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Abstract—We extend the computation and information sharing
capabilities of networked robotics by proposing a cloud robotic
architecture. The cloud robotics architecture leverages the com-
bination of a virtual ad-hoc cloud formed by machine-to-machine
(M2M) communications among participating robots, and an
infrastructure cloud enabled by machine-to-cloud (M2C) com-
munications. Cloud robotics utilizes elastic computing models, in
which resources are dynamically allocated from a shared resource
pool in the cloud, to support task offloading and information
sharing in robotic applications. We propose communication pro-
tocols, and several elastic computing models to handle different
applications. We discuss the technical challenges in computation,
communications and security, and illustrate the potential benefits
of cloud robotics in several applications.

Index Terms—robotics, elastic computing, cloud computing,
and machine-to-machine communication

I. INTRODUCTION

Robotic systems have brought significant economic and so-

cial impacts to human lives over the past few decades [1]. For

example, industrial robots (especially robot manipulators) have

been widely deployed in factories to do tedious, repetitive, or

dangerous tasks, such as assembly, painting, packaging, and

welding. These preprogrammed robots have been very suc-

cessful in industrial applications due to their high endurance,

speed, and precision in structured factory environments. To

enlarge the functional range of these robots or to deploy

them in unstructured environments, robotic technologies are

integrated with network technologies to foster the emergence

of networked robotics.

A network robotic system refers to a group of robotic

devices that are connected via a wired and/or wireless commu-

nication network [2]. Networked robotics applications can be

classified as either teleoperated robots or multi-robot systems.

In a teleoperated robot, a human operator controls or manipu-

lates a robot at a distance by sending commands and receiving

measurements via the communication network. Application

examples include remote control of a planetary rover and

remote medical surgery. In a multi-robot system, a team of

networked robots complete a task cooperatively in a distributed

fashion by exchanging sensing data and information via the

communication network. Examples include cooperative robot

manipulators, a team of networked robots performing search
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Fig. 1. A team of networked robots where each robot communicates with
neighboring robots.

and rescue, and a group of micro satellites working coopera-

tively in a desired formation.

However, networked robotics, similar to standalone robots,

faces inherent physical constraints as all computations are

accomplished in the robotic network, and information access

is restricted to the collective storage of the network. With

the rapid advancement of wireless communications and recent

innovations in cloud computing technologies, some of these

constraints can be overcome through the concept of cloud

robotics, leading to more intelligent, efficient and yet cheaper

robotic networks. In this paper, we describe a cloud robotics

architecture, some of the technical challenges, and its potential

applications. Some preliminary results on optimal operation of

cloud robotics are also presented.

The rest of the paper is organized as follows. In Section

II, we outline various challenges and constraints in networked

robotics. In Section III, we describe the architecture of our

proposed cloud robotics, and elaborate on two key enabling

sub-systems. Section IV addresses technical challenges in de-

signing and operating a cloud robotics architecture. In Section

V, we highlight a few important applications in robotics that

will benefit from our proposed cloud robotics. We conclude

and summarize this paper in Section VI.

II. CHALLENGES IN NETWORKED ROBOTICS

Networked robotics, especially the multi-robot systems as

illustrated in Figure 1, distributes the workload of sensing, ac-

tuating, communication, and computation among the group of
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participating robots. It has achieved great success in industrial

applications, intelligent transportation systems, and security

applications. However, the advancement of networked robotics

is restricted by resource, information, and communication

constraints inherent in the existing framework. We discuss

these constraints in detail in this section.

A. Resource Constraints

Although a robot can share its computation workload with

other units in the network, the overall effectiveness of the

robotic network is limited by each robot’s resources, including

onboard computers or embedded computing units, memories,

and storage space. Physically, these onboard computing de-

vices are restricted by the robots’ size, shape, power supply,

motion mode, and working environment. Once the robots are

designed, built and deployed, it is technically challenging to

change or upgrade their resource configurations.

B. Information and Learning Constraints

The amount of information a robot has access to is con-

strained by its processing power, storage space, and the

number and type of sensors it carries. Networked robotics

allows the sharing of information amongst robots connected by

a communication network so that a global task can be solved

or computed cooperatively using the whole network. However,

networked robotics is constrained by the information observed

or computed by robots in the network, and by the examples

or scenarios that the network encounters, and hence limiting

its ability to learn. A robotic team learning to navigate may

perform very well in a static environment, where all obstacles

can be mapped out with an increasing accuracy over time. On

the other hand, the learning process has to be repeated once

the environment changes or the robotic team is placed in a

new unfamiliar environment. The map databases maintained

by the robotic team is also limited by the collective amount

of storage space (including memory and disk) the team has.

C. Communication Constraints

Common protocols for machine-to-machine (M2M) com-

munications include proactive routing, which involves the

periodic exchange of messages so that routes to every pos-

sible destination in the network is maintained [3], and ad

hoc routing, which forms a dynamic route to a destination

node only when there is a message that needs to be sent

[4]. Proactive routing incurs high computation and memory

resources in the route discovery and maintenance process. Ad

hoc routing protocols suffer from high latency as a route has

to be established before a message can be sent, and are not

practical if the network topology is highly dynamic. These

drawbacks are significant in mobile robotic networks, and may

lead to severe performance degradation.

D. From Networked Robotics To Cloud Robotics

Networked robotics can be considered as an evolutionary

step towards cloud robotics, i.e., cloud-enabled networked

Fig. 2. System architecture for cloud robotics: robots are interconnected via
M2M communications and also connected to a cloud infrastructure.

robotics, which leverages emerging cloud computing technolo-

gies to transform networked robotics. The design objective is

to overcome the limitations of networked robotics with elastic

resources in a centralized cloud infrastructure.

Cloud computing provides a natural venue to extend the

capabilities of networked robotics. NIST [5] defines cloud

computing as “a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applica-

tions and services) that can be rapidly provisioned and released

with minimal management effort or service provider interac-

tion.” Through its three service models (i.e., software, platform

and infrastructure), it would enable tremendous flexibility in

designing and implementing new applications for networked

robotics.

Several research groups have started to explore the use

of cloud technologies in robotic applications. For example,

research groups at Google have developed smart phone driven

robots that can learn from each other via the cloud [6]. A

research group at Singapore’s ASORO laboratory has built

a cloud computing infrastructure to generate 3-D models

of environments, allowing robots to perform simultaneous

localization and mapping (SLAM) much faster than by relying

on their onboard computers [7].

III. CLOUD ROBOTICS

In this section, we first describe a system architecture for

cloud robotics, and then focus on the two key enabling sub-

systems: the M2M communication framework and the elastic

computing architecture. Our cloud robotics differentiates from

existing solutions in that it leverages two complementary

clouds (i.e., a virtual ad-hoc cloud and an infrastructure cloud).

A. System Architecture

In Figure 2, we illustrate the system architecture for our

proposed cloud robotics. The architecture is organized into

two complementary tiers: a machine-to-machine (M2M) level

and a machine-to-cloud (M2C) level.
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On the M2M level, a group of robots communicate via

wireless links to form a collaborative computing unit (i.e., a

virtual ad-hoc cloud). The benefits of forming a collaborative

computing unit are multi-fold. First, the computing capability

from individual robots can be pooled together to form a virtual

ad-hoc cloud infrastructure. Second, within the collaborative

computing unit, information can be exchanged for collabo-

rative decision making in various robot-related applications.

Finally, it allows robots not within communication range of a

cloud access point to access information stored in the cloud

infrastructure or send computational requests to the cloud.

On the M2C level, the centralized cloud infrastructure

provides a pool of shared computation and storage resources

that can be allocated elastically for real-time demand. The

elastic computing model allows the group of networked robots

to offload computation-intensive tasks for remote execution,

resulting in “remote-brain” robots. Moreover, the benefits of

a large volume of storage provided by the centralized cloud

are two-fold. First, it can unify a large volume of information

about the environment, which can be organized in a format

usable by robots. Second, it can provide an extensive library

of skills or behaviors that are related to task requirements and

situational complexities, making it feasible to learn from the

history of all cloud-enabled robots.

B. M2M Communication Architecture

Robots in a network can communicate if they are within

communication range of each other, and with the cloud servers

if the robots are close to access points of the cloud infrastruc-

ture. A wireless M2M communication network can be formed

by robots working cooperatively with each other to route and

relay information. We call either a robot or an access point a

node in the M2M network.

Several standards like Zigbee, Bluetooth, and WiFi Direct

have been developed for short range wireless communications

between robots. For long range communications, radio fre-

quency and microwave communication technologies may be

used.

A network of robots is often formed dynamically and in an

ad-hoc manner. There is no central controller to coordinate the

communication flow in the network. Robotic units may leave

and join the network, or may become unavailable because

of unpredictable failures or obstructions in the environment.

Furthermore, the network is highly dynamic if robots are

mobile. All these considerations make the design of effective

routing protocols difficult and impractical in some scenarios.

Gossip algorithms [8] are randomized methods designed to

transmit a message from a source to a destination without any

explicit route discovery mechanism. If two nodes are within

communication range, we say that they are neighbors. When a

robot wants to send a message to a destination node (either an-

other robotic unit or a cloud access point), it randomly chooses

one of its neighbors and transmits the message together with a

header that contains the identifier of the destination and itself,

and a time value indicating the validity period of the message.

In another variant of the protocol, the message is simply

broadcast to all neighbors, but depending on the application,

(a) Peer-Based Model

(b) Proxy-Based Model

(c) Clone-Based Model

Fig. 3. Elastic computing models for cloud robotics

this may incur high communication load in the network. We

will focus on the protocol that chooses a random neighbor in

this paper. At every time step, each node randomly chooses a

neighbor to retransmit messages that are not intended for itself

and are still valid. After a sufficient number of time steps, all

the messages will be relayed to their destinations with high

probability.

We propose the use of gossip protocols for M2M communi-

cations in cloud robotic architectures. Gossip protocols do not

require route discoveries and maintenance, and are thus suited

for highly dynamic mobile robotic networks. These protocols

are also very simple to implement, and require minimal

additional computation and memory resources. However, the

trade-off is that gossiping may result in a high message latency

if the network conductance is low. In cloud robotics, however,

this problem is significantly mitigated as the cloud serves as

a central super node for the M2M communication network.

As we will see in Section IV-B, the time required for a

message to be disseminated in a network is greatly reduced

by the existence of a super node. Alternatively, a hybrid

gossip algorithm can be used in which routes to frequently

accessed nodes like the group leader in the proxy-based cloud

computing model (see Section III-C), can be maintained.

C. Elastic Cloud Computing Architecture

Our proposed cloud robotics is built on the combination of

a virtual ad-hoc cloud formed by a group of networked robots

and a centralized cloud. This unique combination offers us a

great flexibility in designing computing models, tailored for
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Model Robustness Interoperability Mobility

Peer-based Medium Medium High

Proxy-based Low High Medium

Clone-based High Low Low

TABLE I
COMPARISONS OF DIFFERENT COMPUTING MODELS.

specific applications. We focus on the following three elastic

computing models (cf. Figure 3):

• Peer-Based Model: each robot and each virtual machine

(VM) in the cloud is considered as a computing unit.

These robots and VMs form a fully distributed computing

mesh. A task can be divided into smaller modules for

execution over a subset of the nodes in the computing

mesh.

• Proxy-Based Model: in the group of networked robots,

one unit functions as a group leader, communicating with

a proxy VM in the cloud infrastructure, to bridge the

interaction between the robotic network and the cloud.

The set of computing units are organized into a two-tier

hierarchy.

• Clone-Based Model: each robot corresponds to a system-

level clone in the cloud. A task can be executed in the

robot or in its clone. The set of robotic clones also form

a peer-to-peer network with better connectivity than the

physical ad-hoc M2M network. Moreover, this model

allows for sporadic outage in the physical M2M network.

Each of these elastic computing models exhibits different

properties in robustness to network connections, interoperabil-

ity and mobility management (see Table I). Robustness refers

to the network connectivity between the set of networked

robots and the centralized cloud infrastructure. The clone-

based model has the maximum number of linkages from robots

to the cloud, and is thus the most robust; the proxy-based

model is the least robust in terms of network connectivity; and

the peer-based model falls between these two extreme cases.

Interoperability refers to the additional complexity required

in operating a cloud robotics infrastructure with an existing

robotic network. The proxy-based model is the most interop-

erable model, because of its hierarchical structure; while the

clone-based model is the least interoperable. Mobility refers

to the capability of supporting mobile robots. The peer-based

model supports the most flexibility for mobility, because VMs

can be instantiated anywhere in the cloud infrastructure; while

the clone-based model is the least flexible, because compli-

cated VM migration mechanisms are required to support robot

mobility.

The choice of specific elastic computing models depends

mainly on three factors, including network conditions, applica-

tion requirements and resource availability. We aim to develop

a unified framework to determine an optimal or near-optimal

model for a given set of conditions, as elaborated in Section

IV-C.
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Fig. 4. The optimal operational regions is separated by a line. Its slope
corresponds to the effective transmission rate.

IV. TECHNICAL CHALLENGES

In this section, we discuss some specific challenges and

research considerations in the cloud computation model and

the M2M communication network.

A. Computation Challenges

One of the key benefits of cloud robotics is the capability

of offloading computationally intensive tasks to the cloud for

execution. However, the decision to offload a specific task

requires a unified framework that can handle a list of complex

issues. First, the offloading strategy should consider various

factors, including the amount of data exchanged, and the delay

deadline to complete the task. Second, the decision should

also consider whether it is more advantageous to execute the

task within the group of networked robots, given the presence

of cloud resources. Finally, given a pool of cloud resources

spread across different data centers, it is a challenge to allocate

virtual machines optimally to execute the offloaded task and

to manage live VM migrations.

We advocate an optimization framework to determine the

optimal task execution strategies. Specifically, our objective

is to minimize the amount of energy consumed by the robot,

under the constraint that the task should be completed within

a specified deadline. The fundamental trade-off lies between

the energy consumed for executing the task by the on-board

CPU within the robot and the energy consumed transmitting

the amount of data to the cloud for remote execution.

In our initial investigation, we have considered the two

alternative choices of standalone execution by the robot and

cloud execution. We assume the following energy consumption

models. For the standalone execution, Dynamic Voltage Scal-

ing (DVS) [9] is assumed to minimize the total energy usage

for the computing task; for the cloud execution, we assume a

polynomial energy consumption model in which the amount of

energy consumed to transmit s bits across a wireless channel

with fading coefficient g is proportional to sn/g , where n
depends on the coding scheme. It can be shown that, for a

given task profile of L bits of data and a delay deadline of T ,

the minimum energy consumed for the standalone execution
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is E∗
r ∼ L(L/T )2, and the minimum transmission energy for

cloud execution is E∗
c ∼ L(L/T )(n−1).

Using the above results, one can determine the optimal

operational region for either task execution model by simply

comparing the energy usage for a specific task. For example,

the optimal task execution region is illustrated in Figure 4 for

n = 2.5. The boundary between the two optimal operational

regions is a line (i.e., L/T = const), where L/T can be

considered as an effective data transmission rate. In this case,

when the effective transmission rate is larger than a threshold,

the cloud execution is optimal; otherwise, the standalone exe-

cution is optimal. In-depth theoretical and numerical analysis

for this simple task offloading scheme can be found in our

technical paper [10], and is omitted here due to limited space.

B. Communication Challenges

As discussed in the previous section, the choice of stan-

dalone or cloud execution depends on the delay sensitivity

of the task. The communication delay introduced in sending

the computation request to the cloud has to be factored

into the decision. In this section, we provide upper bounds

for the time required for a message to be delivered with

high probability. Packet delivery failures and communication

outage are inherent in any wireless communication systems. A

communication network based on gossip protocols can thus be

regarded as a system with higher failure rates, but significantly

lower overheads. Furthermore, the additional increment in the

failure rate depends on the network topology, and the use of

the cloud as a super node in the network effectively controls

this rate.

In the gossip protocol, each node chooses a neighbor

randomly to transmit a message. Suppose that node i chooses

node j with probability Pij , where a zero probability implies

that the two nodes are not within communication range, and

are therefore not neighbors. It can be shown [8] that the

communication delay of disseminating a message from a

single node in the M2M network to all N nodes in the network

is O(logN/Φ), where Φ is the conductance of the network,

given by

Φ = min
S:|S|≤N/2

∑
i∈S,j∈Sc Pij

|S|
.

In general, the worst case communication delay is

O(N logN). However, in our cloud robotics architecture,

M2M links are expected to be short range, so that we can

partition the M2M network into teams of robots with some

maximum size M , with each team having at least one link to

the cloud super node. For example, in the clone-based model

where all robots have communication links to the cloud, the

size M = 1. We see that the conductance of such a network

is at least 1/M , so that the delay is bounded by O(M logN).
Typically M is either constant or grows slowly with the size N
of the network. Furthermore, task offloading is typically to im-

mediate neighbors or to the cloud. Therefore, in the worst case,

the time required for M2C communications is O(M logM).
See Table II for the worst-case delays for each computing

model. For the peer-based model, the communication delay

Model M2M M2C

Peer-based (expander) O
(

1

α
logN

)

O
(

1

α
logN

)

Proxy-based O(M logN) O(M logM)
Clone-based O(logN) O(1)

TABLE II
COMPARISONS OF WORST-CASE COMMUNICATION DELAYS FOR

DIFFERENT COMPUTING MODELS.

depends on the particular network topology. We assume that

for any subset of nodes in the network, there exists at least

a fraction α with communication links to the cloud. Such a

network belongs to the class of expander graphs.

The above analysis applies for a static network. We have

shown that it generalizes to similar results for mobile networks

with switching topologies [11].

C. Optimization Framework

We have considered the simple scenario of standalone

versus cloud execution of a task. In general, the task offload-

ing decision should made among three execution strategies,

including:

• standalone execution by the individual robot,

• collaborative execution by the group of networked robots,

and

• cloud execution.

In some cases, a hybrid model including partial execution

with all these strategies is possible. We aim to develop an

optimization framework involving all execution modes with

communication and execution costs included, to find the

optimal execution strategy. In particular, the optimal strategy

should take into consideration the time-varying nature of

the wireless M2M communication network and the latency

introduced by the gossiping protocol. In addition, only the

minimal required set of information should be communicated,

and this depends on the particular application. It is of interest

to investigate what information should be stored locally versus

on the cloud.

D. Security Challenges

Trust and security issues are major considerations in cloud

robotics. Specifically, our solution faces two major security

challenges due to its cloud implementation.

We need the VM environment to be trust-worthy. A mali-

cious VM can subtly sabotage an important task without the

robot being aware of the damage. In military applications, the

robotic unit has to identify a trust-worthy VM infrastructure

to connect and to avoid malicious infrastructures (e.g., battle-

field communication vehicles from an enemy). In general,

three approaches can be adopted to cope with this problem,

including:

1) Trust establishment: the user performs some pre-use

actions to check a VM’s host environment.

2) Trust measurement: some root-of-trust components that

do not belong to the cloud platform provider (e.g., from

hardware vendors or virtualization software providers)
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monitor the VM, and securely report trust measurements

to a user or third party.

3) Reputation-based trust: the user verifies the VM infras-

tructure by the service provider’s identity and then relies

on legal, business or other external considerations to infer

trust.

A robot needs trust to launch task delegation on a public

cloud, especially when the computation and network traffic

incur monetary costs. The computing environments in the

cloud should be verifiable by a user or a trusted party,

e.g., to ensure there is no hidden or malicious code running

besides the delegated tasks. Moreover, confidential data may

be stored in the public cloud storage, while logically private to

clone devices. Therefore, strong integrity and confidentiality

protection are needed to secure application data.

V. APPLICATIONS

Future robotic applications will largely benefit from cloud

robotics, which provides the following advantages over tradi-

tional networked robots.

• Ability to offload computation-intensive tasks to the

cloud. The robots only have to keep necessary sensors,

actuators, and basic processing power to enable real-

time actions (e.g., real-time control). The battery life is

extended, and the robotic platform becomes lighter and

less expensive with easier to maintain hardware. The

maintenance of software onboard the robots also becomes

simpler, with less need for regular updates. As the cloud

hardware can be upgraded independently from the robotic

network, the operational life and usefulness of the robotic

network can be easily extended.

• Access to vast amounts of data. The robots can acquire

information and knowledge to execute tasks through

databases in the cloud. They do not have to deal with

the creation and maintenance of such data.

• Access to shared knowledge and new skills. The cloud

provides a medium for the robots to share information

and learn new skills and knowledge from each other. The

cloud can host a database or library of skills or behaviors

that map to different task requirements and environmental

complexities. The RoboEarth project [12] is trying to turn

this into a reality.

Due to these advantages, cloud robotics has a wide range

of potential applications in data-intensive or computation-

intensive tasks in the areas of intelligent transportation, envi-

ronment monitoring, health care, smart home, entertainment,

education, and defense. In this section, we discuss the opportu-

nities and challenges that cloud robotics brings to traditional

robotic applications. Specifically, we focus on three robotic

applications: SLAM, grasping, and navigation.

A. SLAM

SLAM [13] refers to a technique for a robot or an au-

tonomous vehicle to build a map of the environment without

a priori knowledge, and to simultaneously localize itself in

the unknown environment. SLAM, especially vision-based

SLAM and cooperative SLAM, are both data intensive and

computation intensive. The steps such as map fusion and

filtering for state estimation can be processed in a parallel

fashion. Thus, these tasks can be offloaded to the cloud. For

example, a grid based FastSLAM is implemented in a cloud

computing framework as reported in [7]. As demonstrated in

[7], the cloud can substantially improve the implementation

speed of SLAM.

B. Grasping

Robotic grasping has been an active research topic over a

few decades. If the full 3-D model of the object is precisely

known, then various methods can be applied to synthesize

the grasp. If the object is unknown or not precisely known,

the problem is much more challenging, and involves the

access and preprocessing of vast amounts of data and can

be computationally intensive. Recently, information-based or

data-driven grasping methods [14] have been developed to

enable robotic grasping for any hand and any object. These

methods requires access to large databases. By offloading this

task to the cloud, grasping can be facilitated without requiring

vast amounts of computing power, data, and storage space on

the robotic platform. In addition, model knowledge of new

objects learned by different robots can be shared in the cloud

for future usage by other robots.

C. Navigation

Robotic navigation refers to a robot’s activity to determine

its own position with respect to a certain reference and then

to plan a path to reach a desired location. It can involve

a combination of tasks such as localization, path planning,

and mapping. Basically, there are two types of approaches:

map-less approaches and map-based approaches [15]. Map-

less approaches rely on the observations of the perception

sensors for navigation. Due to the limited onboard resources,

these approaches usually suffer from reliability issues. Map-

based robotic navigation is relatively reliable if a precise

map is available. It can either use a known map or build a

map during the navigation. However, the process of building

the map requires large amounts of storage space and is

computationally intensive. On the other hand, the process of

searching a map requires access to large amounts of data,

which is challenging if the navigation area is large. Cloud

robotics provides a very promising solution for future cloud-

enabled navigation that avoids these two challenges. The cloud

can not only provide storage space to store the large amount

of map data, but also provide processing power to facilitate

the building and searching of the map quickly. Through the

cloud, commercially available maps (e.g., Google maps) can

also be leveraged to develop reliable, agile, and long-range

autonomous navigation solutions.

VI. CONCLUSIONS

We have proposed a cloud robotics architecture to address

the constraints faced by current networked robots. Cloud

robotics allows robots to share computation resources, infor-

mation and data with each other, and to access new knowledge
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and skills not learned by themselves. This opens a new

paradigm in robotics that we believe leads to exciting future

developments. It allows the deployment of inexpensive robots

with low computation power and memory requirements by

leveraging on the communications network and the elastic

computing resources offered by the cloud infrastructure. Ap-

plications that can benefit from the cloud robotics approach are

myriad and includes SLAM, grasping, navigation, and many

others that we have not discussed, like weather monitoring,

intrusion detection, surveillance, and formation control.
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