
Orthogonal Mechanism for Answering Batch Queries with
Differential Privacy

Dong Huang
Institute for Infocomm
Research, Singapore

huangd@i2r.a-
star.edu.sg

Shuguo Han
Institute for Infocomm
Research, Singapore

shan@i2r.a-star.edu.sg

Xiaoli Li
Institute for Infocomm
Research, Singapore

xlli@i2r.a-star.edu.sg

Philip S. Yu
University of Illinois at

Chicago, USA
psyu@cs.uic.edu

ABSTRACT
Differential privacy has recently become very promising in achiev-
ing data privacy guarantee. Typically, one can achieve ε-differential
privacy by adding noise based on Laplace distribution to a query
result. To reduce the noise magnitude for higher accuracy, var-
ious techniques have been proposed. They generally require high
computational complexity, making them inapplicable to large-scale
datasets. In this paper, we propose a novel orthogonal mechanism
(OM) to represent a query set Q with a linear combination of a
new query set Q̃, where Q̃ consists of orthogonal query sets and
is derived by exploiting the correlations between queries in Q. As
a result of orthogonality of the derived queries, the proposed tech-
nique not only greatly reduces computational complexity, but also
achieves better accuracy than the existing mechanisms. Extensive
experimental results demonstrate the effectiveness and efficiency of
the proposed technique.

Categories and Subject Descriptors
H.2.0 [Database Management]: General: Security, Privacy Pro-
tection; D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithm, Security

Keywords
Differential Privacy, Data Mining, Algorithms

1. INTRODUCTION
Privacy has been identified as a crucial issue in many data mining
applications [7, 23, 26]. While various privacy-preserving tech-
niques have been proposed to achieve privacy protection for data
publishing and data analysis [1, 2, 18, 28], they have been proved

to become vulnerable under certain conditions and thus cannot pro-
vide the privacy guarantee as claimed. For instance, the well-known
k-anonymity [28] does not fully protect data privacy, even assuming
adversary’s knowledge is only limited to quasi-identifiers such as
age and ZIP code [4]. On the other hand, there has been a tremen-
dous growth in data collection of personal demographic informa-
tion for real-world applications as they generally contain very use-
ful information for knowledge discovery. For example, Amazon
and YouTube collect users’ viewing and buying records for their
product recommendations. However, those data contain sensitive
personal information, which is a threat to privacy [19].

Recently, differential privacy (DP) [10] has been proposed to achieve
privacy guarantee for sensitive data and is robust to the change of
individual data records. Due its distinct advantages, it has been
widely applied in various applications [5, 12, 21, 24]. To achieve
differential privacy, Dwork [11] proposed the Laplace Mechanism
(LM) to add noise to query results based on Laplace distribution.
If LM processes each query independently to answer a batch of
queries, then it produces the noise variance Θ(m), where m is
the number of queries. As such, when query sets become very
large, the method fails to provide useful results as the noise added
could make the real data negligible. Recent results have shown that
smaller variances can be obtained if one exploits the correlations
between different queries [8, 17, 31], but these algorithms have
very high computational complexity by applying expensive matrix
operations, making them inapplicable to large-scale datasets.

In this paper, we focus on how to efficiently and accurately answer
a batch of counting queries – a very common task in data mining
[12, 20] and statistical analysis [14], while preserving data privacy.
Specifically, given a query set Q = {q1, . . . , qm}, we compute
a refined query set Q̃ = {q̃1, . . . , q̃r} such that ∀qi ∈ Q (i =
1, 2, . . . ,m) can be linearly represented by q̃1, . . . , q̃r , where the
error under Q̃ is less than that under Q.

We now use the following example to illustrate the idea. Consider
census record data about individuals shown in Table 1. Suppose we
receive a query set Q = {q1, . . . , q6} from users, where
q1: the count of {Race:White, Salary:>50K},
q2: the count of {Race:White, Salary:650K},
q3: the count of {Race:Black, Salary:>50K},
q4: the count of {Race:Black, Salary:650K},

Table 1: Census Record Data.

Sex Race State Salary
M White NY 6 50K
M Other NY >50K
F White WA >50K
F Black NY >50K
..

q5: the count of {Race:White and Black, Salary:>50K},
q6: the count of {Race:White and Black, Salary:650K}.
We decompose each of the queries in Q as follows:
q1 = CMWH + CFWH , q2 = CMWL + CFWL, q3 = CMBH +
CFBH ,
q4 = CMBL+CFBL, q5 = CMWH+CMBH+CFWH+CFBH
and,
q6 = CMWL+CMBL+CFWL+CFBL, where CMWH , CMWL,
CMBH , CMBL, CFWH , CFWL,CFBH , CFBL are the count of
{Sex:M, Race:White, Salary:>50K}, {Sex:M, Race:White, Salary:650K},
{Sex:M, Race:Black, Salary:>50K}, {Sex:M, Race:Black, Salary:650K},
{Sex:F, Race:White, Salary:>50K}, {Sex:F, Race:White, Salary:650K},
{Sex:F, Race:Black, Salary:>50K}, {Sex:F, Race:Black, Salary:650K},
respectively.

Note that these queries are highly correlated. For instance, q5 =
q1 + q3 and q6 = q2 + q4. Let S(Q) be the sensitivity of the query
set Q and ε be the privacy budget assigned to protect the dataset.
When we directly process Q using LM, the noise variance of one
query is 2S2(Q)/ε2. As the sensitivity of a query inQ in the above
example is 2 according to Definition 1 described in Section 3, pro-
cessing Q directly incurs a noise variance of 2 ∗ 22/ε2 = 8/ε2

for each query, leading to a bigger noise variance given a small
ε. In addition, such method also results in another concern: in-
consistency. The noisy answers computed by applying LM inde-
pendently to each query may violate the constraints q5 = q1 + q3
and q6 = q2 + q4, which further deteriorates the accuracy of data
analysis [14, 31].

In contrast, if we process a subset of Q, e.g., Q̃ = {q1, . . . , q4}
and subsequently use Q̃ to derive other queries , namely q5 and q6,
then the noise variance can be largely reduced. For example, the
noise variance for each query in Q̃ is 2/ε2 as one count change
only affects one query in Q̃. Clearly, exploring the correlation of
the queries in Q̃ produces much less noise variance. Inspired by
this, we design a novel algorithm to achieve less noise variance
instead of independently adding noise to each query in Q.

In summary, we propose a novel orthogonal mechanism (OM) for
effectively answering a batch of queries while achieving ε-differential
privacy. To highly reduce the correlation of queries, the proposed
mechanism first decomposes the original query set Q into orthog-
onal query subsets. Then, we derive an independent query set Q̃
by combining corresponding queries from the orthogonal query
subsets. Using the orthogonal property, it requires less noise to
achieve ε-differential privacy and obtains significantly better effi-
ciency without employing matrix operations. The contributions of
this paper are summarized as follows:

• Reduce the errors. The example mentioned above has shown
that the sensitivity has a significant impact on the error. The
proposed OM constructs a new query set Q̃ to represent the

original query set Q by exploring the correlation of Q. Ex-
perimental results demonstrate that OM outperforms existing
works in terms of accuracy.

• Reduce the computational complexity. The computational
complexity of the proposed mechanism is significantly lower
than existing mechanisms. We exploited the correlation be-
tween original queries by constructing independent and or-
thogonal queries, where the number of independent queries
is minimized and we do not apply any expensive matrix op-
erations as existing work does [17, 31].

2. RELATED WORK
Differential privacy [10], as a rigorous privacy concept, can provide
very strong privacy guarantee to protect sensitive data. Following
the idea, many researchers have proposed algorithms to protect pri-
vacy during data analysis [12, 19, 20, 30, 32]. To answer a large
number of highly correlated queries, the noise magnitude intro-
duced by Laplace Mechanism is linear to the number of queries,
which fails to provide accurate results due to large noise magni-
tude.

To address this issue, Hay et al. [14] proposed a mechanism to
improve the accuracy of histogram queries by considering consis-
tency. The proposed mechanism first uses the Laplace Mechanism
to inject noise to the queries, and then explores the consistency of
histogram by reducing and rearranging the noisy answers to main-
tain the original consistency. Although this mechanism addresses
the consistency issue effectively, it does not reduce the noise mag-
nitude to answer a batch of queries due to the error complexity of
O(l log3m), where l andm represent the number of distinct values
of queries results and the number of queries respectively.

A K-norm mechanism by Hardt and Talwar [13] achieves l2-error
Θ(min{m

√
m/ε,m

√
log(m/n)/ε}) form random linear queries

with sensitivity 1. It is an instantiation of the exponential mecha-
nism [21] with the score function defined by the norm ‖ · ‖K . Ras-
togi and Nath [27] proposed mechanism for distributed time-series
data based on Fourier Perturbation Algorithm (FPAk), which of-
fers good practical utility without any trusted server. To answer m
queries, FPAk improves the expected errors from Θ(m) to Θ(k),
where k � m is the number of Fourier coefficients that is used
to reconstruct all the m query answers. However, the value of k
affects the approximation accuracy. A careful selection of k is re-
quired in order to achieve a good trade-off between noise magni-
tude and the approximation accuracy.

Li et al. [17] proposed the matrix mechanism (MM) to reduce
noise magnitude for linear counting queries. An algorithm to ap-
proximate optimal query strategies for the matrix mechanism was
proposed with the complexity of at least O(λ3n2), where λ and n
are the number of new queries to be derived and the domain size
of query set respectively. The optimal solution is relatively slow
to be found due to its high computational complexity. In [29], a
mechanism for answering range-count queries was proposed based
on wavelet transforms. Instead of injecting noise directly into the
queries, the mechanism first applies a wavelet transform on the
frequency matrix to derive a new matrix and then adds polylog-
arithmic noise to the new matrix to achieve ε-differential privacy.
Finally, the noisy queries can be derived by inverting wavelet trans-
form. The mechanism obtains the variance of the noise in the query
result bounded by a polylogarithm of m.

Table 2: List of common notations.

Notation Description
D, di Database instance, and a tuple (data record) of

database
d, t The number of attributes and the number of tu-

ples
A The set of all features in D
B The selected subset of features for query
D New representative database of D based on B
n The domain size of the chosen subset B, i.e.,

|dom(B)|
Q, m, W Query set, its cardinality and its workload matrix
Q(D) Query set on the database instance D
q(D) A query on the database instance D
S(Q) Sensitivity of query set Q

Yuan et al. [31] further proposed a low-rank mechanism based
on a low rank approximation of the workload matrix. The basic
idea is to randomly transform the original queries into new queries
and then applies the low rank approximation technique. However,
the selection of new queries has significant impact on the accuracy
[31], hence a careful construction of the new queries is required.

3. BACKGROUND
In this section, we briefly introduce differential privacy, Laplace
Mechanism (LM) and two important theorems to be used in the
paper.

We consider a database D with d attributes A = {A1, . . . , Ad}
and t tuples. Let dom(A) be the cross-product of the domains
of attributes in A [17, 31]. One chooses a subset of attributes
B ⊆ A for queries where query set is Q = {q1, . . . , qm}. For
simplicity, we assume dom(B) = {x1, x2, . . . , xi, . . . , xn} where
xi represents one element in the chosen query domain of B. For
instance, xi could represent {Sex:M, Race:White, Salary:>50K}
in our running example. Let ci be the number of individual records
which are equivalent to xi in D. Following existing work [31], we
use xi to replace ci as well in the below equations where necessary.
In such way, we can represent a relational database D as D =
{x1, . . . xi, . . . , xn}. Query set Q = {q1, . . . , qm} of cardinality
m is a mapping from the database domain to real numbers, i.e.,
Q : D → Rm. Without loss of generality, we assume m ≤ n.
Table 2 provides a list of frequent notations used in the paper.

Different from traditional privacy algorithms, differential privacy
ensures the privacy guarantee by comparing the aggregate informa-
tion of two neighbouring databases that are used in the unbounded
differential privacy [10, 16]:

DEFINITION 1 ([10]). Neighbouring Database: Two databases
D1 and D2 are neighbouring databases if they differ on exactly one
data record with or without the data record, e.g.,

D1 = {d1, . . . ,di−1, di, di+1, . . . ,dt} and

D2 = {d1, . . . ,di−1, di+1, . . . ,dt}

where di represents a data record or tuple in database D1. When
two neighboring databases D1 and D2 differ in exactly one indi-
vidual record, the corresponding derived count databases D1 and
D2 differ in one component by exactly one, meaning

|xi − x′i| = 1 where xi ∈ D1, x
′
i ∈ D2

Before discussing the Laplace Mechanism, we first present the def-
inition of ε-differential privacy proposed by Dwork [11].

DEFINITION 2 ([11]). ε-Differential Privacy: Given ε > 0, a
randomized algorithm K : D → Rl is said to satisfy ε-differential
privacy, if for any two neighbouring databases D1 and D2 and
for any subset of outputs S ⊆ Range(K), the following condition
holds:

Pr(K(D1) ∈ S)

Pr(K(D2) ∈ S)
≤ exp(ε) (1)

where the probability is taken over the randomness of K and ε is
the privacy budget used to protect data privacy.

From Eq. (1), when ε increases, we get a higher accuracy on the
statistics of a database but less privacy is protected. In general, ε is
set to a small value (e.g., ε ≤ 1) for strong privacy protection.

Similar to traditional perturbation methods, we can achieve differ-
ential privacy by adding noise to the result of a query, where its
noise magnitude depends on the sensitivity of the query function
which is defined as follows [31]:

DEFINITION 3 ([17]). Query Matrix Sensitivity: Given a query
matrix Q = {q1, . . . , qm} : D → Rm, the sensitivity of Q is de-
fined as

S(Q) = max
‖D1−D2‖1=1

‖WD1 −WD2‖1 = max
j

n∑
i=1

|ωij |, (2)

where W is the workload of query set Q and ωij is the element in
the ith row and jth column of the matrix W , representing the jth
coefficient for query qi on element xj . Thus the sensitivity of a
query matrix is the maximum L1 norm of a column.

PROPOSITION 1 ([17, 31]). Laplace Mechanism: Given a query
set Q : D → Rm over domain D and assuming its sensitivity is
S(Q), a randomized mechanism K is said to provide ε-differential
privacy if

K(Q,D) = WD + Lap(S(Q)/ε)m

where Lap(a)m ∈ Rm denotes a column vector consisting of in-
dependent samples from Laplace distribution with scale a.

Dinur and Nissim [9] proved that the privacy may be compromised
if the adversary is allowed to execute all possible queries where
the noise magnitude is o(t), where t is the number of individu-
als in the database. If the adversary is only allowed to execute
polynomial-bounded queries, it is required to inject the noise of
magnitude Ω(

√
t) to protect the privacy. Compared with tradi-

tional algorithms, ε-differential privacy requires less noise, as it is
independent with the cardinality of the database to achieve privacy
guarantee. For multiple queries, we have the following two impor-
tant theorems.

THEOREM 1 ([22]). Sequential Composition: Given a sequence
of queries q1, q2, . . . , qm, the randomized mechanismK with noise
distributionLap(

∑m
i=1 S(qi)/ε) on each query satisfies ε-differential

privacy.

As the noise added to each query is proportional to the sensitivity
summation of all queries, the mechanism developed by Theorem 1
may fail to provide useful results if m is big.

THEOREM 2 ([22]). Parallel Composition: Let qi each pro-
vide ε-differential privacy in database Di, where Di are disjoint
subsets of the input domain D. The sequence of qi provides ε-
differential privacy.

We note that when the query domain is divided into disjoint subsets
for queries, the noise added to each query can be independent.

4. THE PROPOSED TECHNIQUE
This section presents the proposed orthogonal mechanism for an-
swering multiple counting queries. Here, we first give the problem
definition in Section 4.1, followed by the description and analysis
of our protocol in Sections 4.2 and 4.3 respectively.

4.1 Problem Definition
In this work, our objective is to investigate the efficient method to
answer multiple queries on the count of individuals in multiple sub-
sets under ε-differential privacy framework. Suppose there are m
queries (e.g.,Q = {q1, . . . , qm}) and the m corresponding subsets
are Ω1, . . . ,Ωm. Without loss of generality, we assume all related
attributes are categorical. Let dom(B) be the cross-product of the
domain attributes in Ω =

⋃
Ωi. In this case, the multiple queries

can be further decomposed as a number of linear counting queries.
Specifically, a linear query computes a linear combination of the
counts in D, which is derived from original database D.

DEFINITION 4. Linear Query: Given the count database D, a
linear query q is the dot product between the weight vector w =
[ω1, . . . , ωn] and count database D, i.e.,

q(D) = wD =

n∑
i=1

ωixi

When m number of linear queries Q = {q1, . . . , qm} are con-
ducted simultaneously, we can represent Q by a workload matrix
W ∈ Rm×n. Hence, we have the following definition:

DEFINITION 5. Query Set: Given a count database D and m
linear queries of Q, query set Q is the product of the query matrix
W ∈ Rm×n and count database D, i.e.,

Q(D) = WD = [

n∑
j=1

ω1jxj , . . . ,

n∑
j=1

ωmjxj]
T

Given the database D and a query set Q = {q1, . . . , qm} with
workload W ∈ Rm×n, we wish to find the query results Q(D) =
WD. Note that the decomposition of Q has significant impact
on the workload matrix W . In this paper, we consider the de-
composition such that dom(xi)

⋂
dom(xj) = φ where ∀i 6= j.

From Proposition 1, we use the Laplace Mechanism to achieve ε-
differential privacy. It is worthy to mention that the noisy answers
derived by this mechanism is unbiased, i.e.,

E{K(Q,D)} = Q(D) + E{Lap(S(Q)/ε)} = Q(D)

as the expectation of Laplace distribution used here is zero. For
each query, we have the following property

V ar(K(qi(D))) = E{(K(qi(D))− qi(D))2},

which means the variance of a noisy answer is equivalent to the
expected squared error. Therefore, we use the variance of the noisy
answers to evaluate the utility of algorithms in this paper.

In addition, the noise magnitude of applying Laplace Mechanism
is Θ(m) according to Theorem 1, leading V ar(K(Q,D)) to be
Θ(m2). In this case, the noisy answers may fail to provide useful
results. For example, a database with d binary features can provide
2d number of possible different queries, and thus the corresponding
variance becomes V ar(K(Q,D)) is Θ(22d). To address this issue,
we will reduce the noise magnitude by transforming the query set
Q into a number of orthogonal query sets.

4.2 Orthogonal Mechanism
The proposed Orthogonal Mechanism is achieved by the construc-
tion of orthogonal queries from the query set. Before providing
details of the algorithm, we formally define orthogonal queries and
orthogonal query sets first.

DEFINITION 6. Orthogonal Queries: For any two queries q1(D1)
and q2(D2) on count database D1 and D2 respectively, we call q1
and q2 are orthogonal queries if D1 and D2 are disjoint sets, de-
noted as q1 ⊥ q2.

For the relationship between two query sets Q1 and Q2, we have
the following definition:

DEFINITION 7. Orthogonal Query Sets: Given two query sets
Q1 and Q2, they are orthogonal if qi ⊥ qj for every qi ∈ Q1 and
qj ∈ Q2, denoted as Q1 ⊥ Q2.

With the above definitions, we have an important proposition as
follows:

PROPOSITION 2. Orthogonal Mechanism: If every pairQi and
Qj in a set of the query sets are orthogonal query sets (i.e., Qi ⊥
Qj) while each achieves ε-differential privacy, then the entire set
provides ε-differential privacy.

PROOF. Based on the definition of orthogonal queries, the datasets
D1 and D2 are disjoint sets. By applying Theorem 2, the proposi-
tion can be then approved.

That is, if we represent the original query set by orthogonal queries,
we can decrease the required noise effectively by making them un-
correlated. Inspired by this, we propose the orthogonal mechanism
where the details are shown in Algorithm 1.

In Algorithm 1, we first construct a new query set Q̃ with work-
load W̃ to represent the original query set Q, where the original

Algorithm 1 Orthogonal Mechanism
Input: Database D and workload W of query set Q
Output: Approximated query result
K(Q,D)

1: Construct a new query set Q̃ together with W̃ based on Al-
gorithm 2 and a matrix B according to Algorithm 3, where
W = BW̃

2: Generate a column vector β = Lap(S(Q̃)/ε)s =

[β1, . . . , βs]
T , where βi = Lap(S(Q̃)/ε)

3: return F(Q,D) = B(W̃D + β)

query domain is divided into disjoint subsets and the new query Q̃
is constructed based on the disjoint subsets. More details of the
construction are illustrated in Algorithm 2. Then we construct a
matrix B such that W = BW̃ as shown in Algorithm 3. Finally,
we obtain the noisy answer F(Q,D) (at line 3 of Algorithm 1).

It is important to note that LRM in [31] also constructed B and W̃
such that W = BW̃ . However, the construction of matrices B and
W̃ in OM is total different from the method used in LRM. Please
refer to [31] for more details.

Algorithm 2 Algorithm for the construction of new query set Q̃
Input: Query set Q = {q1, . . . , qm} and its workload W
Output: New query set Q̃ with W̃
1: Let rank(W) = r and randomly select r independent queries
q̂1, . . . , q̂r from Q

2: LetD be the query domain of query setQ, which is dom(B) =
{x1, . . . , xi, . . . , xn}) introduced in Section 3.

3: Let Di be the query domain of q̂i, ∀i = 1, . . . , r
4: Set Q̃ = φ
5: Initialize j = 0
6: while D is not empty do
7: Update j = j + 1
8: Count the number of occurrence of each xi in D1, . . . , Dr ,

denoted by κ(xi), i = 1, . . . , n
9: Set l = arg max

i
κ(xi)

10: Find the index set Sl = {i|xl ∈ Di, ∀i = 1, 2, . . . , r}
11: Set D̃j =

⋂
i∈Sl

Di
12: Let τ be the cardinality of set Sl
13: for i = 1 to τ do
14: Construct a query q̃i such that it can represent D̃j within

DSl(i)

15: end for
16: Let τj be the number of independent query set among the

query set C = {q̃1, . . . , q̃τ}
17: Construct τj independent and normalized queries

q̃j1, . . . , q̃jτj from C

18: Set Q̃j = {q̃j1, . . . , q̃jτj}
19: Update Q̃ = Q̃

⋃
Q̃j

20: Update Di = Di − D̃j ∀i = 1, . . . , r
21: Update D = D − D̃j
22: end while
23: return Q̃ with its workload W̃

In Algorithm 2, the query domain D of query set Q is first divided
into n disjoint subsets and the workload matrix W is derived. We
then randomly select r independent queries q̂i out of m queries

(Line 1), where r is the rank of W . For each query q̂i, we compute
its query domainDi (Line 3). Then, we count the number of occur-
rence of xi in D1, . . . , Dr , denoted by κ(xi), and find the index l
such that κ(xl) = max

i
κ(xi). Based on l, we find the index set

Sl which contains the element xl (Line 10). Then we find the com-
mon subset D̃j of query domains Di whose indices belong to the
index set (Line 11). For the common subset D̃j , we derive a new
query q̃i for every query domains whose indices belong to the in-
dex set (Lines 13-15). After that, we find independent queries from
q̃is and normalize them (Line 17). Finally, we remove the common
subset from each query domain (Line 20) and the entire query do-
main (Line 21). In this way, for every two queries q̃1, q̃2 ∈ Q̃j , q̃1
and q̃2 are independent. While for every two queries q̃1 ∈ Q̃i and
q̃2 ∈ Q̃j where i 6= j, q̃1 ⊥ q̃2, then Q̃i ⊥ Q̃j .

In Algorithm 3, we derive matrix B by using the orthogonality of
Q̃j (computed from Line 18 of Algorithm 2) and the independence
of every two queries in a query subset Q̃j . For the query domain
of each query in Q, we first check whether the new query domain
of q̃j belongs to it (Line 6). If the condition is true, we then further
search a query in q̃j which is linear to the query in Q and compute
the coefficient (Line 9).

Algorithm 3 Algorithm for the construction of matrix B

Input: Original workload W ∈ Rm×n and new workload
W̃ ∈ Rs×n
Output: Matrix B ∈ Rm×s such that W =
BW̃ .
1: Let Di be the query domain of qi, ∀i = 1, . . . ,m
2: Let D̃j be the query domain of q̃j , ∀j = 1, . . . , s
3: Generate zero matrix B ∈ Rm×s
4: for i = 1 to m do
5: for j = 1 to s do
6: if D̃j ⊆ Di then
7: rank_ij = rank(qi(D̃j), q̃j)
8: if rank_ij == 1 then
9: Find k such that qi(D̃j) = kq̃j

10: Set B(i, j) = k
11: end if
12: end if
13: end for
14: end for
15: return B

We use an example to illustrate how the new query is derived in
order to make the procedure of Algorithm more clear.
Example 1: Suppose we are interested in the statistics of the dataset
shown in Table 1. Particularly, consider the size of the query do-
main as 4, and the four corresponding elements are the four count-
ing results: {CWH , CWL, CBH , CBL}. We are interested in an-
swering a query set Q = {q1, q2, . . . , q6} with workload matrix
expressed as

W =


0.3657 0 0.9812 0

0 0.0645 0 0
0 0.5879 0.7602 0
0 0 0 0.7310
0 0.7313 0 0
0 0 0.7122 0.9053

 .

where it is randomly generated.

According to Algorithm 2, we first check the rank of W , which is
4. We need to find four independent rows from W and construct a
new query set Q̃ = {q̃1, q̃2, . . . , q̃4} with workload

W̃ =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 .
For the construction of matrix B, we first define the query domain
by identifying those columns with non-zero elements in each query.
Then we constructB(i, j) by comparing the query domain between
W and W̃ . Finally, we get

B =


0 0.9812 0.3657 0

0.0645 0 0 0
0.5879 0.7602 0 0

0 0 0 0.7310
0.7313 0 0 0

0 0.7122 0 0.9053


according to Algorithm 3.

Note that the noise variance of the entire query set Q is around
75/ε2 since S(Q) ≈ 2.5 and there are 6 queries, while the noise
variance based on query set Q̃ is less than 18/ε2 due to S(Q̃) = 1.
This demonstrates that the OM algorithm helps further reduce the
noise variance.

4.3 Protocol Analysis
We present privacy analysis, complexity analysis and accuracy anal-
ysis in the section. We theoretically show that our algorithms sat-
isfy the requirements of differential privacy, have less complexity
and more accurate.

THEOREM 3. Algorithm 1 is ε-differentially private.

PROOF. The proof is clear since K(Q̃,D) = W̃D + β is the
Laplace Mechanism andF(Q,D) = B·K(Q̃,D) is a post-processing
of the output of the ε-differential privacy K(Q̃,D).

In the proposed mechanism, we do not derive the matrix B where
W = BW̃ by the above method as we take full advantage of the or-
thogonal property, which has been elaborated in Algorithm 3. The
computational complexity of applying traditional matrix decompo-
sition method is O(n3) while the computational complexity of the
proposed Algorithm 3 is only O(msn). The total complexity of
Algorithms 2 and 3 is O(Nrn+msn+ nmη−1), where N is the
number of iterations in Algorithm 2 and η < 2.38 is the matrix
multiplication exponent [6] used to compute matrix rank. Further-
more, the proposed mechanism does not approximate the solutions
[17, 31] and we achieve the exact solution from Algorithms 2 and
3 as we have the following theorems.

THEOREM 4. Let Q̃ be a new query set and W̃ ∈ Rs×n de-
rived from Algorithm 2, the original workload W of query set Q
can be always represented as a linear combination of the new query
set Q̃.

PROOF. As shown in Algorithm 2. for each query qi, its query
domain can be divided into τi subsets. For each subset, there al-
ways exists a query q̃′j such that qi =

∑τi
j=1 αij q̃

′
j , where q̃′j ∈

Q̃.

COROLLARY 1. Given the original workload matrix W and a
new workload matrix W̃ derived from Algorithm 2, there is one and
only one solution forW = BW̃ and it is derived from Algorithm 3.

PROOF. According to Theorem 4, given matrices W and W̃ ,
there always exists a matrix B1 such that W = W̃ . Suppose there
exists another matrix B2 6= B1 such that W = B2W̃ . Then we
get (B1 − B2)W̃ = 0. This demonstrates that the row vectors of
W̃ are linear dependent, which contradicts the independence of W̃
in Algorithm 2.

Algorithm 2 and Algorithm 3 decompose the original query set
Q with W = BW̃ . From Algorithm 2, Q̃ consists of orthogo-
nal query subsets {Q̃1, Q̃2, . . . , }. That is, Q̃ =

⋃
j Q̃j . We get

S(Q̃) = max
j
S(Q̃j). Thus, this property helps reduce the required

noise magnitude. Based on Algorithms 1, 2 and 3, we get the fol-
lowing result:

THEOREM 5. The expected squared error ofF(Q,D) obtained
in Algorithm 1 with respect to the decomposition W = BW̃ is

2 · trace(B ·BT)S(Q̃)2/ε2

PROOF. Since E{F(Q,D)} = Q(D), the expected square er-
ror of F(Q,D) is equal to V ar(Bβ) where β = [β1, . . . , βs]

T .
We get V ar(Bβ) =

∑
j

∑
iB

2
ijV ar(βj). From Algorithm 1, we

get V ar(βj) = 2S(Q̃)2/ε2. Thus, V ar(Bβ) = 2·S(Q̃)2

ε2

∑
ij B

2
ij .

Note that trace(B · BT) =
∑
ij B

2
ij . Therefore, the expected

squared error of the orthogonal mechanism is equal to
2 · trace(B ·BT)(S(Q̃)

ε
)2.

Theorem 5 shows that the expected squared error of the orthogonal
mechanism not only depends on the sensitivity of the new query
set, but also depends on the matrixB. It is important to note thatB
is uniquely determined by W̃ as shown in the proposed algorithm
from Corollary 1. Thus, the structure of W̃ completely determines
the expected squared error.

THEOREM 6. Given the workload W , W = BW̃ is the opti-
mal workload decomposition to minimize expected squared error if
(B,W̃) is the optimal solution to the following program:

Minimize: S(W̃) (3)

s.t. W = BW̃ (4)

trace(BTB) ≤ 1 (5)

PROOF. Let (B∗, W̃∗) be the optimal solution in Eqs. (3)-(5). If
it is not the optimal decomposition to minimize expected squared
error, there must exist another decomposition (B1, W̃1) such that

trace(BT1 B1)S2(W̃1) ≤ trace(BT∗ B∗)S2(W̃∗) (6)

Clearly, we further constructB2 = B1/
√
trace(BT1 B1) and W̃2 =√

trace(BT1 B1)·W̃1. Clearly,B1W̃1 = B2W̃2. As trace(BT2 B2) =

1 and trace(BT1 B1)S2(W̃1) = trace(BT2 B2)S2(W̃2), we get

S2(W̃2) = trace(BT2 B2)S2(W̃2) ≤ trace(BT∗ B∗)S2(W̃∗) ≤ S2(W̃∗).

However, this contradicts to the definition of (B∗, W̃∗).

Theorem 6 further shows that the W̃ completely determines the
expected squared errors. The aim of the proposed decomposition
algorithm is to decrease the correlation of W̃ and thus reduces the
expected squared errors.

5. EXPERIMENTAL EVALUATION
This section experimentally studies the effectiveness and efficiency
of our proposed OM mechanism for answering a number of corre-
lated count queries. Particularly, we compare the proposed mecha-
nism with the state-of-the-art mechanisms, including the Laplace
Mechanism (LM) [11], Low-Rank Mechanism (LRM) [31] and
Matrix Mechanism (MM) [17], using one real benchmark dataset
from UCI machine learning repository 1. In order to provide a fair
comparison, we use the algorithms described in [31] for LRM and
MM.

The dataset we are using is the Adult dataset, which has been widely
used to benchmark the performance among various proposed mech-
anisms [3, 15, 25]. It contains 32,561 individuals with 14 attributes,
among which there are 8 categorical attributes and 6 numerical at-
tributes. The class attribute is a binary category representing in-
come levels, i.e., > 50K or ≤ 50K.

To perform a fair comparison, three different cases of workload
matrices are considered. For the generation of W , we first ran-
domly generate an m × n matrix H , where each element of the
matrix is drawn from the standard uniform distribution. Then we
set wij = rand if hij ≤ τ , and wij = 0 otherwise. Clearly, τ
is related to S(W), which increases with increasing τ according
to the definition of S(W). Thus, higher value for τ means higher
sensitivity of W . Furthermore, higher value for τ causes higher
correlation among queries. Here τ is set as τ = [0.2, 0.4, 0.8] for
the generation ofWτ , i.e. W0.2,W0.4,W0.8. All experiments were
conducted on an Intel Xeon E7 2.00GHz PC with 64GB RAM.
We evaluate the performance improvement based on accuracy (or
squared errors) and efficiency (or execution time). Note that we
have performed our experiments for 20 times and average results
are reported. Scenarios are also generated to simulate the real-
world applications by varying three parameters, namely, query size
m, query domain size n and privacy budget ε, under the three work-
load matrices.

5.1 Accuracy Evaluation
We are now ready to compare the experimental results for three
techniques: OM, LM, MM and LRM, in terms of accuracy in the
section.

Varying privacy budget ε. According to the definition of ε-differential
privacy, smaller ε implies stronger privacy and thus results in larger
noise variances. We study the impact of ε on the expected squared
errors by varying ε from 0.2 to 1.6.

Fig. 1 shows the average squared errors versus the variation of ε
with parameters m = 200 and n = 1000. It shows that the
average squared errors achieved by all the four mechanisms de-
crease when we increase privacy budget ε. More importantly, OM
achieves much smaller average squared errors compared with ex-
isting LRM, MM and LM methods for all the three workload ma-
trices with different τ values. When τ increases, the sensitivity of
the original query set also increases. It can be seen that the aver-
age squared errors achieved by the four mechanisms also increase,
1http://archive.ics.uci.edu/ml/

although LRM is not sensitive to the changes of the workload ma-
trix. Note that the errors between LM and LRM increase with the
increasing τ , and the errors between LRM and OM decrease with
increasing τ . The average squared error achieved by MM is the
highest. Nevertheless, the proposed OM mechanism achieves sig-
nificantly better accuracies across the benchmark dataset compared
with the three state-of-the-art approaches.

Varying query size m. m = [50, 100, 150, 200, 250, 300] and
n = 1000 are set for Adult dataset. Fig. 2 shows the comparison
of average squared errors achieved by the four mechanisms with
three workload matrices. We observe that the average squared er-
rors achieved by the four mechanisms increase with the increasing
m. However, OM is not so sensitive to the changes of m and τ and
consistently better than the other three mechanisms.

Varying domain size n. n = [500, 1000, 1500, 2000, 2500] and
m = 200 are set for the Adult dataset. Fig. 3 shows the com-
parison of average squared errors versus domain size n. When τ
increases, the average squared errors achieved by LM and OM also
increase. MM is not so sensitive to change of τ . But the average
squared error achieved by MM is the highest. When n increases,
OM achieves the least squared errors consistently under the differ-
ent scenarios across the benchmark dataset.

5.2 Execution Time Evaluation
In this section, we further compare the execution time among LRM,
MM and OM, where the scenarios are set as the same in the Accu-
racy Evaluation subsection.

Varying query size m. From Fig. 4, we observe that OM is the
fastest among the three mechanisms. Particularly, the execution
time of the three mechanisms does not show strong correlation with
query size m when τ = 0.2. But when τ = 0.4 or τ = 0.8, exe-
cution time of both LRM and OM increases with increasing query
size m. Furthermore, the execution time of OM is not so sensitive
to the change of τ and m.

Varying domain size n. From the comparisons shown in Fig. 5, the
execution time of all mechanisms increases with increasing query
size n. The relationship between the execution time of LRM and
OM and the query domain size is approximately linear, but the ex-
ecution time of OM under different scenarios is still much smaller
than that of LRM. For example, the execution time of OM is around
300s when n = 1000, while that of LRM is around 2000s for dif-
ferent workload matrices in Adult dataset, demonstrating that the
proposed OM is more efficient.

6. CONCLUSIONS
In this paper, we proposed a novel mechanism, orthogonal mech-
anism, for answering query set while achieving ε-differential pri-
vacy. It significantly reduces the noise magnitude by removing the
correlation between queries as much as possible. The procedure of
the decomposition does not depend on the expensive matrix oper-
ation. The computational complexity of the proposed work is thus
much lower than existing mechanisms due to its orthogonal prop-
erties. Experimental results demonstrated that the proposed mech-
anism is very accurate and efficient, and hence scalable enough for
handling large-scale datasets.

7. REFERENCES
[1] N. R. Adam and J. C. Worthmann. Security-control methods

for statistical databases: a comparative study. ACM

Computing Surveys (CSUR), 21(4):515–556, 1989.
[2] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller,

R. Panigrahy, D. Thomas, and A. Zhu. Achieving anonymity
via clustering. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART, pages 153–162, 2006.

[3] R. J. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymization. In Proceedings. 21st International
Conference on Data Engineering, pages 217–228. IEEE,
2005.

[4] J. Brickell and V. Shmatikov. The cost of privacy: destruction
of data-mining utility in anonymized data publishing. In
Proceedings of the 14th ACM SIGKDD, pages 70–78, 2008.

[5] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic
regression. In Advances in Neural Information Processing
Systems, pages 289–296, 2009.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. In Proceedings of the nineteenth
annual ACM symposium on Theory of Computing, pages
1–6, 1987.

[7] T. Dalenius. The invasion of privacy problem and statistics
productionâĂŤan overview. Statistik Tidskrift, 12:213–225,
1974.

[8] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private
data cubes: optimizing noise sources and consistency. In
Proceedings of the ACM SIGMOD, pages 217–228, 2011.

[9] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART, pages 202–210, 2003.

[10] C. Dwork. Differential privacy. In Proceedings of the 33rd
international conference on Automata, Languages and
Programming, pages 1–12. Springer-Verlag, 2006.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
Theory of cryptography, pages 265–284. Springer, 2006.

[12] A. Friedman and A. Schuster. Data mining with differential
privacy. In Proceedings of the 16th ACM SIGKDD, pages
493–502, 2010.

[13] M. Hardt and K. Talwar. On the geometry of differential
privacy. In Proceedings of the forty-second ACM symposium
on Theory of Computing, pages 705–714, 2010.

[14] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. Proceedings of the VLDB Endowment,
3(1-2):1021–1032, 2010.

[15] V. S. Iyengar. Transforming data to satisfy privacy
constraints. In Proceedings of the eighth ACM SIGKDD,
pages 279–288, 2002.

[16] D. Kifer and A. Machanavajjhala. No free lunch in data
privacy. In Proceedings of the ACM SIGMOD, pages
193–204, 2011.

[17] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing linear counting queries under differential privacy.
In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART, pages 123–134, 2010.

[18] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In IEEE 23rd
International Conference on Data Engineering, pages
106–115, 2007.

[19] F. McSherry and R. Mahajan. Differentially-private network
trace analysis. ACM SIGCOMM Computer Communication
Review, 41(4):123–134, 2011.

[20] F. McSherry and I. Mironov. Differentially private
recommender systems: building privacy into the net. In
Proceedings of the 15th ACM SIGKDD, pages 627–636,
2009.

[21] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 94–103, 2007.

[22] F. D. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proceedings
of the 2009 ACM SIGMOD, pages 19–30, 2009.

[23] A. R. Miller. The assault on privacy: computers, data banks,
and dossiers. University of Michigan Press, 1971.

[24] N. Mohammed, R. Chen, B. Fung, and P. S. Yu.
Differentially private data release for data mining. In
Proceedings of the 17th ACM SIGKDD, pages 493–501,
2011.

[25] N. Mohammed, B. Fung, P. C. Hung, and C.-k. Lee.
Anonymizing healthcare data: a case study on the blood
transfusion service. In Proceedings of the 15th ACM
SIGKDD, pages 1285–1294, 2009.

[26] M. A. Palley and J. S. Simonoff. The use of regression
methodology for the compromise of confidential information
in statistical databases. ACM Transactions on Database
Systems (TODS), 12(4):593–608, 1987.

[27] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption.
In Proceedings of the ACM SIGMOD, pages 735–746, 2010.

[28] L. Sweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):557–570, 2002.

[29] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. IEEE Transactions on Knowledge and
Data Engineering, 23(8):1200–1214, 2011.

[30] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data
release through multidimensional partitioning. In Secure
Data Management, pages 150–168. Springer, 2010.

[31] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and
Z. Hao. Low-rank mechanism: optimizing batch queries
under differential privacy. Proceedings of the VLDB
Endowment, 5(11):1352–1363, 2012.

[32] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett.
Functional mechanism: regression analysis under differential
privacy. Proceedings of the VLDB Endowment,
5(11):1364–1375, 2012.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

4

10
5

10
6

10
7

10
8

10
9

Privacy budget ε

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(a) W with τ = 0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

4

10
5

10
6

10
7

10
8

10
9

Privacy budget ε

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(b) W with τ = 0.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

4

10
5

10
6

10
7

10
8

10
9

Privacy budget ε

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(c) W with τ = 0.8

Figure 1: Accuracy comparison by varying ε.

50 100 150 200 250 300
10

5

10
6

10
7

10
8

10
9

Query size m

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(a) W with τ = 0.2

50 100 150 200 250 300
10

5

10
6

10
7

10
8

10
9

Query size m

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(b) W with τ = 0.4

50 100 150 200 250 300
10

5

10
6

10
7

10
8

10
9

Query size m

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(c) W with τ = 0.8

Figure 2: Accuracy comparison by varying m.

500 1000 1500 2000 2500
10

5

10
6

10
7

10
8

10
9

10
10

Domain size n

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(a) W with τ = 0.2

500 1000 1500 2000 2500
10

5

10
6

10
7

10
8

10
9

Domain size n

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(b) W with τ = 0.4

500 1000 1500 2000 2500
10

5

10
6

10
7

10
8

10
9

Domain size n

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

OM
LRM
MM
LM

(c) W with τ = 0.8

Figure 3: Accuracy comparison by varying n.

50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Query size m

T
im

e(
se

co
nd

s)

OM
LRM
MM

(a) W with τ = 0.2

50 100 150 200 250 300
0

1000

2000

3000

4000

5000

Query size m

T
im

e(
se

co
nd

s)

OM
LRM
MM

(b) W with τ = 0.4

50 100 150 200 250 300
0

1000

2000

3000

4000

5000

Query size m

T
im

e(
se

co
nd

s)

OM
LRM
MM

(c) W with τ = 0.8

Figure 4: Execution time comparison by varying query size m.

500 1000 1500 2000 2500
0

1

2

3

4

5
x 10

4

Domain size n

T
im

e(
se

co
nd

s)

OM
LRM
MM

(a) W with τ = 0.2

500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Domain size n

T
im

e(
se

co
nd

s)

OM
LRM
MM

(b) W with τ = 0.4

500 1000 1500 2000 2500
0

1

2

3

4

5

6
x 10

4

Domain size n

T
im

e(
se

co
nd

s)

OM
LRM
MM

(c) W with τ = 0.8

Figure 5: Execution time comparison by varying domain size n.

