LSTM) method to encode temporal depen-
dency and learn high-level features from acceleration data.
Specifically, the raw acceleration data in each sample is divided
into small windows where local statistical features are extracted
within each window. By doing this, we are able to shorten the
acceleration time series, find a good representation of the raw ac-
celeration and preserve temporal dependency of the data. Then,
the LSTM network is leveraged to learn high-level features from
these local sequential features. Meanwhile, we extract some
handcrafted features (i.e., features in time domain and frequency
domain) from HRV data with a special format. After that, the
features learned from both acceleration and HRV are integrated
to form a complete feature set. Finally, a classification layer
can be employed for sleep-wake detection. To further enhance
the performance of the proposed deep learning framework for
sleep-wake classification, we design an efficient ensemble learn-
ing scheme which leverages on multiple classification layers
with the shared feature set. Thus, the ensemble deep learning
framework is able to improve the performance with minimal

increase of computational complexity. The results on a real
dataset demonstrate that our proposed approaches outperform
all the benchmark methods for sleep-wake detection.

A preliminary version of this work has been reported in [18].
The main changes made to the original paper are summarized as
follows. 1) we propose an efficient ensemble learning scheme
on top of the original deep learning framework for sleep-wake
detection. As such, we are able to improve the prediction per-
formance with limited increase of computational complexity. 2)
we conduct an additional leave-one-subject-out cross-validation
experiment and a testing with the data from the latest nights to
further show the robustness of the proposed approaches. Exper-
imental results show that the proposed ensemble deep learning
framework outperforms the original algorithm in [18] and the
benchmark approaches. 3) we report the training and testing time
for all the approaches. With the efficient ensemble scheme, the
relative increases of training and testing time of our ensemble
deep learning approach are 16.6% and 1.5% respectively, when
compared with the original approach. Due to the short testing
time of the proposed algorithms, they are efficient enough for
real-time applications.

The main contributions of this work are summarized as fol-
lows:
� We propose a novel unified deep learning framework for

sleep-wake classification with two heterogeneous sensors,
i.e., acceleration and HRV, with different properties and
formats. To the best of our knowledge, this is the first
work to effectively combines these two sensors using a
deep learning framework.

� We develop an innovative LF-LSTM network to effectively
encode temporal dependencies and learn high-level fea-
tures from long acceleration sequences, which cannot be
directly handled by existing LSTM based methods.

� To further improve the performance of the proposed frame-
work, we design an efficient ensemble strategy with limited
increase of computational complexity.

� We perform extensive experiments to evaluate the effec-
tiveness of the proposed approaches. The results show that
the proposed approaches outperform state-of-the-arts.

The remaining of the paper is orgnized as follows: Section II
performs a comprehensive review of related works for sleep-
wake classification by using different algorithms. Section III
firstly describes the data collection process, followed by the
LF-LSTM for acceleration data, feature extraction for HRV
data and the efficient ensemble learning strategy. Finally, the
proposed framework for sleep-wake detection is presented in
this section. Section IV shows the experimental setup, followed
by the evaluation results and discussions. Section V concludes
this work and shows some potential future works.

II. RELATED WORKS

Many algorithms have been reported for sleep-wake classi-
fication. Generally, we can divide them into two categories of
shallow and deep algorithms.

For shallow model based sleep-wake detection, the first step
is to derive representative features from data, such as statistical
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features. Then, conventional machine learning algorithms can
be implemented with these features to detect the states of sleep
and wake. Karlen et al. presented an ANN based sleep-wake
classification system based on ECG and respiratory [7]. They
applied a fast Fourier transform to extract features from ECG and
respiratory and then implemented the ANN for classification.
Tilmanne et al. adopted the ANN and DT for sleep-wake iden-
tification with actigraphy [5]. Firstly, twenty-five handcrafted
features were extracted from actigraphy data. Then, the ANN
and DT algorithms were utilized for sleep-wake classification.
Long et al. proposed a dynamic warping (DW) method for
feature extraction from actigraphy and respiratory [10]. The
extracted DW-based features were fed into a LD classifier for
the detection of sleep and wake states. In [8], the authors firstly
extracted features from the heart rate series, and then utilized
the SVM to classify sleep-wake stages. Chen et al. developed
a sleep stage detection system based on subthalamic local field
potentials where features from time domain, frequency domain
and entropies were extracted [19]. Then, the classification algo-
rithms of SVM and DT were adopted to identify sleep stages.

Recently, deep models have also achieved great success for the
classification of sleep-wake states. Sokolovsky et al. presented
a deep CNN model for the classification of sleep stages based on
multi-channel PSG [20]. Granovsky et al. proposed a multi-task
CNN model for the detection of sleep-wake patterns [16]. The
multi-task CNN which was built upon actigraphy data estimated
both sleep/wake stages and the total sleep time. By using the
multi-modal data from smartphone and wearable devices, i.e.,
acceleration, skin conductance and temperature, the authors
in [17] presented a Bi-LSTM approach for sleep-wake classi-
fication and sleep episode on/off detection. Zhang et al. also
developed a Bi-LSTM method for sleep-wake classification with
cardiorespiratory signals from wearable devices [21].

Existing works did not consider the heterogeneous data with
different properties and formats for sleep-wake classification.
In this paper, we propose a unified deep learning framework
to make full use of two heterogeneous data, i.e., acceleration
and HRV. To further improve the performance of sleep-wake
classification, we propose an ensemble learning framework with
limited increase of model complexity.

III. METHODOLOGY

In this section, we firstly introduce the sleep data collected for
this study. We then present our proposed ensemble deep learning
framework for sleep-wake detection with acceleration and HRV
data.

A. Dataset

A dataset was collected from 11 subjects for 28 sleep nights
(NUS-IRB Ref Code: B-15-276). Each subject wore three types
of sensors, i.e., a FAROS device, a CamNtech MotionWatch
and a Zeo sleep monitor headband, that are shown in Fig. 2.
Specifically, the FAROS device is able to collect both accelera-
tion (a sampling rate of 100 Hz) and HRV data. The CamNtech
and the Zeo can report the sleep-wake states of subjects. Note
that we used the time shown in FAROS sensor as a reference to

Fig. 2. The devices for data collection.

TABLE I
STATISTICS FOR THE EXPERIMENTAL DATA

synchronize both MotionWatch and Zeo, so that the data from
these 3 types of sensors are matched. Note that, we also ask the
subjects to record their key events during these sleep nights.

To analyze the sleep data, we split it into 5-min segment which
is widely adopted for sleep detection [22], [23]. We derive 3
sleep-wake labels for each segment from MotionWatch, Zeo
and participant’s event log and only keep the segments whose 3
labels are consistent to avoid wrong labelling. Considering that
the quality of labels from MotionWatch [24] and Zeo [25] is
good, such a consensus process will further improve the quality
of labels. Finally, we obtain 1,658 sleep segments and 200 wake
segments in this study. For model evaluation, we randomly select
about 30% of data for testing and the remaining for training, as
shown in Table I. Note that this data is naturally imbalanced and
we have many more sleep segments than wake segments.

B. LF-LSTM for Acceleration Data

The acceleration is widely adopted for sleep-wake detection
due to the low-cost and easy-to-use properties [6]. To process
the acceleration data which is typical time series, the first step
is to perform data segmentation by using sliding windows. With
a window size of d seconds and a sampling rate of r, each
segment will have a size of dr × 3. Since the raw acceleration
segment can be noisy and not indicative for the separation of
sleep and wake states. Conventional machine learning based
sleep-wake detection contains a compulsory step, i.e., manually
feature engineering. Recently, deep learning has achieved great
successes in many challenging areas and the biggest merit of
deep learning is the ability of automatic feature learning from
data. Therefore, it can be adopted for feature learning on ac-
celeration data. Owing to the sequential property of accelera-
tion, recurrent neural network (RNN) is naturally suitable for
this task. However, the traditional RNN may suffer from the
issue of gradient vanishing or exploding, resulting a limited
performance for long-term dependencies. To solve this issue,
the LSTM network which intends to use some gates to control
the information for persevering or discarding has been developed
in [26]. It has been shown to be powerful for the modeling of
long-term dependencies of data.

In real experiments, we segment the acceleration data
(100 Hz) with a window size of 5 minutes. Hence, each sample
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Fig. 3. The process of local feature extraction.

will have a size of 30, 000× 3 (three dimensional acceleration).
If the normal LSTM network is applied to learn features from
this extremely long sequence, it requires 30,000 LSTM cells in
cascade connection for feature learning, which is not feasible
due to the constrains on computational power and memory.
Therefore, we can claim that the conventional LSTM is not
applicable for this task. To address this issue, a LF-LSTM is
proposed, which consists of two steps, local feature extraction
and high-level feature learning. The details are shown in the
following paragraphs.

1) Local Features: Due to the extremely long sequence of
acceleration segment, we utilize sliding windows over each
segment to further divide it into small windows. Then, we
extract some representative features for each dimensional of
acceleration and combine them to form a feature vector for each
small window. Since the small windows are slide sequentially,
the temporal dependency of raw data will be preserved. The main
objective of this operation is to shorten the length of the sample,
extract more abstract representations in each small window and
preserve the temporal dependency of the data. Fig. 3. illustrates
the process of local feature extraction.

In this work, the local features extracted on each small win-
dow are mean, absolute mean, maximum, minimum, range,
variance, root mean square, interquartile range, and quantile at
25%, 50% and 75%. A total of eleven features are extracted
on each dimension of acceleration for local features. In this
work, the size of sliding window, i.e., s in Fig. 3, is chosen
as 300 by using cross-validation on the training data. After
local feature extraction, the dimension of the data sample is
changed to 100× 33. Note that, the raw data sample has a size
of 30, 000× 3. It can be found that the length of the sample is
reduced from 30,000 to 30, 000/300 = 100 and the dimension
of the sample is augmented from 3 to3× 11 = 33by performing
local feature extraction.

2) LSTM Based Feature Learning: Since the LSTM network
has strong capacity for modeling sequential data, it has been
widely adopted to analyze time series data, such as natural lan-
guage processing [27], occupancy estimation [28] and activity
recognition [29]. Fig. 4 shows a typical LSTM structure, where
xt, ht and Ct−1 are the input, the hidden state, and the memory

cell state respectively, wf , wi, wC and wo are the weights, bf ,
bi, bC and bo are the biases, and tanh and σ(·) are the tanh and
sigmoid functions, respectively.

According to Fig. 4, given the previous memory cell state
Ct−1, the first step of LSTM intends to decide which information
should be discarded based on the previous hidden state of ht−1

and the current input of xt by using a forget gate. We can
formulate the forget gate as follows:

f t = σ
(
wf [ht−1, xt] + bf

)
, (1)

where f t = 0 represents to totally remove the information from
previous steps and f t = 1 represents to keep all the information
from previous steps. Next, based on the current input, we require
to decide which new information should be included. It contains
two parts. The first part is to decide what should be updated by
using an input gate, shown as

it = σ
(
wi[ht−1, xt] + bi

)
. (2)

The second part attempts to produce a candidate cell state C̃t

with a tanh function, which can be expressed as

C̃t = tanh
(
wC [ht−1, xt] + bC

)
. (3)

Then, we update the current cell state Ct with the following
equation

Ct = f t ∗ Ct−1 + it ∗ C̃t. (4)

Eventually, the output gate will decide which information should
be preserved from the compressed cell state tanh(Ct). The
determination will be based on the value of ot which can be
calculated as

ot = σ
(
wo[ht−1, xt] + bo

)
. (5)

The final hidden output of the LSTM can be expressed as

ht = ot ∗ tanh (Ct
)

(6)

Here, we leverage on the LSTM network to learn high-level
features on local sequential features extracted from raw acceler-
ation data. The authors in [30] have shown that stacking multiple
layers will enhance the modeling capacity. Therefore, in this
work, we intend to use multiple layers of LSTM to learn more
representative features for accurate sleep-wake classification.

C. Handcrafted Features From HRV Data

Heart Rate Variability (HRV) data shows the variation of
time intervals (i.e., R-R intervals) between heart beats. Given
its special format as shown in Fig. 1, we are not able to feed
it into deep learning algorithms for automatic feature learn-
ing. Instead, we extract handcrafted features from HRV data.
In particular, 4 types of features are computed from HRV
data [31], namely, time-domain features, frequency-domain fea-
tures, Poincaré plots features and DFA (detrended fluctuation
analysis) features.

First, 8 time-domain features are directly derived from the R-R
interval values, i.e., meanRR, meanHR, StdRR, cvRR, RMSSD,
SDSD, RR50 and pRR50. Given a 5-min window, meanRR is
the average of all the R-R values in this window, while meanHR
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Fig. 4. The structure of LSTM.

is the average heart rate in the 5 minutes. StdRR is the standard
deviation of the R-R values and cvRR is the coefficient of
variance (i.e., the ratio between meanRR and StdRR). RMSSD
and SDSD are root mean square and standard deviation of
the successive differences of R-R values, respectively. RR50
(pRR50) refers to the number (portion) of R-R values larger
than 50 ms.

Second, we perform Fast Fourier Transform (FFT) on the R-R
interval values and then extract 7 frequency-domain features
from the power spectrum generated by FFT. In particular, we
calculate the power for different frequency bands, e.g., VLF
is the power for very low frequency (0-0.04 Hz), LF for low
frequency (0.04–0.15 Hz), HF for high frequency (0.15-0.4 Hz)
and TP for the total power. In addition, the ratios LF/(LF+HF),
HF/(LF+HF) and LF/HF are also used as frequency-domain
features.

Third, we obtain 3 features from the Poincaré plot (i.e., SD1,
SD2 and SD1/SD2) and 3 slope coefficients based on detrended
fluctuation analysis (DFA). Please refer to [32] and [33] for
more details about these 2 types of features. In total, we have 21
handcrafted features extracted from HRV data.

D. Efficient Ensemble Learning

Ensemble learning consists on integrating multiple base learn-
ers to boost the performance of learning. It has been shown to be
effective for classification and regression problems. Due to the
instability of decision trees and neural networks, they are natu-
rally suitable for ensemble learning [34]. Deep neural networks
(DNNs) have also been used as base learners for a regression
task in [35] where the authors applied multiple DNNs. In this
way, the ensemble learning will suffer from huge computational
cost. Here, we consider how to further boost the performance
of sleep-wake detection by developing an ensemble learning
architecture upon the proposed deep learning framework with
minimal increase of computational cost.

In this work, we firstly combine the features learned by
the LF-LSTM from acceleration and the handcrafted features
from HRV to form a complete feature set from raw data.
Then, on top of this feature set, we leverage on multiple
classification (softmax) layers for the classification of sleep
and wake states. The parameters for feature learning and
combination which are shared for all the classification layers are
in the majority. Assume that the number of parameters for feature

Fig. 5. Proposed EnsemDL framework for sleep-wake detection.

learning and combination is M and the number of parameters
for a classification layer is N , our designed ensemble learning
with k classification layers will lead to an increase of (k − 1)N
parameters. In our empirical studies, k = 50 is good enough
for our application. Thus, the relative increase of the number of
parameters is r = (k−1)N

M+N . In our work, since M is much larger
than N , r will be acceptable.

E. Proposed Framework

Fig. 5 shows the proposed ensemble deep learning archi-
tecture for sleep-wake classification. Specifically, we firstly
develop a LF-LSTM network to learn high-level features from
acceleration data with high sampling rate. In the meantime, some
representative features are extracted from HRV that has a unique
format. Next, we employ two fully connected layers (FCLs) to
get more abstract representations for the features from the two
heterogeneous sensor data, i.e., acceleration and HRV. After that,
we combine the two types of features to form a complete feature
set for sleep-wake classification. By using multiple classification
layers with different initial parameters, we can obtain multiple
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Algorithm 1: Learning of the Proposed Framework.
INITIALIZATION

Generate network weights and biases randomly.
for t < Training epoch do

FORWARDS

1. Input raw acceleration a into LF-LSTM where the
output is fed into a FC layer, describing as
feature1 = FC(LF-LSTM(a));

2. Extract features e from HRV data and feed them
into a FC layer, describing as
feature2 = FC(e);

3. Concatenate two types of features, describing as
feature = Concat(feature1, feature2);

4. Get ensemble output, describing as
o = EnsemNet(feature).

BACKWARDS

5. Calculate cross-entropy loss based on model outputs
o and true labels l, describing as

loss = cross-entropy(o, l);
for layer in layers do

a. Compute the derivatives of the loss function with
respect to weights and biases;

b. Update parameters based on the optimization
algorithm of Adam [36].

end for
end for

predictions. Finally, we perform a majority voting over all the
predictions for final classification of sleep and wake states. The
proposed ensemble deep learning framework in Fig. 5 is denoted
as EnsemDL, while the original deep learning framework we
proposed in [18] is denoted as BaseDL. The learning of the
proposed frameworks consists of forward and backward propa-
gation. The details are illustrated in Algorithm 1.

The hyperparameters of the proposed framework are deter-
mined by using cross-validation on the training data. Specifi-
cally, the hidden nodes of the two LSTM layers are set to be
50 and 100, respectively. The dropout layer after the LSTM
layers has a dropout rate of 0.5. The hidden nodes of the two
fully connected layers are set to be 100. Finally, we utilize 50
softmax layers for ensemble learning in this work.

IV. EVALUATION

A. Experimental Setup

To verify the performance of the proposed method, a compar-
ison has been made with some benchmark approaches which
include some traditional machine learning methods, such as
DT [5], LD [9], [10], SVM [8], ANN [7] and random forest
(RF) [12], and the deep learning method of CNN [16]. Here, the
traditional machine learning methods use both the HRV features
and the same local features for the acceleration data. The CNN
in [16] can only use the acceleration data as input (the HRV data
cannot be employed due to its special format). The empirical
study shows that the CNN with acceleration has very limited

TABLE II
COMPARISON AMONG VARIOUS METHODS FOR SLEEP-WAKE DETECTION

performance. We have included the features from HRV into
the CNN by using the same feature fusion architecture that we
developed in this work, such that the comparison with the CNN
can be fair enough. Since each data sample has 30,000 steps, we
cannot implement the conventional Bi-LSTM in [17] due to the
general constrains on computational power and memory.

The hyperparamters of the benchmark approaches, i.e., ANN,
SVM, RF and CNN, are determined by using cross-validation on
the training data. Specifically, the number of hidden neurons is
set to be 100 and the activation function is chosen to be Rectified
Linear Unit (ReLU) for the ANN. The Radial Basis Function
(RBF) kernel is adopted for the SVM. The RF algorithm contains
10 decision trees. The CNN consists of four 1D convolutional
operations with kernel size of 10 and step size of 2, and four 1D
pooling layers with pooling size of 3. The activation function of
ReLU is applied for all convolutional layers.

Since sleep-wake detection is a highly imbalanced classifica-
tion problem, the detection accuracy may overlook the minority
class that is “wake” in this work. Therefore, we adopt the
evaluation criterion of G-mean that is popular for evaluating the
performance of a model on imbalanced datasets [37]. Given the
True Positives (TP), False Positive (FP), False Negative (FN),
and True Negative (TN) values, The G-mean can be defined as
follows:

sensitivity = TP/(TP + FN)

specificity = TN/(TN + FP)

G-mean =
√

sensitivity ∗ specificity (7)

As mentioned above, the data for sleep-wake detection is
imbalanced, we thus adopt the pre-processing technique of
oversampling for data imbalance correction on the training data,
such that the number of samples for the two classes, i.e., sleep
and wake, is the same. In this work, we utilize the oversam-
pling technique of SMOTE (Synthetic Minority Over-sampling
Technique) [38] which has been shown to be effective in many
tasks.

B. Experimental Results

Next, we present the experimental results based on the data
split in Table I, i.e., we randomly select about 70% of data for
model training and the remaining for testing.

1) Results: Table II shows the evaluation results of all the
methods. Note that, due to the randomness of the neural network
based algorithms, we run ten times of the algorithms and the
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Fig. 6. The experimental results of all the approaches with ten different random
selections.

average results are shown. It can be found that the RF method
has a superior performance than the other traditional machine
learning methods of DT, LD, SVM and ANN, and the deep learn-
ing method of CNN. This indicates the effectiveness of ensemble
learning for sleep-wake classification. The CNN method which
cannot capture temporal dependencies of data has a limited
performance. With the efficient LF-LSTM network for feature
learning on acceleration data and the unified framework to
combine the extracted features from HRV, the proposed BaseDL
performs better than all the benchmark approaches in terms
of both accuracy and G-mean. Moreover, with the proposed
ensemble learning scheme, the EnsemDL can further enhance
the performance for sleep-wake detection.

To further show the effectiveness of the proposed methods,
we perform additional experiments with ten different random
selections of the training and testing data. The results are shown
in Fig. 6. It is consistent with the above analysis. The BaseDL
outperforms all the benchmark approaches and the proposed
ensemble version achieves the best performance in terms of both
accuracy and G-mean.

2) Ablation Study for the Proposed Method: To investigate
the impacts of the major components of the proposed method, we
perform a comprehensive ablation study. Specifically, we con-
sider three different types of settings for the proposed method,
including with SMOTE vs without SMOTE, only acceleration
vs acceleration + HRV, and original version vs ensemble version.
The results are shown in Table III. We can find that the models
without SMOTE achieve higher accuracy and lower G-mean

TABLE III
THE ABLATION STUDY FOR THE PROPOSED METHOD

Fig. 7. The G-mean of the proposed EnsemDL approach with different number
of based learners.

than that with SMOTE. The reason why this occurs is that when
not considering SMOTE for data augmentation, the outputs of
classifiers will tend to the majority class to enhance classification
accuracy, which will influence the detection of the minority class
negatively, resulting a lower G-mean. Since the detection of both
majority and minority classes is important, the evaluation crite-
rion of G-mean is more reliable for the evaluation of imbalanced
data [37]. Thus, we will compare the G-mean of various settings
for evaluation.

Based on the results in Table III, it is obvious that the SMOTE
will dramatically improve the performance of sleep-wake detec-
tion due to the high imbalance of the data. In addition, the HRV
data is able to further improve the performance of the proposed
approaches. This indicates the effectiveness of SMOTE for im-
balance data and the usefulness of the HRV data for sleep-wake
detection. Among all the different configurations, the proposed
EnsemDL further enhances the performance for sleep-wake
classification, which clearly indicates the effectiveness of the
proposed ensemble learning scheme.

3) Number of Base Learners for Ensemble Learning: In en-
semble learning, one of the key parameters is the number of
base learners, which will influence both model performance and
computational complexity. Here, we investigate the performance
of the proposed ensemble learning with different number of
based learners. The results are shown in Fig. 7. Note that, the
method with one base learner is the original proposed deep
learning framework without ensemble learning, which is treated
as a baseline.
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TABLE IV
THE TRAINING AND TESTING TIME OF VARIOUS APPROACHES

It can be found that, with the proposed ensemble learning
scheme, the performance of the model dramatically improves
when compared with the baseline. With the increase of the
number of base learners, the performance of the model enhances.
However, more base learners will require longer training and
testing time. According to Fig. 7, when the number of base
learner is larger than 50, the relative improvements become
marginal. Hence, considering both accuracy and efficiency, we
choose the number of base learners as 50 in this work.

4) Computational Time: For ensemble learning, one big con-
cern is the computational complexity. Here, we explore the
training and testing time of the proposed approaches, and com-
pare them with benchmark approaches. The workstation for the
experiments has twelve core CPUs of Intel i7-8700 3.20 GHz
and a GPU of NVIDIA GeForce GTX1080Ti. The results are
shown in Table IV.

It is clear that shallow learning algorithms have much shorter
training and testing time when compared with deep algorithms.
The proposed approach without ensemble, i.e., BaseDL, has
slightly longer training and testing, comparing with CNN. The
proposed ensemble deep learning approach requires the longest
training and testing time. However, due to the proposed efficient
ensemble learning scheme, the relative increases of training and
testing time of the EnsemDL are 16.6% and 1.5% respectively,
comparing with the BaseDL. The conventional ensemble learn-
ing in [35] will increase at least k times, where k represents
the number of base learners (k = 50 in this work). This clearly
indicates the efficiency of the propose ensemble learning.

Even though, the training time of the proposed approaches is
large, this tedious training process only needs to be done once in
offline. The online testing time of the proposed approaches are
1.35 and 1.37 seconds for all testing samples (558 samples). This
means that the testing time of the proposed approaches for each
testing sample is only 2.42× 10−3 and 2.46× 10−3 seconds,
which can be neglected in real implementations. Hence, we can
claim that our proposed approaches are suitable for real-time
applications.

C. Leave-One-Subject-Out Cross-Validation Results

To give a more comprehensive evaluation, we also perform
a leave-one-subject-out (LOSO) cross-validation. Specifically,
we use the data from one subject for testing, and the remaining
for training. This cross-subject test is more challenging as the
testing data is unseen by the models and thus it is a more
realistic scenario to validate the generalization capability of
various models.

The LOSO results are shown in Table V. Compared with
Table II, the performances of all the approaches degrade. In
LOSO evaluation, all the approaches are tested on the data from
an unseen subject. Considering that different subjects may have

TABLE V
EXPERIMENTAL RESULTS FOR LOSO CROSS-VALIDATION

TABLE VI
EXPERIMENTAL RESULTS ON THE LATEST NIGHTS

different behaviors (e.g., movement pattern and HRV pattern),
it is reasonable that all the approaches obtain degraded perfor-
mance.

In this challenging LOSO setting, the proposed approaches
significantly outperform all the benchmark approaches, and the
EnsemDL achieves the best performance. The improvements of
the proposed ensemble deep learning approach over the bench-
mark approaches range from 13.4% to 75.2%. This clearly shows
the robustness of the proposed approach in the cross-subject
validation.

D. Testing on the Latest Nights

To demonstrate the robustness of the proposed methods on
newly available data, we test all the approaches on the data from
the latest nights. In particular, we use the latest 8 nights of data
for testing and the first 20 nights of data for training (total 28
nights of data).

The results are shown in Table VI. It can be found that the
proposed BaseDL outperforms most of benchmark approaches.
Consistently, the proposed EnsemDL performs the best over all
the other methods. This further indicates the robustness of the
proposed ensemble learning.

V. CONCLUSION

In this paper, we developed a sleep-wake classification system
with two types of sensors, i.e., heart rate variability (HRV)
and acceleration, by using a novel ensemble deep learning
framework. Firstly, we presented a local feature based LSTM
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(LF-LSTM) approach for feature learning from the accelera-
tion data. Meanwhile, representative features were manually
extracted from the HRV data. Next, we concatenated these two
types of features to make full use of all the available informa-
tion from these two types of sensors. Finally, we designed an
efficient ensemble learning scheme on all the features to boost
the performance of sleep-wake detection.

We have collected real experimental data for evaluation and
compared the proposed approach with several benchmark ap-
proaches in the literature. To address the data imbalance issue,
we employed the technique of SMOTE (Synthetic Minority
Over-sampling Technique) for imbalance correction. The results
indicated that the proposed method outperforms the benchmark
approaches including conventional machine learning and deep
learning methods. In addition, the experimental results demon-
strated that the data imbalance correction (i.e., SMOTE) and
the HRV data will boost the model performance. Lastly, to
show the robustness of the proposed approach, we conducted
a leave-one-subject-out (LOSO) cross-validation for all the ap-
proaches. The proposed approach significantly outperforms all
the benchmark approaches with the improvements ranging from
13.4% to 75.2%. This clearly indicates the robustness of the
proposed approach in this challenging and practical scenario.

In future works, we intend to explore methods to automat-
ically learn features from HRV data with a special format.
Besides, the contributions of the two sensors may be different
for the identification of sleep-wake states. Thus, we attempt to
design an attention mechanism [39] to automatically learn the
importance of the two sensors and assign larger weights to more
important ones. Another future work is to collect more data
from subjects with more diversities, such as age, race, health
states, etc., to further evaluate the generalization performance
of models.
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