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Toward Optimal Deployment of Cloud-Assisted
Video Distribution Services
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Abstract—For Internet video services, the high fluctuation of
user demands in geographically distributed regions results in low
resource utilizations of traditional content distribution network
systems. Due to the capability of rapid and elastic resource
provisioning, cloud computing emerges as a new paradigm to
reshape the model of video distribution over the Internet, in
which resources (such as bandwidth, storage) can be rented on
demand from cloud data centers to meet volatile user demands.
However, it is challenging for a video service provider (VSP)
to optimally deploy its distribution infrastructure over multiple
geo-distributed cloud data centers. A VSP needs to minimize the
operational cost induced by the rentals of cloud resources without
sacrificing user experience in all regions. The geographical
diversity of cloud resource prices further makes the problem
complicated. In this paper, we investigate the optimal deployment
problem of cloud-assisted video distribution services and explore
the best tradeoff between the operational cost and the user
experience. We aim to pave the way for building the next-
generation video cloud. Toward this objective, we first formulate
the deployment problem into a min-cost network flow problem,
which takes both the operational cost and the user experience into
account. Then, we apply the Nash bargaining solution to solve
the joint optimization problem efficiently and derive the optimal
bandwidth provisioning strategy and optimal video placement
strategy. In addition, we extend the algorithms to the online
case and consider the scenario when peers participate into video
distribution. Finally, we conduct extensive simulations to evaluate
our algorithms in the realistic settings. Our results show that our
proposed algorithms can achieve a good balance among multiple
objectives and effectively optimize both operational cost and user
experience.

Index Terms—Cloud deployment, Nash bargaining solution,
video distribution.
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I. Introduction

IN THE PAST decade, Internet video has become a very
popular application over the Internet and accounts for the

majority of network traffic [1]. Internet video service providers
(e.g., YouTube, Hulu) generally resort to a content distribution
network (CDN) to conduct large-scale video distribution.
However, CDN solutions are inadequate for the emerging
video traffic growth. First, due to their semistatic resource
provisioning mechanism, the resource utilization of existing
CDNs is extremely low (normally ranging between 5% and
10%) [2], which directly translates into a high operational cost.
Especially, significant oversubscription has been observed for
flash-crowd situations [3] when a lot of users are trying to
consume the same video content. Second, the emerging user-
generated video contents (e.g., Youtube, Ku6, etc.) are long-
tail nature [4], defying the operational principle of serving the
popular contents by CDNs. Therefore, new paradigms should
be developed in order to provide the capabilities of scaling up
and down the provisioned resources in a dynamic manner and
improve the resource utilization ratio.

The emergence of cloud computing [5] opens a new door
for designing the next-generation video distribution platform.
Cloud-based services are more cost-effective, highly scalable,
and reliable. Recently, there have been quite a few research
works (e.g., [6]–[13]) on exploiting the cloud platform for
media content distribution. Compared with conventional ap-
proaches, a unique feature of cloud-assisted video distribution
is the capability of rapid and elastic resource provisioning.
Cloud resources, such as CPU, memory, storage, and band-
width, can be automatically allocated in a fine granularity
to meet the demand from end users timely. A video service
provider can rent the distribution infrastructure from the cloud
service provider (CSP) in an on-demand manner, and avoid
the long-term hardware investment and low utilization due to
resource over-provisioning.

However, for bandwidth-intensive services such as video
distribution, a number of challenging issues need to be ad-
dressed before real deployment on cloud platforms. First, as
users are spreading over multiple regions, to improve user
quality of experience at different regions, a video service
provider should deploy its distribution service in multiple
geographically distributed data centers, which are possibly
owned by multiple CSPs with different pricing strategies.
Thus, for a video service provider (VSP), a set of critical
questions need to be clearly answered: how should a video
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service provider minimize its operational cost? How much
resources (e.g., bandwidth) should be provisioned at each
location? How should user requests be directed to different
geo-distributed data centers so as to maximize overall user
experience? Second, the popularities of videos to be distributed
are dynamic and evolutionary over time. Thus, the deployment
of cloud resources is also a dynamic process. This means that
a video service provider should adjust resource provisioning at
different regions proactively and place video contents accord-
ing to the changes of user demands. We need to design online
algorithms instead of offline algorithms to handle demand
fluctuation.

In this paper, we investigate the optimal deployment of
cloud-assisted video distribution services. To this end, we
propose a set of practical algorithms to address the above
challenges and validate their effectiveness via extensive sim-
ulations. Our main contributions in this paper can be summa-
rized as follows.

1) We explicitly formulate the problem of cloud deploy-
ment using network flow theory. The optimal deploy-
ment problem can be transformed into the problem of
finding the min-cost flow in a network flow model.
We identify the conflict between optimizing bandwidth
provisioning cost and viewing latency and show the
related Pareto curve.

2) We investigate the joint optimization problem of cloud
deployment and apply the concept of Nash bargaining
solution (NBS) to solve it efficiently. The obtained result
bears the properties of both optimality and fairness.

3) We design an optimal bandwidth provisioning algo-
rithm with dual decomposition for one-shot optimiza-
tion, which can be easily extended to the continuous
online case. We also derive the associated optimal video
content placement strategy.

4) We further study the case when peer bandwidth re-
sources at the edge can be exploited. We consider a
locality-aware peer-assisted design and derive the cor-
responding optimal deployment strategy.

5) We conduct extensive trace-driven simulations to val-
idate the effectiveness of our proposed algorithms in
the realistic settings. The experimental results indicate
that our algorithms can achieve a good balance among
multiple objectives and optimize the operational cost and
the user experience simultaneously.

To the best of our knowledge, our work is the first to apply
Nash bargaining solution to optimize the bandwidth cost and
the latency cost jointly for cloud-assisted video distribution
services, which can achieve both optimality and fairness. In
addition, our algorithm can be easily extended to incorporate
the peer contribution at the edge.

The remainder of this paper is organized as follows.
Section II reviews previous work in the area of Internet
video distribution and cloud service deployment. Section III
presents the formulation of the optimal cloud deployment
problem using network flow theory. Section IV considers the
optimization of the bandwidth cost and the latency cost jointly
when deploying cloud-assisted video services, and proposes

an online Nash bargaining algorithm to solve such a joint
optimization problem. We also further explore the scenario
when peers also participate into video distribution in the local
region. Section V proves the effectiveness of our proposed
algorithms by experimental evaluation. Finally, Section VI
concludes the paper and discusses the future work.

II. Related Work

Internet video distribution has received a great amount of
attention in the past decade. CDN and P2P are two widely
adopted technologies for building large-scale video distribu-
tion platforms. However, CDN is too expensive for small video
service providers, while P2P is hard to guarantee viewing
quality of end users and becomes inefficient when handling
unexpected flash crowd [14]. Xunlei Kankan [15] and LiveSky
[16] resort to a hybrid CDN-P2P design to reduce cost without
sacrificing user experience. However, there is still a big gap for
designing an ideal cost-effective, highly scalable and reliable
solution.

The emergence of cloud computing provides a promising
approach to deliver QoS-guaranteed multimedia services eco-
nomically [6]. Virtualization techniques can be exploited for
resource allocation in a fine granularity to provide content
distribution and multimedia processing service. Initial attempts
have been made by academic researchers [7], [8] and industrial
practitioners [17], [18] to migrate VoD applications to the
cloud. Niu et al. [9], [19] further investigated the pricing
strategies for VoD service providers and automatic bandwdith
allocation to satisfy user demands. In terms of live media
streaming, Wang et al. [10] presented a generic framework
called CALMS for the migration of live streaming services to
the cloud, which adaptively leases and adjusts cloud resources
to meet dynamic user demands. CloudStream [11] considered
realtime transcoding of videos in different qualities over cloud
and delivered video streams via a cloud-based SVC proxy.
Chen et al. [12] investigated the problem of placing Web server
replicas in storage clouds to provide cost-effective CDNs. A
few recent research work [13], [20]–[22] also investigated the
distribution of long-tailed and highly dynamic social media
contents over the cloud, and studied how to partition the social
contents and conduct resource provisioning more efficiently.

Our work differs from previous work in the following
aspects. First, instead of simply defining user latency as a
constraint, we focus on the optimization of provisioning cost
and user experience jointly, considering that VSPs in different
scales have different optimization preferences. In addition,
we consider nonlinear cost functions in our problem, which
are more generic but incur higher complexity in problem
solving. Second, we consider the deployment policy when
peer resources can be exploited. The proposed algorithm can
be easily extended to meet dynamic user demands. Our work
is also different from conventional research work on traffic
engineering [23], [24], which focuses on balancing network
traffic from the perspective of ISPs. Instead, our algorithms
are more tailored to optimize the deployment of cloud servers
from the perspective of video service providers.
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Fig. 1. Simplified cloud-assisted video distribution platform.

III. Problem Formulation

A. Cloud-Assisted Video Distribution Services

In the cloud computing paradigm, a cloud service provider
(CSP) can own multiple geographically distributed data centers
and manage all the hardware/software resources in each data
center for resource pooling. To provide video distribution
services, a VSP will rent resources (including CPU, band-
width, storage) from one or more CSPs, possibly with different
resource pricing plans. The allocation of cloud resources
is generally in the unit of virtual machine with predefined
configurations. By adjusting the number of virtual machines
rented at each data center, a VSP can scale up and down the
provisioned resources to quickly handle demand fluctuation in
different regions. From the perspecive of a VSP, it is challeng-
ing to determine how to provision resources at each location
dynamically. Each video request generated by end users will
be routed to a given data center according to certain routing
policies. Such request routing policies should be carefully
designed so as to well balance the operational cost and the
user experience. For example, if always routing a user request
to a local data center, it may lead to a much higher bandwidth
cost in spite that such a strategy can provide good user
experience.

Let us first consider a typical cloud-assisted video distribu-
tion scenario. Suppose there is a VSP that needs to deliver
N videos to its users spreading over K(K ≥ 1) geographical
regions. The video service provider is relying on cloud servers
hosted in M data centers to provide video services. Fig. 1
provides an overview of a simplified cloud-assisted video
distribution platform.

To optimize the user experience, end users prefer to receive
video streams from cloud servers with low latency (e.g.,
cloud servers deployed in the same region). In case that
local bandwidth supply is insufficient, a user can also receive
video streams from cloud servers at other regions but at
the cost of a higher latency. For a VSP, its objective is to
optimize the user experience at all regions and minimize its
operational cost at the same time. To this end, a VSP should
determine how much resources (e.g., bandwidth, storage,
CPU) should be purchased from different CSPs and how to
deploy these resources at different regions for better viewing
quality.

Fig. 2. Network flow model for cloud deployment problem.

B. Network Flow Model

Next, we start to study the deployment problem from a
simple case and formulate the bandwidth provisioning problem
into a min-cost network flow problem. Consider a scenario
in which user demand for each video generated from every
region is known a priori, the bandwidth provisioning problem
can be transformed into a network flow model illustrated in
Fig. 2. Note that the above assumption is only made for
the modeling purpose. In the later section, we will relax the
assumption that user demand should be known a priori and
utilize prediction methods to predict future user demand for
practical implementation.

In Fig. 2, node S and T are two virtual nodes that represent
the source and destination nodes, which are used to indicate
the total bandwidth supply from distributed data centers and
the total bandwidth demand generated by all users. The set
of data centers involved in video distribution are represented
by nodes {DCi, i = 1, · · · , M}. The set of user regions are
represented by nodes {Rk, k = 1, · · · , K}. To further illustrate
the demand and supply for each video in detail, we introduce a
set of auxiliary nodes {DCi/Vj, i = 1, · · · , M, j = 1, · · · , N}
and {Rk/Vj, k = 1, · · · , K, j = 1, · · · , N}. The flow bi

between S and DCi refers to the cloud bandwidth provisioned
at the ith data center, and b

j
i between DCi and DCi/Vj refers

to the amount of bandwidth allocated to distribute video j

among bandwidth bi, which satisfies bi =
∑N

j=1 b
j
i . Similarly,

dk denotes the total user demand generated from the kth region
and d

j

k between nodes Rk and Rk/Vj denotes the demand of
a video j from the kth region and satisfies dk =

∑N
j=1 d

j

k .

The flow b
j

ik between nodes DCi/Vj and Rk/Vj represents
the amount of bandwidth supplied by the ith data center
to the kth region for distributing video j, which satisfies
bi =

∑N
j=1

∑K
k=1 b

j

ik.
Each edge in the graph is also associated with a cost. For

edges between S and DCi(i = 1, · · · , M), the associated cost
is mainly bandwidth cost. The unit price of bandwidth can
be different for data centers at different locations. According
to the pricing strategy of typical CSPs [24], we define the
bandwidth cost function ψi(x) associated with a data center
DCi as a nondecreasing concave function, where x is the
amount of the bandwidth flow supplied by DCi. The concavity
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property implies that the more bandwidth a customer buys
from the CSP, the cheaper the unit price is. Such pricing policy
can incentivize cloud customers to buy more bandwidth. For
a VSP, one of its objective is to minimize its total bandwidth
cost, namely, BC =

∑M
i=1 ψi(bi). To take the user experience

into account, we also associate the edges between data centers
and regions with a cost, which represents the distribution
latency from a data center to users in a region. Users prefer
to receive video streams from data centers deployed in the
same region to better their viewing quality. To this end, for
each edge between nodes DCi/Vj and Rk/Vj , the associated
latency cost is assumed to be determined by a nondecreas-
ing convex function ωik(·). Intuitively, ωik(·) stands for the
latency between a data center DCi and users in a region Rk,
which is independent of distributed video Vj . In addition,
ωik(·) is a function of the amount of the bandwidth flow
from a data center DCi to users in region Rk. The intuition
behind such definition is that the latency between a data
center and a user region includes the propagation delay, the
queuing delay, etc. The propagation delay is determined by
the geographical distance, while the queuing delay is largely
determined by the amount of the bandwidth flow according
to the queuing theory. In spite that the propagation delay is
independent of the amount of the bandwidth flow, the queuing
delay will increase as a nondecreasing convex function of
the amount of the bandwidth flow. The convexity property
of the latency cost function follows the assumption made in
[23], considering the increasing the queuing delay when the
amount of the flow increases. Other edges are associated with
a cost 0.

In addition to bandwidth cost, the provisioning strategy
should also minimize overall latency cost at the same time.
By incorporating both bandwidth cost and latency cost into
the network flow model, we can transform the deployment
problem into a min-cost network flow problem, in which the
operational cost and the user experience are both taken into
account. Before delving into the joint optimization of both
costs, we first consider the optimization of bandwidth cost
and latency cost individually.

Note that, different from computation-centric applications,
video distribution is a bandwidth-centric service, in which
bandwidth cost accounts for the majority of deployment cost
compared with storage and computation cost. Given the small
fraction of storage and computation cost in the deployment
of video distribution services on the cloud, we focus more on
optimizing bandwidth provisioning in this paper. Anyway, our
framework model can be easily extended to take other types
of resource costs into account.

C. Bandwidth Cost-Only Optimization

In the bandwidth cost-only optimization problem, denoted
as P1, the objective of a VSP is to minimize the total
bandwidth cost (denoted by BC), while satisfying the total
user demands in all regions. All the latency costs ωik(·) in
the network flow model are set to zero. It applies to the case
when a VSP is sensitive to the operational cost but regardless
of the user experience. Based on the network flow theory, the

problem P1 can be formulated as follows:

P1: minimize BC =
M∑
i=1

ψi(
K∑

k=1

N∑
j=1

b
j

ik)

s.t.
M∑
i=1

b
j

ik ≥ d
j

k , ∀k, j

b
j

ik ≥ 0, ∀i, j, k. (1)

By applying the nonlinear optimization theory [25], we can
obtain Theorem 1.

Theorem 1: For the bandwidth cost-only optimization prob-
lem P1, the optimal bandwidth provisioning strategy is to
only let the i∗th data center distribute all the videos, where
i∗ = arg mini{ψi(D), i = 1, · · · , M}, and D =

∑K
k=1 dk.

Proof: See our technical report [26] for the proof details.

The intuition behind the above theorem is that, if not taking
latency cost into account, a VSP prefers to only provision
bandwidth at the data center with the lowest bandwidth cost
and use one data center to serve video requests from all re-
gions. For the implementation, as all bandwidth cost functions
ψi(·) can be known beforehand, the problem P1 can be easily
solved by a central coordinator and we can find the data center
with the lowest cost. Later, when receiving a video request, the
coordinator returns the address of that data center to the user.
However, the above solution is absolutely not a good strategy
as the user experience directly impacts the market share of a
video service provider.

D. Latency Cost-Only Optimization

For the latency cost-only optimization, a VSP aims at opti-
mizing the user experience at all regions without considering
the bandwidth cost. In this case, we set all the bandwidth cost
ψi(·) associated with edges in the network flow model to zero.
Then, the latency cost-only optimization problem P2 can be
formulated as follows:

P2: minimize LC =
M∑
i=1

K∑
k=1

ωik(
N∑

j=1

b
j

ik)

s.t.
M∑
i=1

b
j

ik ≥ d
j

k , ∀j, k

b
j

ik ≥ 0, ∀i, j, k. (2)

Accordingly, by solving the problem P2, we can obtain the
following theorem.

Theorem 2: For the latency cost-only optimization prob-
lem P2, the optimal bandwidth provisioning strategy B =
{bj

ik, ∀i, k, j} is given by

b
j

ik =

{
d

j

k , i = i∗(k)
0, i �= i∗(k)

where i∗(k) = arg mini{ωik(dk), i = 1, · · · , M}.
Proof: See our technical report [26] for the proof details.

Intuitively, when only optimizing latency cost, the optimal
provisioning strategy adopted by a VSP should allow each
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viewer to receive its full video stream from the data center
with the lowest latency. In an extreme case, suppose that there
is one data center deployed at each region and the latency to
a local data center is smaller than that to any remote data
center, the optimal strategy to minimize overall user latency is
to localize all the video traffic and only let local data centers
serve users in the same region.

The provisioning strategies derived from P1 and P2 can
be considered two extreme cases. In reality, the VSP needs
to take both bandwidth cost and latency cost into account.
However, these two objectives will be conflicting with each
other. For example, when we try to reduce latency cost by
provisioning more bandwidth at the local data center with a
higher bandwidth price, the total bandwidth cost of a VSP will
increase. Therefore, for a multiobjective optimization problem,
we aim to find a set of Pareto points, in which no single
objective can be improved without decreasing another. Among
all the Pareto points, the optimal Pareto point guarantees both
Pareto optimality and fairness.

IV. Joint Optimization for Cloud-Assisted

Video Distribution

In this section, we consider to optimize the bandwidth cost
and the latency cost jointly. To expose the tradeoff between
two conflicting objectives, we first define the objective func-
tion as the simple weighted sum of the bandwidth cost BC and
the latency cost LC, where α is a nonnegative scalar value that
indicates the relative weight of two objectives

P3: minimize BC + α · LC

s.t.
M∑
i=1

b
j

ik ≥ d
j

k , ∀j, k

b
j

ik ≥ 0, ∀i, j, k. (3)

From the constraints of optimization problem P1, P2, and
P3, we can find that their feasible solutions are the same.
Without loss of generality, we define the feasible solution
set as B and optimization variables B = {bj

ik, ∀i, k, j} ∈ B.
Actually, α can be removed from the objective function of P3
if we multiply the unit latency cost by a factor of α in the
problem formulation. Then, the objective function of Problem
P3 can be further simplified as BC + LC. In the following
sections, we will use BC+LC to replace the original objective
function of P3 for simplicity.

A. Nash Bargaining Solution for Joint Optimization Problem

To solve the above joint optimization problem with conflict-
ing objectives, we adopt the Nash bargaining solution [27]
as a theory tool, which can ensure optimality and fairness
simultaneously. Optimality refers to Pareto optimality, which
implies that the solution achieves the maximum reduction of
the total cost starting from an initial point not on the Pareto
curve (i.e., the disagreement point in the Nash bargaining
process). While fairness guarantees that the tradeoff between
two conflicting objectives are balanced, which means that cost
minimization should benefit both objectives simultaneously.

In the bargaining process, we can imagine that there are
two independent components with conflicting objectives who
are trying to cooperate with each other to achieve an optimal
and fair operation point. We can find the optimal point of
BC +LC on the Pareto curve derived from the problem P3 by
solving the following optimization problem P4 (see below).
The optimal solution obtained in P4 by the Nash bargaining
process corresponds to the optimal solution in P3 since any
further reduction of the total cost is not possible. In that case,
we can achieve the minimum total cost

P4: maximize |BC − BC0| · |LC0 − LC|
s.t. B ∈ B (4)

where (BC0, LC0) is the disagreement point that represents
the starting point of the negotiation. The problem P4 aims
at obtaining the optimal Pareto point that lies on the Pareto
curve generated by solving P3. Denote BC0 as the minimum
bandwidth cost, and LC0 as the maximum latency cost under
the current demand, respectively. From the conflicting property
of the bandwidth cost and the latency cost, the minimum band-
width cost also implies the maximum latency cost. Therefore,
we can guarantee that the point (BC0, LC0) also lies in the
feasible solution set and can be chosen as the disagreement
point. Therefore, the optimization problem can be rewritten as
follows:

maximize (BC − BC0) · (LC0 − LC). (5)

The maximization of (BC − BC0)(LC0 − LC) is a trans-
formation of the original optimization problem. By utilizing
the Nash bargaining solution to obtain the optimal solution of
(BC − BC0)(LC0 − LC), we are able to obtain the optimal
solution of the original optimization problem P3. From the
conflicting property of BC and LC, if we decrease the value
of BC, then the value of LC will be increased. The Nash
bargaining solution can achieve the optimal point (BC, LC)
that maximizes the value of (BC − BC0)(LC0 − LC).

Define the total bandwidth supply from the ith data center to
the kth region as b̂ik =

∑N
j=1 b

j

ik and b̂ = {b̂ik, ∀k, i}. Denote the
bandwidth cost of the ith data center as BCi = ψi(

∑K
k=1 b̂ik)

and the latency cost associated with the ith data center as
LCi =

∑K
k=1 ωik(b̂ik). By applying the optimization decom-

position theory [28], we can derive a complexity-efficient
algorithm. The optimization problem (5) can be rewritten as
the following optimization problem since the log function does
not change the optimal solution of the original problem:

maximize log(BC − BC0) + log(LC0 − LC)

s.t.
∑M

i=1 b̂ik ≥ dk

b̂ik ≥ 0, ∀i, k. (6)

Then, we apply dual decomposition to the problem (6), and
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get the following Lagrangian:

L(b̂, λ) = log(
M∑
i=1

ψi(
K∑

k=1

b̂ik) − BC0)

+log(LC0 −
M∑
i=1

K∑
k=1

ωik(b̂ik))

+
K∑

k=1

λk · (
M∑
i=1

b̂ik − dk) (7)

where λk ≥ 0 is the Lagrange multiplier associated with the
linear bandwidth supply constraint.

Before stepping into further analysis of dual decomposition,
we should analyze the property of the Lagrangian (7). From
the concavity of the bandwidth cost function and the convexity
of the latency cost function, we can know that (BC − BC0)
and (LC0 −LC) are both concave functions. The composition
with the log function does not change their concave property.
Therefore, the Lagrangian is also a concave function. The
maximal value of the Lagrangian for a given λk is

b̂�(λ) = arg max
b̂≥0

[L(b̂, λ)]. (8)

The result of (8) is unique due to the concavity of the
Lagrangian. The dual problem of (6) is defined as follows:

minimize g(λ) = L(b̂�(λ), λ)

s.t. λ ≥ 0. (9)

The dual problem (9) can be solved by subgradient method
with the following updates:

λk(t + 1) = [λk(t) − β(
M∑
i=1

b̂�
ik − dk)]+ (10)

where β is a sufficiently small positive step-size. Nash bar-
gaining solution can solve the joint optimization problem
P4 efficiently. Through dual decomposition, we can obtain
optimal results by utilizing subgradient methods. A centralized
algorithm of optimal bandwidth provisioning is provided in
Algorithm 1.

In the centralized algorithm, the main complexity lies in the
computation of the optimal result of (8). The updates of λk can
be disseminated in parallel. In the practical implementation,
the components to optimize the bandwidth cost and the latency
cost can achieve the best tradeoff by iteratively negotiating the
value of λk.

If the number of videos is huge, it will be impractical to
place all videos at every data center. Based on the optimal
bandwidth provisioning algorithm, we can derive the corre-
sponding video placement strategy to minimize storage cost.
The video placement algorithm is provided in Algorithm 2,
which is inherently a greedy algorithm. In the algorithm, a
video with higher popularity is first placed at a data center with
the largest amount of available bandwidth for provisioning so
that the number of replicas can be minimized (i.e., the storage
space can be minimized).

In the case that prices of unit storage space are homoge-
neous across data centers, we have Theorem 3.

Algorithm 1 NBS-based Optimal Bandwidth Provisioning Algorithm

Input:
M, N, K;
Demand dk;
Bandwidth cost function ψi;
Latency cost function ωik;

Output:
The optimal bandwidth provisioning b̂�

ik.
1: Initialization step: set λk ≥ 0.
2: Compute the initial disagreement point (BC0, LC0) based

on input.
3: Compute the optimal value of (8), then obtain optimal

solutions b̂�(λ(t))
4: Updates λk according to (10).
5: Set t ← t + 1 and go to step 1(until satisfying termination

criterion).
6: Return: b̂ik

Theorem 3: The greedy video placement algorithm shown
in Algorithm 2 can minimize the overall storage cost.

Proof: See our technical report [26] for the proof details.

B. Online Algorithm for Joint Optimization

In the above section, we only consider the optimization of
the joint cost function in the offline case, in which user demand
in the future time slots can be known a priori by the algorithm.
In this section, we extend our algorithm to a continuous online
case, in which the algorithm has no knowledge about the
future but use prediction methods to predict user demand in
the future time slots. For each time slot, a VSP can adjust
its deployment strategy at different data centers according to
the predicted demand. To predict the demand of videos, we
utilize prediction techniques proposed in previous work [9],
[29], [30]. The design of a new prediction method is beyond
the scope of this paper. In the online case, our objective is
to minimize the joint cost function in each time slot and the
probability of under-provisioning. At the beginning of each
time slot, we first predict the demand of videos in all regions
and then utilize Algorithm 1 to obtain the optimal bandwidth
provisioning and video placement strategies.

Assume that the total demand from each region can be
predicted. Let d̄k denote the random variable that represents
the actual total demand from the kth region. The mean and
variance of d̄k are μk and σ2

k , respectively. For convenience, let
D = [d̄1, · · · , d̄K], μ = [μ1, · · · , μK] and σ = [σ1, · · · , σK].
Assume that all random variables d̄k follow Gaussian distri-
butions d̄k ∼ N(μk, σk) (Note that the method can be easily
extended to other distributions).

We can utilize the ARIMA and GARCH models [31] to
calculate μk and σk based on the observed history of user
demands. For example, suppose the next time slot to be t and
denote the observed history of user demand from region k as
hk = {dk(0), dk(1), · · · , dk(t − 1)}, where dk(τ), 0 ≤ τ ≤ t − 1
is the observed user demand from region k by t. Then, μk in
the time slot t can be calculated based on hk by using the
ARIMA model, and σk in the time slot t can be calculated
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Algorithm 2 Greedy Video Placement Algorithm

Input:
Optimal bandwidth provisioning results b̂�

ik(i.e., output
from Algorithm 1)

Output:
Video placement strategy 1j

i

1: Initialize 1j
i = 0, ∀i, j

2: Sort data centers by their total bandwidth supply bi =∑K
k=1 b̂�

ik in the descending order, and generate a list of
data centers Ld .

3: Sort videos by their total demand d̂j =
∑K

k=1 d
j

k , and
generate a video list Lv.

4: Choose the head of the list Lv to be stored in Ld(1).
5: Set 1Lv(1)

Ld (1) = 1, j = Lv(1), and i = Ld(1).
6: for each region k do
7: if the left demand of video j from region k d

j

k > b̂�
ik

then
8: Update the left available supply b̂�

ik = b̂�
ik − d

j

k , and
the left demand d

j

k = 0.
9: else

10: Update the left demand d
j

k = d
j

k − b̂�
ik, and the left

available supply b̂�
ik = 0.

11: end if
12: end for
13: if the left demand of video Lv(1) from each region is zero

then
14: Delete the head of Lv.
15: end if
16: Sort the list Lv by updated total demand in decreasing

order.
17: if all the bandwidth supply of Ld(1) have been used then
18: Delete the head of Ld .
19: else
20: Sort the list Ld by supply in the descending order.
21: end if
22: if Ld or Lv is empty then
23: Return 1j

i

24: else
25: Back to step 2.
26: end if

based on hk by using the GARCH model. Similar techniques
are also used in [29] for the calculation of μk and σk.

To mitigate the probability of under-provisioning, the pre-
dicted demand input dk should satisfy that the actual demand
must be met with high probability

P(dk < d̄k) ≤ ε

where ε is a small constant. Because d̄k follows a Gaussian
distribution, we have

dk ≥ E[d̄k] + θ
√

var[d̄k] = μk + θσk (11)

where θ = F−1(1 − ε).
In the online case, the predicted demand is represented

by dk = μk + θσk. At the beginning of each time slot, we
calculate (μk, σk) first so as to obtain the predicted demand

Algorithm 3 Online NBS-Based Bandwidth Provisioning Algorithm

Input:
M, N, K;
μk and σk for random variable d̄k;
Bandwidth cost function ψi;
Latency cost function ωik;

Output:
The optimal bandwidth provisioning b̂�

ik.
1: Initialization step: set λk ≥ 0.
2: Compute the predicted demand dk = μk + θσk.
3: Compute the initial disagreement point (BC0, LC0) based

on predicted demand dk.
4: Compute the optimal value of (7), then obtain optimal

solutions b̂�(λ(t))
5: Updates λk according to (10).
6: Set t ← t + 1 and go to step 3(until satisfying termination

criterion).
7: Return: b̂ik

dk. The online bandwidth provisioning strategy is illustrated in
Algorithm 3. Note that the prediction accuracy affects the per-
formance of online algorithms. However, existing prediction
techniques can guarantee that the prediction accuracy is very
high for normal demand patterns (e.g., diurnal pattern of user
demands). In our later experiments, it is found that the impact
is not very significant even for a lower prediction accuracy.

C. Optimization for Video Distribution With Peer Contribution

Even in the context of cloud-assisted video distribution, the
P2P technique is still useful to reduce the provisioning cost
and increase system scalability. If taking resources contributed
by end users into account, the deployment strategy of a VSP
should be adjusted accordingly. To reduce distribution latency,
we consider a locality-aware P2P distribution scenario, in
which P2P traffic is confined to the same region where a
viewer resides.

Although peer contribution can reduce the amount of provi-
sioned bandwidth, the efficiency of peer exchange is impacted
by the number of peers in the same distribution swarm. An
efficiency function η(x) is defined to represent the fraction of
demand that can be satisfied by peer contribution, where x

is the number of peers in the swarm. η(x) is assumed to be
a nondecreasing function, which implies that the efficiency of
peer exchange can be improved with more peers in the swarm.
η(0) = 0, η(x) ∈ [0, 1] when x > 0. Suppose that there are
nk users in the kth region, if considering peer contribution,
the optimization problem P4 is transformed to the following
problem P5:

P5: maximize log(BC − BC0) + log(LC0 − LC)

s.t.
M∑
i=1

b̂ik ≥ dk(1 − η(nk))

b̂ik ≥ 0, ∀i, k. (12)

As to the number of future users in each region, it can be
derived by the predicted demand directly. The Lagrangian (7)
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is redefined as follows:

L(b̂, λ) = log(
M∑
i=1

ψi(
K∑

k=1

b̂ik) − BC0)

+log(LC0 −
M∑
i=1

K∑
k=1

ωik(b̂ik))

+
K∑

k=1

λk · (
M∑
i=1

b̂ik − dk(1 − η(nk))).

(13)

The subgradient update (10) is transformed into

λk(t + 1) = [λk(t) − β(
M∑
i=1

b̂�
ik − dk(1 − η(nk)))]+. (14)

The online NBS-based bandwidth provisioning strategy (Al-
gorithm 3) can still be utilized to solve the problem P5. In the
practical implementation, a tracker server can be deployed at
each region to maintain peer information (similar approaches
have been adopted by [7], [10]). A user can obtain video
services from two resources: 1) cloud data centers, or 2)
other peers in the same region. To better utilize the resources
contributed by peers, a user will first query the tracker to obtain
a peer list and seek to obtain video data from other peers in
the same region; only when the request cannot be served by
local peers will it be routed to a cloud data center.

V. Experimental Evaluation

In this section, we conduct a series of simulation experi-
ments to evaluate the effectiveness of our proposed algorithms.
To be more realistic, we first use the datasets obtain from
PPLive to drive our simulation and compare with other alter-
native strategies. More details about simulation experiments is
available in our technical report [26].

A. Dataset Description

The PPLive VoD dataset consists of over 25 million server-
side log records on November 7, 2010. Each log record
contains information, including the viewer ID, viewing starting
time, viewing duration time, streaming rate, and the viewed
video’s ID. We divide the whole day into 48 time slots, each
of which lasts for 30 min.

To obtain geographical distribution of viewers, we exploit
MaxMind GeoIP [32] database to map users’ IP addresses
to six geographic regions, denoted by R1, R2, · · · , R6. Note
that the region R6 is defined as a virtual region that includes
viewers whose IP addresses cannot be mapped successfully or
from regions with too few viewers.

We set the locations of data centers based on the statistics
reported by [33]. The bandwidth prices at each location are
retrieved from the websites of major ISPs or cloud providers
(e.g., China Telecom [34], Amazon EC2 [35], etc.) in the
corresponding region. It is found that their pricing strategies
usually bear concave property. Table I shows the prices to rent
100-Mbps bandwidth per day in each region. Due to the space

TABLE I

Prices to Rent 100-Mbps Bandwidth Per Day in Each Region

(in the Unit of Dollars)

Region R1 R2 R3 R4 R5 R6
Price 35.85 57.38 66.92 40.01 43.23 53.85

limit, we have not listed the entire pricing plan of each region
in our paper.

We assume that propagation latency is proportional to the
geographical distance between two regions. Similar to [21], we
define propagation latency as 0.02 ∗ dist(km) + 5, where dist

is the geographical distance between any two regions and can
be obtained from Google Map [36]. The geographical distance
between the region R6 and other regions are assumed to be
1500 km. As to the efficiency of peer exchange, the efficiency
function η(x) is defined as a nondecreasing concave function
where x is the number of viewers in a given region. In our
experiments, η(x) is defined as min{
 x

300� · 0.1, 1}. The value
of η(x) is within the range [0, 1] in any region.

For comparison, we also consider three other provisioning
strategies, which are listed as follows:

1) centralized strategy, in which all video requests are
served by a single data center, which has the lowest
bandwidth cost;

2) local-only strategy, in which video requests are only
served by local data centers with the lowest latency;

3) random strategy, in which each video request is served
by a random data center regardless of its location.

B. PPLive Trace-Driven Simulation

We first compare the normalized total cost BC + LC of
our proposed algorithms with other provisioning strategies in
Fig. 3(a). Due to the demand dynamics, the curves fluctuate
with time. It can be observed that NBS strategy can reduce
around 80% of the total cost compared with the centralized
and random strategy. The reduction is about 50% compared
with the local-only strategy. By considering peer contribution,
we can further reduce the incurred total cost.

To analyze our proposed algorithms in detail, we study the
incurred the bandwidth cost and the latency cost separately. In
order to facilitate the comparison among different strategies,
we introduce a new metric called normalized cost ratio, which
is defined as the cost incurred by the current strategy normal-
ized by the sum of costs incurred by all strategies (including
the current one). Fig. 3(b) illustrates the normalized bandwidth
cost ratio under different bandwidth provisioning strategies. As
expected, the local-only strategy incurs the largest bandwidth
cost, and the optimal bandwidth cost can be achieved by
the centralized strategy. The NBS strategy can reduce around
10% of the bandwidth cost compared with the local-only
strategy, and the NBS-P2P strategy can further reduce 5%–
15% bandwidth cost.

Fig. 3(c) illustrates the normalized latency cost ratio under
different bandwidth provisioning strategies. A local-only strat-
egy achieves the minimal latency cost. Our proposed NBS-P2P
strategy can achieve comparable latency cost as that of the
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Fig. 3. Comparison of different bandwidth provisioning strategies (using PPLive trace-driven simulation). (a) Normalized total cost. (b) Normalized bandwidth
cost ratio. (c) Normalized latency cost ratio. (d) Competitiveness of online algorithm.

local-only strategy. NBS-based strategies can reduce latency
cost significantly, compared with centralized strategy and
random strategy. More specially, the NBS strategy can reduce
around 60% of latency cost compared with the centralized
strategy, and the NBS-P2P strategy can reduce around 65% of
latency cost compared with the NBS strategy.

We also evaluate the efficiency of our proposed online
algorithm by comparing it with the offline algorithm. Fig. 3(d)
shows that the efficiency ratio is within the range (1.25, 1.5).

C. Synthetic Trace-Driven Experiments

The main purpose to conduct synthetic trace-driven ex-
periments is to validate the applicability of our algorithms
in different scenarios, as the PPLive trace only represents
one kind of user demand. In the section, we adopt more
general cost functions and run a set of synthetic trace-driven
experiments in a larger scale.

In our experiments, we consider a synthetic scenario in
which a video service provider relies on 30 geo-distributed
data centers on the cloud platform to distribute videos to
users spreading over 50 regions. The bandwidth cost function
associated with the ith data center is defined as ψi(x) = ρi ·xγ ,
where ρi is a scalar and γ ∈ (0, 1) is a factor to guarantee the
concavity of ψi(x). The latency cost function between a data
center and a region is defined as ω(x) = μ · xν, where μ is a
scalar to identify different cost functions for every data center
and region pair and ν is used to ensure the convex property of
ω(x). For a local data center and region pair, the factor μ will
be less than that of a remote pair. To simplify our experiments,
ρi is defined as a random variable that is uniformly distributed
in the range of [1,20], denoted by ρi ∼ U(1, 20).1 We also

1U(x, y) means a uniform distribution in the range [x, y].

assume that γ = 0.5, μ ∼ U(1, 5), ν = 1.5 in the experiments.
However, it should be noted that any concave bandwidth cost
function and convex latency cost function are applicable in the
experiments. As to the efficiency of peer exchange, we define
the function η(x) in a similar way as that in the trace-driven
experiments.

We follow a similar approach as [9] to generate synthetic
video demands in each region. All regions are divided into
three classes, which represent user population in different
scales. The number of regions in each class and their cor-
responding parameters are given as follows:

1) Class I: 20 regions, with mean μi ∼ U(100, 500) and
variance σi ∼ U(10, 50);

2) Class II: 20 regions, with mean μi ∼ U(500, 1000) and
variance σi ∼ U(10, 100);

3) Class III: 10 regions, with mean μi ∼ U(1000, 1500)
and variance σi ∼ U(10, 150).

Similar to the above section, we evaluate the efficacy of
different bandwidth provisioning algorithms by comparing
the total cost BC + LC. Fig. 4(a) illustrates the normal-
ized total cost resulted from different bandwidth provision-
ing strategies. If not taking peer contribution into account,
the NBS strategy achieves the optimality in all time slots.
Due to the convex property of latency cost function, local-
only strategy can obtain sub-optimal results compared with
centralized strategy and random strategy. The NBS strategy
can reduce about 49% of the total cost compared with local-
only strategy. We also observe that the NBS-P2P strategy
can reduce about 51% of the total cost compared with the
NBS strategy due to bandwidth resources contributed by
peers.
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Fig. 4. Comparison of different bandwidth provisioning strategies (using synthetic trace-driven simulation). (a) Normalized total cost. (b) Percentage of local
bandwidth supply in NBS-based strategies. (c) Normalized bandwidth cost ratio. (d) Normalized latency cost ratio.

Fig. 5. Efficiency of online algorithm with prediction.

We also analyze the percentage of local and remote band-
width supply to understand the optimality of our proposed
NBS-based algorithm. Fig. 4(b) shows the percentage of
local bandwidth supply by all data centers in each time slot
corresponding to two NBS-based algorithms. Here, NBS refers
to Algorithm 3, while NBS-P2P refers to Algorithm 3 consid-
ering peer contribution. The ratio of local bandwidth supply of
the NBS strategy is within the range (0.248, 0.256). By taking
peer contribution into account, the ratio of local bandwidth
supply can be further reduced to the range (0.242, 0.252).

To analyze the bandwidth and latency cost resulted from
different bandwidth provisioning strategies, we calculate the
bandwidth cost and the delay cost separately. Fig. 4(c) il-
lustrates the normalized bandwidth cost ratio of different
provisioning strategies. The centralized strategy incurs the
least bandwidth cost, which well confirms the correctness of
Theorem 1. On the contrary, the local-only strategy performs
the worst in terms of bandwidth cost reduction. We observe

Fig. 6. Efficiency of video placement strategy.

that the NBS strategy can reduce around 10% of the bandwidth
cost compared with the local-only strategy. Furthermore, the
NBS-P2P strategy can reduce 5%–20% of the bandwidth cost
compared with the NBS strategy.

Fig. 4(d) shows the normalized latency cost ratio of different
provisioning strategies. Local-only strategy performs the best
in terms of latency cost reduction, which confirms the correct-
ness of Theorem 2. For latency cost, the reduction of two NBS-
based strategies is close to the best strategy. Compared with the
worst strategy, i.e., centralized strategy, the NBS strategy can
reduce more than 70% of latency cost. Furthermore, the NBS-
P2P strategy can reduce around 50% of latency cost compared
with the NBS strategy.

Fig. 5 illustrates the competitiveness of our online NBS-
based bandwidth provisioning algorithm compared with the
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offline algorithm. In the offline algorithm, the demands can be
known beforehand at the beginning of each time slot; while
in the online algorithm, we need to predict the demand and
use the predicted demand as the input. We also present the
ratio between the costs incurred by online strategy and offline
strategy in Fig. 5. In most cases, the cost of online algorithm
is only 1.15–1.3 times that of offline algorithm.

To check the efficiency of our video placement algorithm,
we also compare our algorithm (Algorithm 2) with two other
video placement strategies: 1) full placement that places all
videos in each data center, and 2) centralized placement that
only places all videos in a single data center. We calculate
the number of video replicas resulted from different strategies
accordingly. Fig. 6 illustrates the ratio between the number of
replicas resulted from different algorithms. For the NBS strat-
egy, its competitiveness is 1.8–2.4 compared with centralized
placement strategy, while the full placement strategy incurs
around 15 times the number of replicas resulting from NBS
strategy. In our experiment, we find that the number of videos
stored in a data center will not exceed 20% of the total number
of videos.

VI. Conclusion

The on-demand self-service feature of cloud computing en-
abled a video service provider to provision its cloud resources
adaptively for video distribution. In this paper, we studied the
optimal deployment of cloud resources in multiple geograph-
ically distributed data centers to improve the user experience
and minimize the operational cost simultaneously. We built
a network flow model to formulate the cloud deployment
problem and derive corresponding optimal bandwidth provi-
sioning and video placement strategies with Nash bargaining
solutions. We also examined the case when peer contribu-
tion is considered. Our work in this paper provided useful
guidelines for different video service providers to provision
their services effectively. In the future, we plan to investigate
the deployment over a hybrid cloud infrastructure with both
public clouds and private clouds, and study how to better
select data centers to optimize video applications with different
QoS requirements.
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