
 

  

  Abstract—We consider the problem of detecting failures for all-
optical networks, with the objective of keeping the diagnosis cost 
low. Compared to the passive paradigm based on parity check in 
SONET, optical probing signals are sent proactively along 
lightpaths to probe their state of health and failure pattern is 
identified through the set of test results (i.e., probe syndromes). 
As an alternative to our previous adaptive approach where all the 
probes are sent sequentially, we consider in this work a non-
adaptive approach where all the probes are sent in parallel. The 
design objective is to minimize the number of parallel probes, so 
as to keep network cost low. The non-adaptive fault diagnosis 
approach motivates a new technical framework that we 
introduce: combinatorial group testing with graph-based 
constraints. Using this framework, we develop several new 
probing schemes to detect network faults for all-optical networks 
with different topologies. The efficiency of our schemes often 
depends on the network topology; in many cases we can show that 
our schemes are optimal in minimizing the number of probes. 

I. INTRODUCTION 
Network management [1] is a crucial but expensive component 
of any network operation whose cost constitutes a significant 
portion of total network cost. Typical network management 
activities include configuration, performance, security, account 
management and fault management. In current networks, fault 
management [2], specifically failure detection and isolation, 
contributes a significant amount of network operating effort. 
Owing to the cost and importance of fault diagnosis, it has 
been an active research topic in various contexts, such as the 
Internet [3-5], wireless networks [6, 7], and optical networks 
[8-10]. In this work, we focus on fault diagnosis for all-optical 
networks. The unique characteristics of all-optical networks 
yield not only technical challenges but also cost-reduction 
opportunity for fault diagnosis, as we explain below.  

All-optical networks promise significant cost benefits such 
that broadband network services can potentially be delivered 
to large populations at much lower cost than today’s 
technologies   [11,12]. The significant cost savings are due to 
optical switching of high data-rate lightpaths at intermediate 
network nodes, thereby reducing electronic processing costs. 
However, all-optical networks are susceptible to various 
physical failures, e.g., fiber cuts, switch node failures, 
transmitter/receiver breakdowns, and optical amplifier 
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breakdowns. These failures can result in the disruption of 
communication, and can be costly to detect and localize within 
the current management framework. Since all-optical networks 
lack parity checks at intermediate nodes as SONET does, 
either optical signal is tapped out at each intermediate node for 
parity check or new mechanisms are needed to diagnose link 
failures. If tapping is indeed done, a lot of cost gains of all-
optical networks will be mitigated. 

 Instead of the passive paradigm based on parity check in 
SONET, we have proposed a proactive fault diagnosis 
paradigm in [8]: optical probing signals are sent along some 
lightpaths to test the health of the network, and probe 
syndromes (i.e., results of the probes) are used to differentiate 
failure patterns. The design of proactive fault diagnosis 
schemes for all-optical networks bears two key objectives: 
(i) detecting faults quickly, and (ii) keeping the diagnosis cost 
low. The importance of objective (i) stems from the current 
SONET standard [13], in which the 50-ms restoration time 
leaves little room for fault detection and localization. This will 
probably be reduced further in future all-optical networks to 
avoid large amount of data loss during a short period of 
communication disruption. Hence, when parts of a network are 
malfunctioning, it is critical to locate and identify these 
failures as soon as possible. At the same time, the cost of fault 
diagnosis has to be kept low such that the cost advantage of 
all-optical networks, compared to traditional optical  networks, 
can materialize. 

We believe that the two design objectives could be tightly 
related to two parameters of proactive fault diagnosis schemes 
(i.e., the number of probes and the number of probing steps1). 
First, the number of probes could serve as the manifestation of 
fault management effort. In particular, each probe requires 
certain amount of effort in both network management/control 
plane (e.g., signaling) and data plane (e.g., transmission and 
detection) that otherwise could be used to generate revenue. In 
addition, each probe results in one bit of management 
information, whose transportation, storage and processing 
consumes additional network resources. Second, under the 
assumption that each step takes approximately equal amount of 
time, the number of probing steps indicates how fast the fault 
pattern could be identified. In this research, we exploit two 
alternative designs for choosing probes (i.e, adaptive probing, 
and non-adaptive probing) to balance these two objectives. 

In adaptive fault diagnosis schemes [8-10, 14], probing 

 
1 One probing step corresponds to a set of parallel probes. 
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signals are sequentially sent to probe the health of the network 
until the failure pattern is identified. Owing to its sequential 
nature, successive probes can be chosen according to previous 
probe syndromes, and thus the number of probes required is 
usually quite small. Indeed, our previous research on adaptive 
fault diagnosis schemes for all-optical networks with 
probabilistic node/link failures [8-10] has shown that the 
average number of probes is lower bounded by the information 
entropy of network states. Based on information theoretic 
insights, we have also developed the run-length probing 
scheme and proved its performance to be within 5% of the 
entropy lower bound. However, the number of probing steps 
might be quite large for some network failure patterns and/or 
in some large networks. 

To keep the number of probing steps small, in this paper, we 
consider an alternative non-adaptive approach [15] to 
diagnosing failures in all-optical networks. Instead of sending 
optical probing signals sequentially, a pre-determined set of 
probing signals are sent in parallel to probe the network state 
of health. In addition, compared to the probabilistic failure 
model (i.e., each link fails independently and no upper bound 
on the number of failures) used in our previous work, we also 
assume a worst-case failure model in that the number of 
simultaneous failures is upper bounded by a constant. Under 
such a framework, the design objective is to minimize the 
number of parallel probes for non-adaptive fault diagnosis 
schemes.  

Our fault detection methods are based on techniques from 
the field of combinatorial group testing (CGT) [16], where 
defected samples are identified through a set of parallel testing 
on different combinations of unknown samples. This field has 
a wide variety of practical applications, such as HIV screening, 
DNA testing, MAC design, and much more [17]. It has also 
been used in network management applications (see, e.g., 
[18]), but only to a limited degree. We believe that CGT is a 
powerful tool that can be used in a wide variety of network 
failure detection contexts, and we hope that our work will 
inspire its use more widely. The present paper considers only 
the context of all-optical networks since their unique 
characteristics lead to a natural application of CGT. In 
particular, the absence of optical-to-electrical conversions at 
intermediate nodes of all-optical networks allows us to probe a 
lightpath of several interconnected links at approximately the 
same amount of effort of probing one single link.  

In this work, we propose a variant of classical CGT in 
which the valid tests are determined by the structure of a 
graph. In the all-optical network context, this graph 
corresponds to the network topology, and the constraint on 
valid tests is due to the fact that lightpaths can only traverse a 
set of interconnected edges.  To the best of our knowledge, 
this is a novel framework for CGT2, and we believe it to 
deserve further study. We formally analyze the number of tests 
needed for certain interesting classes of graphs, and even 

 
2 There is another notion of group testing on graphs [16, Chapter 12], 

although it is completely unrelated to the framework that we propose herein. 

arbitrary graphs (with performance depending on the 
topology). In some cases, we can give matching upper- and 
lower-bounds on the number of tests needed. Our fault 
diagnosis schemes have a common theme, which suggests a 
practical rule-of-thumb for efficient fault diagnosis schemes: a 
fault-free sub-graph in the network topology should be 
identified, and used as a “hub” to diagnose other failures in the 
network.  

The remainder of this paper is organized as follows. In 
Section II, we formulate the non-adaptive fault diagnosis 
problem. In Section III, we reinterpret this problem as the 
combinatorial group testing problem on graphs. In Section IV, 
we describe algorithms and lower bounds for various classes 
of important network topologies: linear networks, complete 
networks, grid networks. In Section V, we consider trees and 
arbitrary graphs, and obtain efficient algorithms when the 
diameter is small and/or the graph does not have small cuts. 
Section VI concludes this paper. 

II. NON-ADAPTIVE FAULT DIAGNOSIS SCHEMES FOR ALL-
OPTICAL NETWORKS  

A. Permanent Link Failure Model 
In this paper, all-optical networks are abstracted as 

undirected graphs. An undirected graph G  is an ordered pair 
of sets ( ),V E , where V  is the set of nodes, and E  is the set 
of edges, which are unordered pairs of nodes. The number of 
nodes is n  and the number of edges is m .  The terms links 
and edges are used interchangeably in this paper.  

In our model, we assume links fail and nodes do not. 
Insights from this limited case could facilitate to address fault 
diagnosis for both node and link failures. In addition, we 
consider a permanent failure model, i.e., an edge is either 
failed or intact, and the failure status does not change over the 
period of diagnosis. Since it is unlikely that numerous edge 
failures happen simultaneously, we assume that the number of 
edges failures is upper bounded by a constant ( )s m≤  at any 
instant. In this paper, we generally allow s  to be arbitrary, 
although the case of 1s =  is often central.     

B. Non-Adaptive Fault Diagnosis Scheme 
In this paper, we diagnose network failures by sending 

(a)           (b) 
Fig. 1. A walk over undirected graph can be implemented with a 
lightpath in a practical all-optical network.  
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optical probing signals along certain lightpaths to determine 
the network’s state. We illustrate this probing model in this 
sub-section. 

A probe in the network corresponds to a walk (a sequence 
of adjacent edges, allowing repetitions) in the corresponding 
graph. Physically, each probe corresponds to a lightpath in the 
network. For example, a walk in the graph can constitute a 
sub-tree in the graph as in Fig. 1(a), which can be translated to 
a lightpath in practical all-optical networks as in Fig. 1(b). In 
Fig. 1(a), the network is abstracted as undirected graph, whose 
nodes correspond to the optical switches and links correspond 
to the optical fibers. In practical all-optical networks, each link 
represents two parallel optical fibers transmitting signals in 
opposite directions. As shown in Fig. 1(b), we can replace 
each link in Fig. 1(a) by two directed arcs in opposite 
directions. In this way, each walk can be implemented as a 
probe by sending a diagnosis signal along the directed 
lightpath, as illustrated in Fig. 1(b). Moreover, to avoid the 
potential fiber loop lasing effect [25], a physically feasible 
probe must satisfy one additional property: each network link 
is traversed at most once in each direction. We call such a 
probe a permissible probe. The probes generated by our 
algorithms in Section IV and V are all permissible probes. 

 When an optical signal is sent along a given lightpath, the 
signal will arrive at the destination if all edges along the 
lightpath are intact. Otherwise, if there is at least one failed 
edge on the lightpath, the signal never reaches the destination 
(or the quality of the signal is unacceptable). The result of each 
probe is called the probe syndrome, denoted as 0r =  if the 
probing signal arrives successfully; and 1r =  otherwise.  

A non-adaptive fault diagnosis scheme is a method for 
sending optical signals (i.e., probes) along a set of pre-
determined lightpaths in the network such that up to s  edge 
failures can be identified by examining the set of probe 
syndromes. For example, as shown in Fig. 2, both sets of 
probes can identify any single edge failure. Although both 
schemes can identify any single edge failure, one would prefer 
Scheme (b) to Scheme (a) since Scheme (b) uses less probes 
than Scheme (a). Indeed, to keep the fault diagnosis low, we 

would like to develop efficient non-adaptive fault diagnosis 
schemes using the minimum number of probes.  

III. COMBINATORIAL GROUP TESTING (CGT) ON GRAPHS 
In this section, we present theoretical background on 

combinatorial group testing (CGT) and its connection to the 
non-adaptive fault diagnosis problem.  

The general CGT problem is defined as follows. Consider a 
set S  of m  elements, each of which is either intact or failed. 
The maximum number of failed elements is bounded by s , 
which is smaller than m . We are allowed to perform group 
tests of the following form: specify a subset t S⊂ , run the test 
on t , and learn if there is at least one failed element in t . Our 
objective is to discover all faulty elements, while using the 
smallest possible number of group tests. It has been shown that 
the non-adaptive combinatorial group testing problem is 
equivalent to the superimposed code problem [20] in 
Information Theory.  

Let ( ),T m s∗  denote the minimum number of non-adaptive 
group tests needed to locate up to s  failed elements in a set of 
size m . It is obvious that ( , )T m s m∗ ≤ , since we can test each 
element individually. The total number of failure patterns 

is ( )
0

,
s

k

m
N m s

k=

 
=  

 
∑ , so the minimum number of probes 

needed to distinguish between these patterns is at least 
( )2log ,N m s .  Hence, ( )2log , ( , )N m s T m s m∗≤ ≤ . In particular, 

if 1s = , the minimum number of non-adaptive probes needed 
is bounded as follows: 

( )2 ( ,1)log 1 T m mm ∗≤ ≤+ .        (1) 
For arbitrary s  and sufficiently large m , it has been shown 
that ( ),T m s∗  can be bounded3 as, 

( ) ( )
2

2log , log
log

s m T m s s m
s

∗ 
Ω ≤ ≤ Ο 

 
,     (2) 

where the upper bound comes from [20] and is essentially 
based on a simple random superimposed coding argument, and 
the lower bound is due to D’yachkov and Rykov [21].  

Any non-adaptive combinatorial group testing algorithm 
with ( ),T m s  tests can be expressed as a testing matrix C  with 

( ),T m s  rows and ( ),N m s  columns, where each row 

 
3 ( ) ( )( )f n g n= Ο  means that there exists a constant c  and integer N  such 

that ( ) ( )f n cg n≤  for all n N> . ( ) ( )( )f n g n= Ω  means that  ( ) ( )( )g n f n= Ο . 

( ) ( )( )f n g n= Θ  means both ( ) ( )( )f n g n= Ο  and ( ) ( )( )f n g n= Ω .  

 0 1 2 3 4 5 6 7 
1 0 0 0 0 1 1 1 1 
2 0 0 1 1 0 0 1 1 
3 0 1 0 1 0 1 0 1 

Fig. 3. The diagnosis matrix for the logarithmic testing procedure 
(LTP) with m = 7. Columns correspond to elements to be tested, and 
rows correspond to tests. 

 

1 

A 

B C

2 

 
A 

B C 

1 

2 

3 

 AB BC CA Ø 
1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 

 AB BC CA Ø 
1 1 1 0 0 
2 0 1 1 0 

(a)           (b) 
Fig. 2. Two non-adaptive fault diagnosis algorithms for the 3-node ring 
network.   
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corresponds to a group test and each column corresponds to a 
failure pattern. We set 1

ij
c =  if group test i would fail under 

failure pattern j ; otherwise, 0ijc = . As a simple illustration, 
consider the case of 1s =  and 7m = ;  the testing matrix is 
shown in Fig. 3. In this case, the algorithm performs three 
group tests. The elements involved in these tests are 
respectively {4, 5, 6, 7}, {2, 3, 6, 7} and {1, 3, 5, 7}. If 
element i  has failed, the results of the tests are identical to 
column i , which is the binary representation of i . If no 
element has failed, all tests return zero. Thus ( )7,1 3T = , which 
corresponds to the lower bound of (1). 

A similar construction yields an efficient procedure to find a 
single failed element in any group of m elements. This 
procedure plays an important role in the fault diagnosis 
algorithms of Section IV and V. The construction involves a 
matrix with  )1log( +m  rows (corresponding to the tests) and 
m+1 columns (corresponding to the m+1 possible failure 
patterns). Column 0 corresponds to the scenario in which all 
elements are intact, and column i  ( 1, ,i m= ) corresponds to 
the scenario in which element i  has failed. We set column i of 
the matrix to be the binary representation of i . Each row 
corresponds to a group test which tests the subset of objects 
which have a 1 entry in the row of the diagnosis matrix. It is 
easy to see that if item i has failed then the outcome of the tests 
will be precisely the binary representation of i. For 
convenience, we refer to this procedure as the logarithmic 
testing procedure (LTP). 

The non-adaptive network fault diagnosis problem can be 
formulated as a non-adaptive combinatorial group testing 
problem, under some additional constraints. In particular, in 
our formulation of the non-adaptive fault diagnosis problem, 
there are up to s  edge failures among the set of m  network 
edges. A set of permissible probes are sent concurrently to test 
whether any edge of the corresponding walk has failed. It 
follows that the non-adaptive fault diagnosis problem is 
equivalent to a non-adaptive combinatorial group testing 
problem, under the constraint that the group test can be 
performed only if it corresponds to a permissible probe. We 
call this variant of CGT the problem of combinatorial group 
testing on graphs. We address the non-adaptive fault diagnosis 
problem by proving several results concerning combinatorial 
group testing on graphs. 

IV. EFFICIENT FAULT DIAGNOSIS SCHEMES IN 
CERTAIN NETWORK CLASSES  

In this section, we present efficient non-adaptive fault 
diagnosis algorithms for certain classes of network topologies, 
and we characterize the minimum number of non-adaptive 
probes to identify up to s  failed edges in the network topology 
G . This quantity is denoted ( ),L G s∗  . The algorithms that we 
present can also be considered algorithms for combinatorial 
group testing on graphs. 

A. Networks with Linear or Ring Topologies  
Linear topologies are used mostly for distribution networks 

in optical networks.  Ring topologies are also widely used and 
are largely similar to linear networks, from a fault diagnosis 
perspective. 

Consider a linear network consisting of n  nodes, indexed 
by integers 0,1, , 1n − . The edges are { }1, +ii  for 

20 −≤≤ ni . For linear networks, we can establish the 
following result.  

Theorem 1: The minimum number of non-adaptive probes to 
locate up to a single edge failure in a linear network of n  
nodes, i.e., ( ), 1L G s∗ = ,  is precisely 2n   .  
Proof: 

Let t  be an arbitrary probe in a linear network. Let a  the 
node with smallest index that is contained in t , and b  the 
node with largest index contained in t . Note that probe t  is 
equivalent to a path from node a  to node b . We use the 
notation [ ],t a b=  and call ( )a b  the head (tail) of t .  

First we establish the lower bound. Let { }1, , lT t t=  be a 
set of probes that can detect a single edge failure. Suppose 
2l n< ; then there exists a node i  that is neither a head or a 
tail of any test jt . Considering the following two cases: 

• 0 or 1i n= − : In this case, no probe jt  includes an edge 
that is adjacent to node i . Therefore, the probe 
algorithm cannot identify whether the edge adjacent to 
node i  has failed or not.  

• 1 2i n≤ ≤ − :  In this case, every test jt  either contains 

both edge { }ii ,1−  and edge { }1, +ii , or contains 
neither. Therefore, the probe algorithm cannot 
distinguish between the case when edge { }ii ,1−  has 
failed and the case when edge { }1, +ii  has failed.  

In both cases, we arrive at a contradiction and conclude that 
2l n≥     is a necessary condition.  

Now, we proceed to the upper bound. Consider the probe 
test { }jt , where , 2jt j j n=  +      for 0 2 1j n≤ ≤ −   . 

Clearly, every edge e  belongs to some test jt .  Therefore all 

we need to show is that, for every pair of edges 1 2e e≠ there is 
a test jt  that contains exactly one of the edges. This will imply 
that, given all the probe syndromes, one can locate the faulty 
edge or decide that no failure has occurred. Let [ ]1 1 1,e t h=  

and [ ]2 2 2,e t h= . Without loss of generality, we assume 

1 2h t≤ .  Consider the following two cases: 

• 1 2h n≥    : In this case, the test 1 12 ,h n h −      

contains 1e  but not 2e . 

• 1 2h n<    : In this case, either the test 1 1, 2h h n +      

or the test  [ ]1,12/ −− nn  contains 2e  but not 1e .  
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This completes the proof.  Q.E.D. 
This ( )nΘ  bound for linear networks is much larger than 

the lower bound of ( )log n  in (1). Intuitively, the low 
connectivity of the linear/ring network topology restricts the 
possible tests to such an extent that testing becomes inefficient. 
Note that with a linear lower bound, s  becomes irrelevant (we 
can handle any s  with 1m n= −  probes). It can be shown that 
the same result can be proved for ring networks by simply 
cutting the ring network into a line network at any node. 

B. Networks with Fully-Connected Topologies  
This sub-section deals with the non-adaptive fault diagnosis 

problem for all-optical networks whose topologies are fully-
connected (i.e., complete graphs). For a topology of n  nodes, 
denoted nK , each node is connected to all other nodes in the 

network, resulting in ( )1 2m n n= −  edges in the network. 
The case 5n =  is illustrated in Fig. 4. For such a network, we 
propose the following non-adaptive fault diagnosis algorithm. 

Algorithm 1: Testing for a single failure in complete networks 
Step 1a:  
 Arbitrarily pick a node v  and define its neighborhood sub-
graph ( )B v  as the 1n −  edges that connect it to all other 
nodes. As shown in Fig. 5, the neighborhood is a star centered 
at node v . 
Step 1b: 
 Perform the LTP on the sub-graph ( )B v . Each LTP test 
becomes a valid probe due to the star topology. 
Step 2: 
 Perform the LTP on the subgraph obtained by deleting node 
v . The sub-graph ( )B v  is used to route the probes as needed. 

We now discuss the correctness of Algorithm 1. If the 
network topology did not impose any constraints on the choice 
of probes then (that is, if an arbitrary subset of edges formed a 
permissible probe) then one could directly apply the LTP 
procedure, using the individual edges as elements to be tested. 
Unfortunately, the topology restricts our choice of probes to 
sequences of adjacent edges, so the probes are chosen more 
carefully. At a high level, the approach is first to identify a 
fault-free sub-graph, then to use this sub-graph to route the 
probes for an LTP procedure. Algorithm 1 uses two LTPs, of 
size ( )1n −  and size ( )( )1 2 2n n− −  respectively, and 

therefore the total number of probes required is )(log nΟ . 
Combining this result with the lower bound of (1), we have 
established our main result for complete networks as follows. 

Theorem 2: )(log nΘ  probes are necessary and sufficient to 
identify a single edge failure in a fully connected network with 
n  nodes. 

C. Networks with 2-D Grid Topologies 
The sub-section considers two-dimensional grid networks of 

size nn × . Such structures are also commonly used as 
interconnection networks [22]; in the context of all-optical 
networks, they are sometimes called Manhattan networks. 
Fig. 5 illustrates the case of n = 25. The following algorithm 
gives an optimal non-adaptive fault diagnosis scheme for 2-D 
grids. 

Algorithm 2: Testing for a single failure in 2-D grid networks 
Step 1a:  
 Test all edges in column 1 using a single probe. 
Step 1b: 
 Perform the LTP on the edges in column 1 using edges 
between column 1 and column 2 and edges in column 2 to 
route the probes as necessary. Fig. 5(b) illustrates a single 
probe to test edge 1 and edge 3 in column 1, numbering the 
edges in increasing order from top to bottom. 
Step 2a: 
 Test all edges in row 1 using a single probe. 

(a)           (b) 

 
  

  

  

  

  

 

 
  

  

  

  

  

Fig. 5. (a) A 2-D grid with 25 nodes. If at most 7 failures are allowed, 
then Theorem 4 shows that the failure of edge e cannot be detected 
efficiently by non-adaptive tests. (b) A single probe to test edge 1 and 
edge 3 on column 1. (c) A single probe to test column 2 and column 4. 
(d) Single probes to test the 2nd edge on all rows and the 4th edge on all 
rows.

(c)           (d) 

 

e

Fig. 4. The complete graph with 5n = , where node v  and its 
neighborhood are used to route probes. 

 

v 
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Step 2b: 
Perform the LTP on the edges in row 1 using edges between 

row 1 and row 2 and edges in row 2 to route the probes as 
necessary. (This is similar to Step 1b.) 
Step 3a: 
 Perform the LTP on row 2 through row n . This step 
differs from Steps 1b and 2b in that an entire row is treated as 
a single element for testing purposes. The edges in column 1 
are used to route between rows. Fig. 5(c) illustrates a single 
probe to test row 2 and row 4.  
Step 3b: 

Perform the LTP on the individual row edges (the elements 
are nss ,,1 , where { }njjisi ≤≤= 2:  row of edge th ). 

The column edges and the edges of row 1 are used to route 
between rows. Fig. 5(d) illustrates a single probe to test the 2nd 
edges in all rows and the 4th edge in all rows. 
Step 4a:  
 Perform the LTP on column 2 through column n , in a 
manner analogous to Step 3a. 
Step 4b: 

Perform the LTP on the column edges, in a manner 
analogous to Step 3a. 

The correctness of Algorithm 2 is shown in Appendix A. As 
with Algorithm 1, the strategy is first to identify a fault-free 
sub-graph (either column 1 or row 1), and then to use the fault-
free sub-graph to route the necessary probes required by the 
LTPs. Algorithm 2 uses only 6 LTPs, each over a set of n  
elements, plus two additional probes. It follows that the total 
number of probes used is only )(log nΟ . Combining this result 
with the lower bound of (1), we have established our main 
result for 2-D grid networks as follows. 

Theorem 3: )(log nΘ  probes are needed to identify a single 

edge failure in a 2-D grid network of size nn × .  

In general, if multiple failures can occur simultaneously, 
more probes are needed. This phenomenon can be intuitively 
explained as follows. An edge e  can be isolated by a small cut 
which separates it from the rest of the network. If all the edges 
of this cut have failed, the only way to test whether edge e  has 
also failed is to probe edge e  by itself.  Theorem 4 explains 
this phenomenon formally. 

Theorem 4: If at least 7 failures can occur, )(nΘ  probes are 
needed to identify all the edge failures in a 2-D grid network.  
Proof: 

Consider Fig. 5(a), in which the 6 edges adjacent to edge e  
have failed. The only way to test whether edge e  has also 
failed is to probe edge e  itself. However, the identity of edge 
e   is not known when the algorithm chooses its probes, due to 
the non-adaptive nature of the algorithm. Therefore, the 
algorithm can only know whether edge e  has also failed if it 
performs )()( nm Ω=Ω  probes. Combining this with the upper 

bound of (1) completes the proof.  Q.E.D. 

V. EFFICIENT DIAGNOSIS WITH ARBITRARY TOPOLOGIES  
We now provide efficient testing algorithms for arbitrary 

graphs and trees. The algorithms depend on the diameter4 
and/or the edge-connectivity5 of the graph. On practical 
networks, we expect the diameter to be relatively small, and 
the connectivity to be large (for failure resilience). 

A. Networks with Well-Connected Topologies 
As shown in Section IV, identifying multiple failed edges in 

some networks (e.g., 2-D grid networks) requires 
exponentially more probes than required for a single failed 
edge. This high complexity is caused by edge failures that can 
hide behind small cuts. One might conjecture that this 
phenomenon does not occur in graphs with sufficiently high 
connectivity.  The following theorem proves such a result. 

Theorem 5: If a graph G  contains 1s +  edge-disjoint 
spanning trees6, the minimum number of non-adaptive probes 
required to identify up to s  failed edges, i.e., ( , )L G s∗ , is 
bounded by * *( , ) ( , ) ( ( , ))T m s L G s s T m s∗≤ ≤ Ο ⋅ , where ( ),T m s∗  
is as defined in Section III. In particular, this holds in a 
network topology with edge-connectivity at least ( )2 1s + . 
Proof: 

The lower bound is immediate since the non-adaptive fault 
diagnosis problem is simply the combinatorial group testing 
problem with an additional restriction on the feasible probes. 

The Tutte–Nash-Williams Theorem [23,24] implies that a 
network with edge connectivity of at least  ( )2 1s +  has at least 

1s +  edge-disjoint spanning trees. It follows that at least one 
of the spanning trees, call it TG , contains no edge failures. A 
single probe suffices to test if all edges of a tree are intact, 
therefore we can identify TG  using only 1s +  probes. For 

every non-tree edge { },u v , we create a virtual node 'v  and 

replace { },u v  with { }, 'u v . After this transformation, all non-

tree edges are at the bottom of TG , i.e., they have height zero. 
We now think of these non-trees edges as the elements to be 

tested, and we can use any CGT algorithm to do so. Pick a root 
for TG  arbitrarily; we think of the CGT algorithm as running 
at this root node. By our choice of TG , the path from the root 
to each of the non-tree edges contains no failures. The CGT 
algorithm produces a sequence of tests, each of which specifies 
a set of elements to test. For each such set, we send a probe 
from the root node which traverses the tree and visits only the 
non-tree edges in the specified set. Therefore a probe fails if 
and only if one of the elements in the corresponding CGT test 
has failed. The results of these probes are returned to the CGT 
 

4 The diameter of a graph is the maximum shortest distance between any 
two nodes in the graph. 

5 Edge-connectivity means the minimum cardinality of any subset of edges 
whose removal disconnects the network.  

6 A spanning tree of a graph is an acyclic sub-graph containing all nodes. 
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algorithm, and it identifies the failed edges. 
To summarize, the optimal non-adaptive CGT algorithm can 

be applied to the set of non-tree edges, using the edges of TG  
to route from the root to the non-tree edges. This approach 
uses ( )( ),T m s∗Ο  probes. Since we have to perform these 

tests for all 1s +  trees, ( )( ),s T m s∗Ο ⋅  probes are sufficient. 

Q.E.D. 

We now illustrate this theorem by comparing it to our 
earlier results. A 2-D grid network has edge-connectivity 2, 
since the corner nodes have degree only 2. Therefore Theorem 
5 yields no result for 2-D grids. On the other hand, consider a 
2-D torus, i.e., a grid in which the edges wrap around. Such a 
graph is shown in Fig. 6(a). Any 2-D torus has edge 
connectivity 4, so it has two disjoint spanning trees. An 
example of two spanning trees in a 2-D torus is shown in 
Fig. 6(b). As consequences of Theorem 5, we have the 
following two corollaries.  

Corollary 1: In a 2-D torus with n edges, )(log nΘ  probes are 
sufficient to identify a single edge failure.  
Corollary 2: In a complete (i.e., fully connected) network with 
n nodes, ( )( ),s T m s∗Ο ⋅  probes are sufficient to identify up to 

( )3 / 2s n≤ −  failed edges.  

Theorem 5 also suggests the following general paradigm for 
applying classical CGT procedures (such as LTP) to problems 
on graphs. 
Preprocessing: 
1. Identify 1+s  edge-disjoint connected sub-graphs. Each 

sub-graph will be used in turn as a “hub” to reach the edges 
of the graph outside itself. 

2. For each hub, use a CGT algorithm to generate tests for the 
set of edges outside it. 

Probing the network non-adaptively: 
3. For each hub, verify that its edges are intact. 
4. For each hub, each test from Step 2 is implemented by a 

permissible probe as follows: the probe traverses the interior 
of the hub, and steps out only onto the neighboring edges 
that are to be tested. Note that, assuming the hub is intact, 
the probe fails if and only if one of the edges to be tested has 
failed. 

Diagnosis: 
5. Since there are at most s  failures and 1+s  edge-disjoint 

hubs, at least one contains no failed edge. Such a hub can be 
identified based on the results of Step 3. All other hubs are 
ignored by the diagnosis algorithm. 

6. Run the CGT algorithm on the results of Step 4 for the 
good hub, thus identifying all failed edges.  

It can be seen that Algorithm 1 is a special case of this general 
procedure with 1s = . Similar fault diagnosis algorithms can be 
designed for other regular networks of degree d .  

B. Networks with Tree Topologies 
We now consider networks with tree topologies, and obtain 

bounds in terms of the diameter7. Note that the depth, the most 
commonly used measure for trees, is within a factor of 2 of the 
diameter, for any choice of a root. 
Theorem 6: For any tree TG , when 1=s , we have: 

2

( log )
( log ) ( ,1) min

( log )
T D n

D n L G
D n

∗ Ο ⋅ 
Ω + ≤ ≤  Ο + 

,    (3) 

where D  is the diameter of the graph TG . 

The proof of Theorem 6 is given in Appendix B. 

C. Networks with Arbitrary Topologies 
In this sub-section, we address the fault diagnosis problem 

for networks with arbitrary topologies. The main result is 
summarized as follows.  
Theorem 7: If a graph G  contains s  edge-disjoint spanning 
trees sTT ,...,1 , then the minimum number of non-adaptive 
probes to identify up to s  failed edges is upper bound by 

*

1

( , ) ( , ) ( , 1)
s

i
i

L G s s T m s L T s∗ ∗

=

 ≤ Ο ⋅ + = 
 

∑ .    (4) 

Proof: 
For each chosen spanning tree, we perform the following 

probes independently: 
1. Probe the entire spanning tree. 
2. Assuming there is exactly one failure in the edges of the 

spanning tree, use ( , 1)iL T s∗ = probes to find the failure. 
3. Assuming there is no failure inside the spanning tree, use it 

as a hub to diagnose at most s  failures among the remaining 
edges. This needs ( ),T m s∗  probes. 
The diagnosis algorithm proceeds as follows. If one of the 

spanning trees contains no failure (this can be inferred from 
Step 1), the information gathered in Step 3 for this spanning 
tree will solve the problem. Otherwise, each tree contains 
exactly one failed edge. Step 2 identifies a unique failed edge 
inside each spanning tree.  Q.E.D. 

Theorem 7 implies an upper bound for arbitrary graphs as 
follows. 

 
7 The diameter of a graph is the maximum shortest distance between any 

two nodes in the graph.  

Fig. 6. (a) A 2-D torus of 4x4. (b) Two edge-disjoint spanning trees 
contained in the 2-D torus. 

  

(a)           (b) 
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Corollary 3: For an arbitrary graph G  and 1=s , we have: 

 2( ,1) ( log )L G D n∗ ≤ Ο + ,      (5) 

where D  is the diameter of the graph. 
Proof: 

Choose the spanning tree to be a shortest path tree from an 
arbitrary starting node. This guarantees that the depth of the 
tree is at most the diameter of G . It follows from Theorem 6 
that ( )2( , 1) logiL T s D n∗ = = Ο +  and from the LTP that 

( ), 1 logT m s n∗ = = .   Q.E.D. 

VI. CONCLUSION 
In this paper, we have considered the fault diagnosis 

problem for all-optical networks. We focused on a proactive 
fault diagnosis framework, in which a set of probes are sent 
along lightpaths to test whether they have failed; the network 
failure pattern is identified using the results of the probes. As 
an alternative to our previous adaptive design, we proposed a 
non-adaptive probing design, where the set of pre-determined 
probes are sent in parallel so that the number of probing steps 
is always one. The key objective of our design is to minimize 
the number of probes sent in parallel, so as to keep the fault 
diagnosis cost low. 

The non-adaptive fault diagnosis problem for all-optical 
networks is equivalent to the combinatorial group testing 
problem on graphs. In the latter problem, probes can only be 
sent over walks over the graph, and therefore such probes 
correspond to lightpaths in all-optical networks. In this 
framework, we developed efficient fault diagnosis algorithms 
(some of them are optimal in achieving the lower bound) for 
different classes of network topologies, and obtained upper 
and/or lower bounds on the number of non-adaptive probes 
needed. The efficient non-adaptive fault diagnosis algorithms 
that we developed share a common theme: a fault-free sub-
graph should be identified in the network and serve as a hub to 
route other necessary probes to diagnose failures in the 
network.  

Although this research was presented in the context of all-
optical networks, we believe that our methods based on 
combinatorial group testing on graphs can be employed in 
other network contexts to solve fault diagnosis problems.  

APPENDIX 

A. Correctness of Algorithm 2 
The correctness of Algorithm 2 can be established as 

follows. 
• Suppose that the edge failure happens in column 1. This 

fact will be uncovered in Step 1a. The edges in all other 
columns and in all rows are intact, and therefore it is 
valid to use them for routing in Step 1b. It follows that 
Step 1b correctly performs the LTP on the edges of 
column 1 and identifies the edge failure. 

• Suppose that the edge failure happens in row 1. A 

similar argument shows that Step 2 identifies the edge 
failure. 

• Suppose that the edge failure happens on the ith edge in 
row 2j ≥ . All column edges are intact, and can be 
used to route probes in Step 3a. It follows that Step 3a 
correctly performs the LTP on all rows and identifies 
the row containing the edge failure. The edges of row 1 
are intact, and can be used for routing probes in Step 3b 
to identify the edge failure. 

• Suppose that the edge failure happens on the ith edge in 
column 2j ≥ .  A similar argument shows that Step 4 
identifies the edge. 

B. Proof of Theorem 6 for Tree Topologies 
For the proof, we fix an arbitrary root. First consider the 

lower bound. The )(lg nΩ bound is inherited from the CGT 
lower bound of (1). The ( )DΩ  bound follows from the lower 
bound for linear networks of Theorem 2, as follows. Consider 
only the path from the root to the deepest leaf, which has 
length at least / 2D . By truncating every probe to its 
intersection with this path, we obtain a solution to the problem 
on the path (a linear network). 

We now show the upper bound of ( lg )D nΟ ⋅ . This 
dominates in the case of trees of sub-logarithmic depth (which 
necessarily have high degree). The strategy is quite simple. For 
each depth [0, 1]d D∈ − , we do the following: 
1. Probe the sub-tree containing the root and all nodes up to 

depth d . 
2. Assuming that the failed edge is at level 1+d , use the sub-

tree of depth d  as a hub to test nodes at depth 1+d . 
The diagnosis algorithm first looks at probes of type 1, and 
determines the level at which the failure occurred. Then, it 
uses the probes of type 2 made at the relevant level. 

The problem with this direct approach is that it involves a 
CGT step at every level of the tree, which is potentially 
wasteful when the tree has depth much larger than nlg . To 
handle unbalanced trees more efficiently, we use a technique 

Fig. 7. An illustration of the heavy-light decomposition. Preferred paths 
at different depths are labeled with different colors and indexes.
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known as the heavy-light decomposition. 
Define the weight of a node to be the number of nodes 

under it. For each non-leaf node, define a heavy edge to go 
from the node to its heaviest child. Preferred paths are defined 
as the maximal paths in the graph containing only heavy edges. 
For convenience, we will also consider the light edge 
immediately above a preferred path to be a part of the path. 
Thus, all edges of the tree are in a preferred path. 

For each edge, its light depth is the number of light edges on 
the path from the edge to the root. All heavy edges in a 
preferred path have the same light depth, so we can also talk 
about the light depth of a preferred path. A standard argument 
shows the light depth is always (lg )nΟ , because each time we 
follow a light edge, the number of nodes under the current 
node decreases by at least a factor of 2. An example of heavy-
light decomposition is illustrated in Fig. 7. 

Our solution performs the following probes: 
1. For each depth [0, 1]d D∈ − , probe the sub-tree containing 

the root and all nodes up to depth d . 
2. For each light depth : 

A. Probe the sub-tree containing all preferred paths up to 
light depth . 

B. Under the hypothesis that the sub-tree does not contain 
a failure, use it as a hub to test the preferred paths at 
light depth 1+ . Such a preferred path is viewed as a 
single element for the CGT algorithm; each probe 
either includes all edges in the path or none. 

The diagnosis algorithm works as follows. By examining data 
from Step 1, it determines the depth of the failed edge. Then, it 
only needs to find out the preferred path containing the failure. 
From the data of Step 2A, one can gather the light depth of the 
failure. Finally, the analysis only considers the relevant hub 
among the data from Step 2B.  
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