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Abstract— In this paper we show how information contained in
robust network codes can be used for passive inference of possible
locations of link failures or losses in a network. For distributed
randomized network coding, we bound the probability of being
able to distinguish among a given set of failure events, and
give some experimental results for one and two link failures in
randomly generated networks. We also bound the required field
size and complexity for designing a robust network code that
distinguishes among a given set of failure events.

I. INTRODUCTION

The distributed randomized network coding approach of [1]
provides a simple way to achieve robustness to link failures in
multisource multicast. In this approach, interior network nodes
independently and randomly choose linear mappings from
inputs to outputs. Coefficient vectors specifying the aggregate
linear combinations are sent with each data block or packet,
allowing decoding at the sinks under different combinations
of link failures or packet losses, as long as the remaining rate
is sufficient.

In this paper we make the observation that the coefficient
vectors transmitted in a distributed randomized network coding
setup are not simply a necessary overhead for recovery of
the coded messages at the sinks, but may be used to deduce,
additionally, useful information on the location of link failures
or packet losses. This is because losses on different links
affect the coefficient vectors obtained at the sinks differently.
Knowledge of the original network topology and network
code allows inference, from changes in the coefficient vectors
obtained at the sinks, of possible locations of losses in the
network.

The problem of monitoring interior network state or perfor-
mance parameters such as link failures, loss rates, or delays
using end-to-end observations is commonly known as network
tomography, based on the analogy with the medical tomogra-
phy problem of non-intrusive imaging. Such monitoring can
be useful for network maintenance or management. In our
case, we have a form of passive network tomography, since
our inferences are based on passive end-to-end observations
of existing network traffic, rather than the use of active
probes. In particular, the network code coefficient vectors play
double duty by allowing link failure monitoring in addition to
allowing the sink nodes to correctly decode the incoming data
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Fig. 1. An example in which distinct logical link segments are indistinguish-
able with only end-to-end measurements. Here failure of either the left-most
or right-most link results in the same observation at the sink.

under different failure patterns.
In this paper, we look at the extent to which network

codes allow us to distinguish among different failure patterns,
i.e. sets of links that fail simultaneously. Failure patterns that
result in different sink observations under a network code can
be distinguished from each other by that code. As in all end-
to-end tomography approaches, failures can be localized only
up to segments of the logical topology, which are segments
between branches in the network. Furthermore, for a given
topology and given source and sink locations, failures of
distinct logical segments may be indistinguishable by end-
to-end observations if the segments lie on exactly the same
set of source-sink paths, since the corresponding end-to-end
observations are identical. This is illustrated in Figure 1. For
a given network and given locations of sources and sinks, we
consider two failure patterns p1 and p2 to be indistinguishable
if the set of source-sink paths containing at least one link in
p1 is identical to the set of source-sink paths containing at
least one link in p2, and distinguishable otherwise.

The problem we consider here is in some sense the opposite
of that in [2], which also deals with link failures, but is
concerned with the minimum number of different groups of
failure patterns the network needs to be aware of, representing
the minimum amount of control information needed to ensure
continued transmission of data across different failure patterns.
This paper, on the other hand, is concerned with how many
failures patterns can be distinguished.

The rest of the paper is organized as follows: Section II
provides some background and a brief overview of related
work, Section III describes our network model, Section IV
gives the main results, Section V gives our mathematical
development and proofs, Section VI gives some simulation
results, and Section VII concludes the paper with a summary
of the results and a discussion of further work.



II. BACKGROUND AND RELATED WORK

A. Network coding

The field of network coding has its origins in the work of
Ahlswede et al. [3] and Li et al. [4]. Li et al. [4] prove that
linear coding with finite symbol size is sufficient for multicast
connections, showing that network codes may potentially be
simple and practical. Koetter and Médard [5] present an
algebraic framework for linear network coding, which provides
the basic model and mathematical foundation for this work.
They also demonstrate that network coding can be used to
provide robust solutions to multi-source multicast networks
with link failures, in which only sink nodes need to change
behavior in response to different failures.

Distributed randomized network coding, introduced in Ho
et al. [1], gives an approach for robust multi-source multicast
in a distributed setting. In this technique, nodes independently
select random linear mappings from inputs onto outputs over
some finite field, which achieves all feasible connections with
probability tending to 1 as the field size grows. The sinks need
only know the overall linear combination of source processes
in each of their incoming signals. This information is sent
through the network as a vector, for each signal, of coefficients
corresponding to each of the source processes, updated at each
coding node by applying the same linear mappings to the
coefficient vectors as to the information signals. Robustness
to link failures and errors in the random selection of codes
improves with excess capacity in the network [6]. Chou et
al. [7] have proposed and demonstrated by simulation a packet-
based implementation in which source packets are divided
into generations, and only packets in the same generation are
linearly combined.

Concurrent independent work by Sanders et al. [8] and Jaggi
et al. [9] considers multicast on acyclic delay-free graphs,
giving centralized deterministic and randomized polynomial-
time algorithms for finding network coding solutions over a
subgraph consisting of flow solutions to each sink.

B. Network tomography

The problem of monitoring or inference of internal network
characteristics from end to end measurements is commonly
known as network tomography. Such characteristics include
link status, losses and delay characteristics.

This problem has been considered by a large number of
papers, some of which are surveyed in [10]. Existing ap-
proaches may be classified in various ways. Active measure-
ment approaches, such as those of [11], [12], involve sending
additional probe traffic, whereas passive approaches [13] aim
to infer network characteristics from existing network traffic.
Approaches may also be classified into unicast [14], [12] or
multicast [15] approaches, depending on whether unicast or
multicast traffic/probes are used. While many existing works
focus on wired networks, network tomography for sensor
networks has also been considered [16].

III. MODEL

We consider networks with directed error-free links. Net-
work coding is done only at branch nodes (i.e. nodes with
degree three or more), as there is no capacity or reliability
advantage from coding within a logical link. Thus, in the rest
of the paper we will consider logical links rather than physical
links, using the terms ’link’ and ’logical link’ interchangeably.

Our basic mathematical framework and model is based on
that in [3], [5]. A network is represented as a directed graph
G = (V, E), where V is the set of network nodes and E is
the set of links, such that information can be sent noiselessly
from node i to j for all (i, j) ∈ E , and |E| = η. i and j are
called the origin and destination respectively of link (i, j).
The origin and destination of a link l ∈ E are denoted o(l)
and d(l) respectively.

Link l is an incident outgoing link of node v if v = o(l),
and an incident incoming link of v if v = d(l). We call an
incident incoming link of a sink node a terminal link. Link l
carries the random process Y (l).

There are r independent information sources
X1, X2, . . . , Xr. Source Xi is generated at a node αi ∈ E , and
multicast to all nodes j ∈ {β1, . . . , βd} for all i ∈ [1, r], which
we refer to as multi-source multicast. The nodes α1, . . . , αr

are called source nodes and the d nodes β1, . . . , βd are called
sink nodes.

A multicast transmission problem is specified by a network
G, source and sink locations, and source rates. For a given
transmission problem, a network code is valid if every sink
is able to reconstruct all the source information without error.
Failure of a link l is modeled as removal of l from G.

We assume that the time unit is chosen such that the capacity
of each link is one bit per unit time, and the random processes
Xi have a constant bit and entropy rate of one bit per unit time.
Edges with larger capacities are modelled as parallel edges,
and sources of larger entropy rate are modelled as multiple
sources at the same node.

The processes Xi, Y (l) generate binary sequences. We
assume that information is transmitted as vectors of bits which
are of equal length u, represented as elements in the finite field
F2u . The length of the vectors is equal in all transmissions,
and all links are assumed to be synchronized with respect to
the symbol timing.

For simplicity we consider linear coding1 on acyclic delay-
free graphs; burst [4] or pipelined [8] network codes on
acyclic networks with link delays are essentially equivalent.
For cyclic networks, such as the random geometric graphs in
our simulations of Section VI, our approach is to code over an
acyclic subgraph. This is in some cases suboptimal compared
to cyclic coding approaches such as those of [5], [4], but the
overhead of specifying such codes is higher, which is less
attractive for non-static networks. In a linear code, the signal
Y (j) on a link j is a linear combination of processes Xi

generated at node v = o(j) and signals Y (l) on links l such

1which is sufficient for multicast [4]
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Fig. 2. Illustration of linear coding at a node.

that d(l) = o(j):

Y (j) =
∑

{i : αi=v}

ai,jXi +
∑

{l : d(l)=v}

fl,jY (l)

IV. MAIN RESULTS

Suppose an acyclic graph, source and sink locations, and
link failure statistics are given, and suppose we are interested
in identifying some of the more likely failure events. For in-
stance, if each failure occurs with relatively small probability,
we may wish to distinguish among failure patterns that consist
of up to some small number of links. Among these patterns
of interest, there may be some that are indistinguishable from
each other as noted earlier with the example of Figure 1.
Sets of indistinguishable failure patterns are grouped together
into failure events, and the remaining failure patterns are
considered individual failure events. For a given set C of
distinguishable favorite events, and a given failure event c ∈ C,
a monitoring ambiguity is said to exist for a network code
if the corresponding coefficient vectors on the terminal links
are identical to those for some other failure event in C. This
definition is independent of the actual method of inferring
failure events from sink observations; one basic approach is
to have a lookup table of the observations corresponding to
different failure/loss events.

Let L be the maximum number of logical links on a source-
sink path, S the set of sources, and T the set of terminal links.

Theorem 1 gives an upper bound on the probability of a
monitoring ambiguity for a given link in a given problem,
which decreases approximately inversely with field size q =
2u or exponentially with code length u. The bound is very
general, depending only on three parameters, |C|, L and q,
and is correspondingly pessimistic for networks that are not
worst-case examples. In Section VI, we show by simulation
much better performance on randomly generated geometric
graphs.

Theorem 1: For a given set C of distinguishable favorite
events, and a given failure event c ∈ C, the probability of a
monitoring ambiguity in a random linear network code is at

most 1 −
(
1 − |C|−1

q

)L

. �

In the case where rerouting or further testing following a
monitoring ambiguity is undesirable, we may wish to have

a network code that is valid under all failure events in a
set C, and distinguishes among them without any monitoring
ambiguities. A simple lower bound on the minimum field size
q needed for such a code is

q ≥ |C|
1

rt

where r and t are the number of sources and terminal links
respectively. This is obtained by noting that |C| cannot exceed
the maximum number of possible values qrt of the coefficient
vectors of the terminal links. An upper bound is given by the
following theorem.

Theorem 2: Suppose C is a set of distinguishable failure
events. A network code that is valid under all failure events
in C and distinguishes among them without any monitoring
ambiguities can be obtained in any finite field of size greater
than |C|( |C|−1

2 + d). �

Theorem 3: Suppose C is a set of distinguishable failure
events. A valid network code of field size γ|C|( |C|−1

2 + d)
network code that is valid under all failure events in C and
distinguishes among them without any monitoring ambiguities
can be obtained using a randomized procedure in expected

time O
((

γ
γ−1

)η

|C|
(
ηIr + dr2.376 + |C|rt

))
, where I is the

maximum in-degree of a node. �

Again, these are very general bounds; we would expect to
do substantially better on many networks.

V. MATHEMATICAL DEVELOPMENT AND PROOFS

Our proofs use the following lemma from [17], which, like
the Schwartz-Zippel Lemma, bounds the probability that a
multivariate polynomial evaluated at a random point equals
zero, but is tighter as it takes into account the maximum degree
of each variable. Its proof in [17] uses the Schwartz-Zippel
Lemma.

Lemma 1: Let P be a nonzero polynomial in F[ξ1, ξ2, . . .]
in which the largest exponent of any variable ξi is at most x,
and whose total degree is less than or equal to xy. Values for
ξ1, ξ2, . . . are chosen independently and uniformly at random
from Fq ⊆ F. The probability that P equals zero is at most
1 − (1 − x/q)y for x < q. �

For each c ∈ C, denote by Ec(s, l) the difference in the
coefficient corresponding to source s in the coefficient vector
of terminal link l due to failure of links in c, in terms of code
coefficients {as,i, fi,j}.

Lemma 2: Ec(s, l) has maximum degree L and is linear in
each variable {as,i, fi,j}.

Proof: Note that Ec(s, l) is the sum of the contributions
of all paths from s to l that pass through one or more links
in c, where the contribution of a path from s through links
l1, l2, . . . , lx, l in order is the product as,l1fl1,l2fl2,l3 . . . flx,l.

Proof of Theorem 1: Consider a failure event c ∈ C. The
probability of monitoring ambiguity for c is given by

Pr(∃c′ ∈ C, c′ �= c, s.t. Ec′(s, l) = Ec(s, l) ∀ s ∈ S, l ∈ T ).



This is upper bounded by

Pr (∃c′ ∈ C, c′ �= c, s.t. Ec′(sc,c′ , lc,c′) = Ec(sc,c′ , lc,c′))

= Pr


 ∏

c′∈C: c′ �=c

(Ec′(sc,c′ , lc,c′) − Ec(sc,c′ , lc,c′)) = 0


 ,

where sc,c′ , lc,c′ are respectively some source and termi-
nal link for which Ec′(sc,c′ , lc,c′) is not identically equal
to Ec(sc,c′ , lc,c′). Now, by Lemma 2, each difference term
(Ec′(sc,c′ , lc,c′) − Ec(sc,c′ , lc,c′)) has maximum degree L and
is linear in each variable {as,i, fi,j}. The product of |C| − 1
such terms thus has maximum degree (|C| − 1)L, and the
largest exponent of any variable is at most |C| − 1. Therefore,
by Lemma 1, the probability that their product equals zero is

at most 1 −
(
1 − |C|−1

q

)L

.
Proof of Theorem 2: Firstly, we want the network code to

be valid for each error event c ∈ C. This condition is equivalent
to the product of the transfer matrix determinants of all d
sinks for all c ∈ C being nonzero [5]. This product P1 is an
expression of total degree at most |C|dη, in which the largest
exponent of any variable is at most |C|d [1].

For the network code to be able to distinguish among all
failure combinations in C, we must have, for each pair of
distinct c, c′ ∈ C,

Ec(sc,c′ , lc,c′) − Ec′(sc,c′ , lc,c′) �= 0

for some source sc,c′ and terminal link lc,c′ . By Lemma 2,
each difference term (Ec(sc,c′ , lc,c′) − Ec′(sc,c′ , lc,c′)) has
maximum degree L and is linear in each variable {as,i, fi,j}.
There are at most

(
|C|
2

)
= |C|(|C|−1)

2 distinct difference terms
whose product must be nonzero. This product P2 has degree
at most |C|(|C|−1)L

2 , and the largest exponent of any variable
is at most |C|(|C|−1)

2 .
The largest exponent of any variable in the product P1P2

is |C|( |C|−1
2 + d). By Lemma 1, P1P2 has positive proba-

bility of being nonzero when values for variables fi,j are
chosen uniformly at random from a field of size greater
than |C|( |C|−1

2 + d). Thus, in any finite field of size larger
than |C|( |C|−1

2 + d), there exists an assignment of values for
variables fi,j such that P1P2 �= 0.

Proof of Theorem 3: Consider a randomized procedure
that simultaneously chooses values for variables fi,j uniformly
at random from a field of size q = γ|C|( |C|−1

2 + d). For each
such assignment of values, it checks whether the resulting
network code is valid for all failure events in C and distin-
guishes among them without monitoring ambiguities; if the
code does not satisfy these properties, the process is repeated
with another randomly chosen set of values. One way to check
if a network code is valid for a failure event is to compute the
coefficient vectors of all links, which takes O(ηIr) time, and
to check whether the coefficient vectors of the terminal links
of each sink have full rank, which takes O(dr2.376) time. To
check if the network code distinguishes between all failure
combinations in C, we can compute Ec for each c ∈ C, which

takes O(|C|ηIr) time in total, and check that they are all
distinct, which takes O(|C|2rt) time.

By Lemma 1, each random assignment of values is success-

ful with probability at least
(
1 − 1

γ

)η

. Since
(

γ
γ−1

)η

tries are
required in expectation, the total expected execution time is

O
((

γ
γ−1

)η

|C|
(
ηIr + dr2.376 + |C|rt

))
.

VI. SIMULATIONS

Since our bounds are pessimistic except for worst-case
networks, we have run simulations to give an idea of actual
performance on random geometric graphs. The simulations do
not attempt to characterize precisely the achievable monitoring
performance, but seek to give an idea of the performance of
random network coding with short code lengths.

Our experiments are run on 15-node random geometric
networks with 2 sources and 2 sinks, generated by scattering
nodes randomly over a unit square and connecting nodes
within range ρ of each other. The parameter values for the
tests are chosen such that the resulting random graphs are in
general connected and able to support the desired connections,
while being small enough for the simulations to run efficiently.
For each network, we use a simple randomized algorithm
to generate acyclic digraphs to disallow the transmission of
information in cycles. Distributed randomized network coding
is run over the resulting network; networks for which we
cannot find a valid solution are discarded.

We repeated this process 1,000 times and generated 923
feasible 15-node random networks with 2 sources and 2 sinks.
We ran 10 trials on each network. We consider two cases: first,
taking the set of possible failure events P as the set of all
failures of individual links; second, taking the set P as the set
of all failures of one or two links. The raw results for these
two cases on the random networks, using a finite field of size
61, are shown as scatterplots in Figures 3 and 4 respectively.
Since we do not determine for each graph which failure events
are distinguishable, P may contain failure events that are in-
distinguishable. Our results thus give a pessimistic estimate of
the probability of distinguishing among distinguishable failure
patterns of one or two links. The probability of unambiguity
when P contains only single link failure events is above 90%
in general, while the corresponding probability of unambiguity
is somewhat lower when P contains failure events involving
up to two links.

The aggregate fitted results for these networks with other
finite field sizes for up to two link failures are shown in Fig-
ure 5. They show that the probability of unambiguity increases,
with diminishing returns, as q increases. The apparent anomaly
for networks with node density higher than 9 is probably
due to experimental error since our sample set contains few
such networks. Repeating the experiments with q = 7917
and q = 40, 009 yielded results almost indistinguishable from
those for q = 61. For these networks, |P| ranges from about
300 (at node density 3) to about 2,700 (at node density 10).
It is apparent from these results that even for q � |P|, the
probability of unambiguity is still relatively high.
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Fig. 3. Scatterplot for 923 15-node networks with 2 sources and 2
sinks for one link failure for q = 61.
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Fig. 4. Scatterplot for 923 15-node networks with 2 sources and 2
sinks for up to two link failures for q = 61.

An increase in the probability of unambiguity with mean
node degree can also be observed. This is because there are
fewer indistinguishable failure patterns of one to two links in
more densely-connected networks.

Experiments with random networks with different numbers
of sources r and number of sinks d exhibited a similar trend.

VII. CONCLUSIONS AND FURTHER WORK

We have shown how information contained in robust distrib-
uted network codes can be used to deduce possible locations
of link failures or losses in a network, without the overhead
of additional probes. We provide worst-case bounds regarding
the relationship between failure ambiguity and the coding field
size, and we characterize this relationship in more benign
networks with experimental simulations. We also bound the
required field size and complexity for designing a robust
network code that distinguishes among a given set of failure
events.

Further work includes extensions to network coding in
other network settings such as wireless and non-multicast. For
networks not using network coding, we seek to explore the
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Fig. 5. Plot of mean probability of ambiguity against mean node
degree for 923 15-node networks with 2 sources and 2 sinks for up
to two link failures for different field sizes q.

potential benefits of using network coding in active probing
schemes.
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