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CBM: Online Strategies on Cost-Aware Buffer
Management for Mobile Video Streaming
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Abstract—Mobile video traffic, owing to the rapid adoption of
smartphones and tablets, has been growing exponentially in recent
years and started to dominate the mobile Internet. In reality,
mobile video applications commonly adopt buffering techniques
to handle bandwidth fluctuation and minimize the impact of
stochastic wireless channels on user experiences. However, recent
measurement work reveals that mobile users tend to abort more
frequently than PC users during viewing videos. Such a high abor-
tion rate results in a significant wastage of buffered video data,
which is directly translated into monetary and energy cost for
mobile users. In this paper, we propose an intelligent buffer man-
agement strategy called CBM (Cost-aware Buffer Management),
for mobile video streaming applications. Our purpose is to min-
imize cost induced by un-consumed video data while respecting
certain user experience requirements. To this objective, we for-
mulate the problem into a constrained stochastic optimization
problem, and apply the Lyapunov optimization theory to derive
the corresponding online strategy for cost minimization. Different
from conventional heuristic-based strategies, our proposed CBM
strategy can provide provably performance guarantee with ex-
plicit bounds. We also conduct extensive simulations to validate
the effectiveness of our proposed strategy and our experimental
results show that CBM achieves significant gains over existing
schemes.

Index Terms—Mobile video streaming, buffer management, en-
ergy consumption, bandwidth cost, Lyapunov optimization.

I. INTRODUCTION

R ECENT years have witnessed an exponential growth of
themobile Internet traffic, mostly driven bymobile video.

Cisco predicted in [1] that mobile data traffic would increase by
18 times until 2016. Video traffic generated by mobile users will

Manuscript received February 28, 2013; revised June 21, 2013 and August
21, 2013; accepted August 26, 2013. Date of publication October 09, 2013;
date of current version December 12, 2013. This work was supported in
part by the NSFC under Grant 61003242, Grant 61272397, the Fundamental
Research Funds for the Central Universities under Grant 12LGPY53, Guang-
dong Natural Science Funds for Distinguished Young Scholar under Grant
S20120011187, the Program for New Century Excellent Talents in University
under Grant NCET-11-0542, the US National Science Foundation under grant
ECCS-1002214, CNS-1116970, the Joint Research Fund for Overseas Chinese
Young Scholars under Grant 61228101, NTU SUG and MOE Tier 1 (RG
31/11). The corresponding author is Di Wu. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Chia-Wen Lin.
J. He, Z. Xue, and D. Wu are with the Department of Computer Science, Sun

Yat-sen University, Guangzhou, China (e-mail: hejian9@mail2.sysu.edu.cn;
xuezh@mail2.sysu.edu.cn; wudi27@mail.sysu.edu.cn).
D. O. Wu is with the Department of Electrical and Computer Engineering,

University of Florida, Gainesville, FL 32611 USA (e-mail: wu@ece.ufl.edu).
Y. Wen is with the School of Computer Engineering, Nanyang Technological

University, Singapore (e-mail: ygwen@ntu.edu.sg).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2013.2284894

be the leading contributor to such explosive growth, reaching
more than 70% of the total mobile data traffic with a compound
annual growth rate (CAGR) of 78%. However, user experience
of mobile video streaming applications is impacted by user mo-
bility and the stochastic nature of wireless channels. A simple
yet effective mechanism to mitigate the effect of channel fluc-
tuation is to buffer a certain amount of video data on the mobile
client, thus to reduce the possibility of playback freezing [2]. It
has been verified that rate adaptive streaming with buffer sup-
port can significantly improve the QoE (Quality of Experience)
of mobile video viewers [3].
However, the viewing patterns of mobile users will result in

a wastage of system resources for mobile video streaming ap-
plications. Specifically, such wastage results from the un-con-
sumed video data in the application buffer, which in turn is
caused by random abortion of viewers. To reduce the possi-
bility of buffer starvation during the playback period, mobile
video applications (e.g., Youtube) tend to download video data
aggressively in a periodical manner [4]. A recent measurement
study [5] also suggested the viewing time of mobile users can
be approximated by long-tail distribution. This can be translated
into non-negligible random abortion probability, resulting in a
significant fraction of video data unconsumed in the video play-
back buffer of mobile devices.
Moreover, this non-ideal buffer management would have di-

rect impact on system design. First, it would cause extra energy
consumption for mobile devices. In fact, it has been shown that
video streaming service has been a new killer of battery energy
of mobile devices [6]. The residual data buffered in the mobile
client cost energy to receive from the source, including trans-
ferring data and keeping the WNIC (Wireless Network Inter-
face Card) active [7]. Second, the unconsumed video data in the
buffer would induce a higher monetary cost than necessary for
mobile users. In reality, mobile users with 3G connectivity are
charged by their data usage, depending on various pricing plans
specified by ISPs [8]. The amount of unconsumed video data
causes extra monetary cost for mobile users.
As a result, energy consumption and monetary cost induced

by downloading un-consumed video data demand smarter
buffer management strategies for mobile video applications
to minimize wasted data while respecting a decent QoE for
mobile video viewers. There exists a dedicate tradeoff between
the minimization of wasted data and the improvement of user
QoE. If always keeping the playback buffer at a rather low level
to reduce the chance of data wastage, the playback buffer will
be at a high risk of being drained out due to the time-varying
nature of channel conditions, which directly results in frequent
freezing and deteriorates the user QoE accordingly. However,

1520-9210 © 2013 IEEE



HE et al.: CBM: ONLINE STRATEGIES ON COST-AWARE BUFFER MANAGEMENT FOR MOBILE VIDEO STREAMING 243

if maintaining the playback buffer at a high level to mitigate the
short-term dynamics of channel conditions and thus improve
the user QoE, it will cause a significant amount of data wastage
due to random abortion of viewers (e.g., video browsing). Pre-
vious work focused more on minimizing energy consumption
of mobile applications by traffic shaping [9], proxying [10],
etc. However, the problem of over-buffering in mobile video
applications and its implications to user cost have not received
enough attention in the field.
In this paper, we propose an intelligent cost-aware buffer

management strategy, called CBM (Cost-aware Buffer Man-
agement), for mobile video applications. Our design objective
is to minimize sunk cost (including energy cost and mone-
tary cost) induced by downloading unconsumed video data,
while ensuring a decent viewing quality for mobile viewers.
To the best of our knowledge, our work is the first to con-
sider the over-buffering problem for mobile video streaming
applications. Mathematically, the above-mentioned buffer
management problem can be formulated as a constrained sto-
chastic optimization problem, which can be solved efficiently
by using the Lyapunov optimization theory [11]. By applying
the Lyapunov optimization theory, the stochastic constraints
can be transformed into queue stability constraints. Different
from previous heuristic-based strategies without performance
guarantee, our proposed CBM strategy can provide explicit
performance bounds and approach the optimality with tunable
distance. By extensive simulations, we show that our proposed
CBM strategy significantly reduces the extra cost induced by
aggressive downloading and achieves comparable viewing
quality for mobile users.
The rest of the paper is organized as follows. Section II re-

views previous work. Section III provides the formulation of
the cost-aware buffer management problem. The design of on-
line strategy is introduced in Section IV. Simulation results are
given in Section V. Section VI concludes the paper and dis-
cusses some future work.

II. RELATED WORK

Mobile video streaming, due to the growing popularity of
mobile devices (e.g., iPhones and Android phones), has been
gaining a lot of attention from the research community. Pre-
vious work on mobile video streaming can be mainly divided
into two categories: (1) measurement studies of existing pop-
ular mobile video streaming applications, and (2) design of new
streaming protocols with improved user experience and higher
resource utilization.
Most previous measurement work aims to analyze various

system properties of mobile video streaming applications. Bal-
asubramanian et al. [7] investigated the component breakdown
of energy consumption during data transfer, and proposed an en-
ergy model for mobile devices based on obtained results. Other
measurement work (e.g., [4], [6], [12], [13]) also investigated
energy consumption of mobile devices. Finamore et al. [5] and
Li et al. [14] analyzed viewing behaviors of mobile users and
frequent random abortion of mobile users was observed during
video viewing. Liu et al. [15] measured several key properties of
mobile video streaming systems, including distribution of mo-
bile devices, video length distribution, etc.

Researchers also conducted quite a few studies on com-
paring and improving mobile video streaming protocols. To
meet the stringent QoS requirements of wireless multimedia
streaming, cross-layer optimization and its effectiveness have
been studied in [16]. Liu et al. [4] compared the architecture
and performance of four typical video streaming protocols,
including RTSP streaming, Pseudo streaming, Chunk-based
streaming and P2P streaming, via measurement studies. In
[12], an energy-efficient streaming protocol was proposed to
increase the probability that the WNIC can be switched to the
power-saving mode. The idea is to utilize burst downloading
[17] opportunistically.
The design of buffer management strategies is critical for

mobile applications. The objectives of buffer management
could be quite diverse, depending on application scenarios. In
[18]–[21], different buffer management strategies were pro-
posed to minimize energy consumption of mobile users. In [22],
Mastronarde et al. proposed to use a reinforcement learning
algorithm to learn the optimal buffer control policy at run-time
and improve the multimedia application performance dramati-
cally. The strategy proposed in [23] considers the insurance of
QoS over stochastic wireless channels. Our work in this paper
differs from previous work in that our research is motivated by
the real problem unveiled in the measurement work [5], which
observed that a significant fraction of buffered data is wasted
with no gain. To this end, we propose an intelligent cost-aware
online buffer management strategy to minimize data wastage,
harnessing the power of random scheduling across channel
conditioning, playback rates and user behaviors. The use of
the Lyapunov optimization framework can avoid the limitation
of inaccurate prediction (or learning) of channel conditions
and simplify the algorithm design greatly. Lyapunov optimiza-
tion-based algorithm only needs to observe channel conditions
at the beginning of each time slot, while conventional predic-
tion-based algorithms (such as MDP-based algorithms) require
to make long-term prediction on channel conditions in order
to approach optimality. Although learning-based algorithms
[25] can mitigate the need of long-term prediction, the high
computation complexity, induced by state update and stochastic
approximation, makes them unsuitable to be implemented on
mobile devices.

III. PROBLEM FORMULATION

A. System Model

In this section, we consider a typical mobile video streaming
system as illustrated in Fig. 1, in which mobile devices (e.g.,
smartphones, tablets) directly obtain video streams from the
streaming server via their wireless interfaces. On each mo-
bile device, a video playback buffer is maintained to achieve
smooth playback and is controlled by a smart buffer manager.
The buffer manager aims at requesting video chunks properly
according to the observed status information (e.g., available
download bandwidth, current buffer state, pricing plan, energy
consumption, etc.). Our objective in this paper is to design an
intelligent buffer management strategy to minimize the cost
induced by unconsumed downloaded data while still respecting
the QoE requirements of video playback.
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Fig. 1. A Generic Model of Mobile Video Streaming Service.

For a video streaming service, assume a video sequence
is compressed with a constant bit rate ;1 the video
sequence is divided into equal-size chunks with a size of

, where is the length of a time slot. The
system is assumed to operate in discrete time with time slots

, where is the maximum number of
time slots needed to transmit the video sequence. The maximal
download rate of a mobile device in slot , denoted by ,
depends on the fading channel gain. We assume that the channel
gain keeps constant within one time slot but can vary across
time slots.
Define as the maximum buffer size and as the buffer

size (in the unit of bytes) at the beginning of time slot . The
evolution of is also a stochastic process with chunk arrival
and departure. Suppose that a viewer starts its playback after
pre-buffering is completed and continues to view the video until
abortion. We assume a viewer can abort at the end of any time
slot (say ) with a probability , which is determined by user
viewing behaviors. At the time of abortion, all the unconsumed
video data in the buffer is actually wasted with no gain.
Let be the amount of wasted data when the viewer aborts

its viewing at the end of time slot , and be the cost
associated with . Note that the function is a generic
cost function that can be defined according to user sensitivity to
different types of cost. Such cost induced by wasted data (i.e.,

) is referred as the “user-defined sunk cost”. Users can
define the structure of to measure the cost incurred by
wasted data. For example, can be defined as the battery
energy consumption for downloaded bytes, or monetary cost
charged for downloaded bytes, etc.
Meanwhile, we should also take user experiences into account

when designing the buffer management strategy. In this paper,
we mainly focus on the measure of freezing time, as it directly
impacts user experiences. Freezing happens when the playback
buffer runs empty. If the arrival rate of video chunks keeps being
lower than the play-out rate of video chunks, the playback buffer
will be drained out and a userwill experience a period of freezing
time. Denote as the freezing time (in the unit of seconds) in
one time slot , and then the total freezing time can be given by

.Let be the tolerance ratio of freezing time,which is
defined as themaximum fraction of freezing time that can be tol-
erated by a viewer. It is essential to guarantee that the fraction of
freezing time is less than the tolerance ratio . To this objective,

1Usually, a streaming video (for transmission over networks) is compressed
with a constant bit rate; for DVD, a video sequence is compressedwith a variable
bit rate.

Fig. 2. Two downloading processes.

at the beginning of each slot , the buffer manager needs to care-
fully determine the number of video chunks to be downloaded
in that time slot, denoted by .
In addition, different from wireline environments, most data

transmission protocols in the wireless environments have a
power-saving mode. The WNIC consumes less power when
switching from the “active” mode to the “power-saving” mode.
According to the energy usage model in [7], the amount of en-
ergy usage can be defined as a linear function of the amount of
downloaded data and the duration of the WNIC active period,
namely,

where is the amount of energy usage, is the duration
of the WNIC active period, is the average power consump-
tion per unit time to keep the WNIC active, is the amount
of downloaded data, and is the average power consumption
per unit downloaded data. For a given amount of video data to
be downloaded, it is preferable to quickly complete data down-
load and switch theWNIC to the power-saving mode in order to
save energy. Note that, there is no way to further reduce energy
consumption if the WNIC is in the power-saving mode. Similar
to previous work, we only consider energy consumption of the
WNIC in the active mode.
To evaluate the efficiency of power saving, we define a

power-saving utility function as below:

where is the lower bound of download rate.
is the expected energy saving if downloading

video chunks with rate , which is compared with the
case when downloading video data with the minimal download
rate .
To better understand the power-saving utility function, we

plot two different downloading processes in Fig. 2. For the
process drawn in the dashed line, the client downloads data with
a constant minimal rate . In another process drawn in the
solid line, the client’s download rate fluctuates with time. Given
the same amount of data to be downloaded, it is obvious that
the former process (plotted in dashed lines) costs the WNIC to
spend more time in the active state and consumes more energy
accordingly. Thus, the former process can serve as a benchmark
to evaluate the reduction of the WNIC active duration for other
downloading processes. The direct implication is that more
energy can be saved if we can minimize the download time.
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B. Cost-Aware Buffer Management Problem

The update of the playback buffer can be defined as below:

In the above equation, the term stands for the
amount of consumed video data in a time slot, in which is the
video playback rate. The term is the amount of video
data downloaded in a time slot, in which is the number of
video chunks downloaded in a time slot, is the video encoding
rate (which also equals to the playback rate) and is the
size of a video chunk. In general, can be expressed as a
function of , namely, .
Considering the above constraints, the cost-aware buffer

management problem can be formulated into a stochastic
optimization problem as below:

(1)

where the objective function is the time-average expected cost
incurred by unconsumed data given that a viewer aborts at time
slot , and the expectation is calculated with respect to the prob-
ability distribution of . represents a power-saving utility
threshold. The first constraint indicates the buffer size should
be no greater than its capacity at any time; the second constraint
ensures that the number of requested chunks cannot be greater
than the limit that a viewer can download in a time slot; the third
constraint can guarantee the average fraction of freezing time is
less than the tolerance ratio; the last constraint is to ensure the
power-saving utility no less than a certain threshold .
Before explicitly defining the freezing time at time slot , we

introduce three additional indicator functions as below:

Lemma III.1: The freezing time in time slot can be repre-
sented by the following expression:

Proof: Please see Appendix A in our technical report [24]
for the proof details.
The above-formulated problem differs from traditional

convex optimization problems in that, our problem involves
optimizing the time average of cost function subject to time
average constraints.

IV. DESIGN OF COST-AWARE ONLINE
BUFFER MANAGEMENT STRATEGIES

To solve the constrained stochastic optimization in the above
section, we exploit Lyapunov optimization theory to design on-
line control strategies. A major benefit of Lyapunov optimiza-
tion is that it does not require any priori knowledge about user
behaviors and download rates. By taking actions to greedily
minimize the drift-plus-penalty in each time slot, it can provide
performance with explicit bounds.

A. Lyapunov Optimization

In the framework of Lyapunov optimization, the orig-
inal stochastic optimization problem can be transformed
to an optimization problem of minimizing the Lyapunov
drift-plus-penalty. By using Lyapunov optimization, the time
average constraints in Problem (1) can be transformed into a
set of queue stability constraints [11].
Two virtual queues and are defined to transform

the time average constraints on freezing time and power-saving
utility into queue stability constraints. The updates of queues

and are given by:

Therefore, Problem (1) can be transformed into the following
equivalent problem:

(2)

The last two constraints are used to guarantee the stability of
virtual queues.
Denote the queue vector by ,

and define a quadratic Lyapunov function
to measure the size of the queue

vector. The drift is defined as the expected change
in the Lyapunov function over one time slot. Therefore, the
solution to the original stochastic optimization problem can be
approximately obtained by solving the problem of minimizing
drift-plus-penalty in each time
slot, with an explicit approximation upper bound. The penalty

is the value of the objective function in the original
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optimization problem (Note that in
our problem), and is a tunable parameter that affects the
performance of the online algorithm.
By exploiting Lyapunov optimization techniques, online

strategy for Problem (1) can be obtained by solving the fol-
lowing problem in each time slot :

(3)

(3a)

(3b)

(3c)

(3d)

(3e)

where
. In the above problem, Constraint (3b) is to

ensure the buffer capacity constraint. Constraints (3c) and (3d)
are used to ensure upper bounds of the occupancy of queues

and . The selection of and should guarantee that
they are no less than the upper bounds of queues and
under the optimal solution of Problem (1).
The main purpose of the transformation from Problem (1) to

Problem (3) is to decrease the computation complexity of the
optimization problem. By applying the Lyapunov optimization
framework, the original complex optimization problem can be
transformed into a simple optimization problem.
Before analyzing the performance bound of the online algo-

rithm, we first prove the following lemma.
Lemma IV.1: The optimal strategy of Problem (3) can guar-

antee that

(4)

Proof: Please see Appendix B in our technical report [24]
for the proof details.
Denote the optimal solution of Problem (1) by

and we can obtain the performance bound
with the following theorem.
Theorem IV.2: The time average cost incurred by the online

algorithm derived by solving Problem (3) is within
of the optimal value,

namely,

(5)

if , where
, and is the upper bound of down-

load rate.
Proof: Please see Appendix C in our technical report [24]

for the proof details.
Theorem IV.2 implies that the online algorithm can approx-

imately approach the optimal solution of the original optimiza-
tion problemwithin infinitely small distance. The distance to the

optimality is determined by a tuning parameter . For example,
if is a linear function of and the viewer can tol-
erate the amount of wasted data less than at each time
slot , where is the amount of wasted data under the op-
timal solution of Problem (1), then the tunable parameter can
be derived as below:

B. Cost Model

The cost function can be tailored to include different types
of cost. Generally, there are two major types of cost for mobile
users:
• Bandwidth cost, , which is the monetary cost in-
curred by the wasted data usage at time slot . For the
usage-based data plan, the bandwidth cost can be defined
as a linear function of , namely, ,
where is the price per unit data in time slot . Normally,
is constant over time. However, under the time-depen-

dent dynamic pricing strategy [26], is constant within
one time slot but varies over time slots. However, we can
still obtain unit prices at the beginning of each time slot.

• Energy cost, , which is the energy consumption
for downloading the wasted data . Based on the en-
ergy model stated in Section III, the energy consumption
consists of the energy used to keep WNIC active and
the energy used to download data . According to
the measurement work in [7], can be defined as

, represents the duration
of active period of WNIC when downloading wasted data

with a rate of in time slot . Recall that is the
power consumption per unit time to keep WNIC active
and is the power consumption per unit downloaded
data.

Users can define the structure of based on their own
sensitivity to different types of cost. For instance, can
be defined simply as or .

C. Online Strategy for Cost-Aware Buffer Management

The optimal online strategy can be derived by solving
Problem (3). Denote the objective function in Problem (3) as

. The optimal online
strategy is determined by the specific structure of the function

. The structure of can be further exploited to reduce
the complexity when solving Problem (3). Assume that
is a continuous function of , we can obtain the following
easy-to-implement online strategy, called Cost-aware Buffer
Management Strategy (CBM), in which:
1) If , then we choose the minimum
that satisfies the constraints in Problem (3).

2) If , then we choose the maximum
that satisfies the constraints in Problem (3).

3) In other case, search all possible values of that satisfy
the constraints in Problem (3). As the feasible region of

is limited, the upper bound of time complexity is given
.
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Fig. 3. Simulation Environment.

For the case that the derivative of with respect to
cannot be directly obtained in the range , we can di-
vide the whole range into multiple subranges and calculate the
derivative of in each subrange.
Intuitively, if the sizes of two virtual queues and

are large, the viewer should choose smaller to decrease the
size of queues. If and are small, the viewer can choose
a large . And if is large, the viewer tends to choose a
large to guarantee the power-saving utility requirement. In
the initialization step, both and are set as zero at time

.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our proposed online strategy,
we developed a discrete-event simulator to simulate the be-
havior of a video playback buffer of a mobile device under dif-
ferent buffer management strategies and evaluate the quality of
user experience when viewing a video.

A. Simulation Setup

Fig. 3 briefly illustrates the simulation environment used in
our experiments. To watch a video, a mobile device connects to
a video streaming server through the intermediate network in-
frastructure. The access network can beWiFi, 3G/LTE, etc. Note
that, from the perspective of a mobile client, the network side
can be treated as a black box with any arbitrary structure. The
information about network details is not required for the eval-
uation of our buffer management strategy. The network condi-
tion between the mobile device and the streaming server can be
simply modeled as a stochastic process. By adjusting the sto-
chastic process, we can capture the changes of different network
parameters.
In our experiments, the video playback rate is set as 320 kbps

and the video length is set as 200 seconds. The whole video is
divided into equal-size chunks and each chunk has a length of 2
seconds. The maximum buffer capacity on the mobile device is
set as the size of 20 video chunks, namely, . As-
sume that the download capacity of a mobile device is bounded
by the capacity of wireless channels in the last hop instead of the
network core. Considering the fading effects of wireless chan-
nels, we adopt a Rayleigh distribution to approximate the sto-
chastic changes of download rates as [27]. The fluctuation of
download rates of the mobile device is plotted in Fig. 4. We use
the trace-based probability of aborting in the viewing process
from the measurement results in [5]. In default, the tolerance
ratio of freezing time is set as 0.03 and the amount of tolerable
wasted data per time slot, , is set as 10 KB. All the parameter
settings used in our experiments are summarized in Table I.
For comparison, we also investigate two other buffer manage-

ment strategies that are being used in existing works, including:

Fig. 4. Download rates of a mobile device (Rayleigh distribution with mean
50 KBps).

TABLE I
SIMULATION PARAMETER SETTINGS

• Aggressive Buffer Management Strategy (ABM), in which
a mobile video application downloads video data aggres-
sively at each time slot until the buffer is full. ABM is com-
monly used by devices with unlimited power supply for
video streaming services.

• Periodical Buffer Management Strategy (PBM), in which a
mobile video application requests a fixed number of video
chunks from the server periodically and stops downloading
if requested chunks have been completely downloaded be-
fore the end of the time slot or there is no room in the buffer.
The measurement results in [4] show that PBM has been
widely adopted by mobile devices. In our experiments, the
default period under PBM is set as and the viewer re-
quests two video chunks per period.

In our experiments, we evaluate the performance of our pro-
posed algorithm under different types of cost functions. The
main purpose to adopt different cost functions is to check the
applicability of our buffer management strategy to different user
requirements.

B. Buffer Status Analysis

We run each experiment, which lasts for 100 time slots (2
seconds per time slot), several times, and calculate the average
results. In this experiment, we evaluate the effectiveness of our
online algorithm CBM when users are sensitive to bandwidth
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Fig. 5. Buffer state and cumulative freezing time under different strategies with , , , download rate follows a Rayleigh
distribution with mean 50. Statistic information are obtained from 100 independent experiments with the same configurations. (a) Evolution of Buffer State. (b)
Cumulative Freezing Time. (c) Statistics on the Amount of Buffered Data. (d) Statistics on the Cumulative Freezing Time.

cost. We adopt the simplest structure of the bandwidth cost
function, namely, . In this case, the buffer
state at the beginning of each time slot can be considered as the
amount of wasted data if the viewer would abort in the coming
time slot.
Fig. 5 illustrates the experimental results including buffer

state and cumulative freezing time under default configurations.
From Fig. 5(a), we can see that our CBM strategy keeps the
buffer size less than 400 KB. As expected, the ABM strategy
almost keeps the buffer full after the initial buffer filling up
period, the PBM strategy keeps the buffer size high after the
initial start-up period. From Fig. 5(b), the PBM strategy incurs
the highest freezing time, and the freezing time of the ABM
strategy only increases during the start-up period. Under our
CBM strategy, it can be observed that the freezing time in-
creases at around time slot 80. This happens because the channel
condition in previous few time slots are bad, which is illustrated
in Fig. 4, resulting in a temporary buffer drainage. This investi-
gation suggests that ourCBM strategy can simultaneously incur
low buffer level and cumulative freezing time level.

The CBM strategy can adaptively make decisions according
to buffer state and channel condition. To evaluate this, we in-
vestigate the decisions under four different cases:
1) When the channel condition is good (i.e., is larger
than the playback rate) and the amount of buffered data
is large (i.e., no less than the size of two video chunks),
the request is conserved. For example, the increase rate of
the amount of buffered data at time slots 28 and 60 is only
around 15 KB per second.

2) When the channel condition is bad and the amount of
buffered data is large, the request is conserved. The de-
crease rate of the amount of buffered data at time slots 42
and 65 is around 30 KB per second. Since the consumption
rate of buffered data equals to constant r, high decrease
rate indicates little requested data.

3) When the channel condition is good and the amount of
buffered data is small (i.e., less than the size of one video
chunk), the request is aggressive. The increase rate of the
amount of buffered data at time slots 24 and 86 is around
50 KB per second.
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4) When the channel condition is bad and the amount of
buffered data is small, the request is aggressive. The
decrease rate of the amount of buffered data at time slots
23 and 85 is less than 10 KB per second.

Therefore, theCBM strategy can efficiently achieve trade-off
between user-defined sunk cost and QoE, by adaptively control-
ling the buffer level according to channel condition and buffer
state.
Moreover, ourCBM strategy can ensure the buffer level larger

than one video chunk over most of time slots, while the largest
buffer level is much smaller than the other two strategies. The
ratio between the cumulative freezing time and the length of the
video resulted from our CBM strategy is less than 0.02, com-
pared to 0.035 for the PBM strategy. Figs. 5(c) and 5(d) show
statistic information obtained from 100 independent simulation
experiments. The median of buffer size resulted from our CBM
strategy is only 70% of that for the PBM strategy and the me-
dian of cumulative freezing time incurred by the CBM strategy
is around 70% of that incurred by the PBM strategy.

C. Sensitivity Analysis

In this subsection, we investigate how the performance of our
proposedCBM strategy varies as the system parameter changes
and users are sensitive to energy cost. For this purpose, we
adopt the energy cost as the cost function, namely,

. Note that, in the energy usage model, is set as 0.025
J/byte(which is adopted in[5]), and is set as 20, which is
larger than the value in [5], to represent the significant interests
of mobile users in the power-saving utility.
First, we analyze the impact of different buffer management

strategies on the amount of wasted data. Fig. 6(a) illustrates the
relative ratio of the amount of wasted data under different buffer
management strategies. The downloading rate has been nor-
malized by the streaming rate. Note that, the downloading rate
can be taken as an indicator of the underlying wireless channel
quality. The ABM strategy is chosen as the baseline to eval-
uate the efficiency of other buffer management strategies. In
the figure, PBM- refers to the PBM strategy that requests
video chunks per period. We can observe that, the amount of
data wasted by our CBM strategy is only around of
that of theABM strategy. Compared with the PBM strategy, our
CBM strategy can achieve a lower amount of wasted data than
that of PBM-2 and PBM-3 . In the figure, PBM-1 has the lowest
amount of wasted data, however, Fig. 6(b) points out that the
mean freezing time ofPBM-1 is the highest among all the strate-
gies and its fraction of freezing time has exceeded the tolerance
ratio . In Fig. 6(b), the mean freezing time of theABM strategy
is the lowest due to its aggressive downloading behavior. The
freezing time of our proposed CBM strategy is slightly higher
than that ofABM , but the amount of wasted data is significantly
decreased compared with ABM .
Fig. 7 further shows the mean energy cost induced by down-

loading wasted data under different buffer management strate-
gies. Compared with the most aggressive ABM strategy, CBM
can reduce the mean energy cost by around 70% on average.
When compared with PBM-2 and PBM-3, the percentage of
energy cost reduction achieved by CBM is around 30%-40% in
most cases.

Fig. 6. Relative ratio of wasted data and mean freezing time under different
ratios of download rate and streaming rate , ). (a)
Relative Ratio of the Amount of Wasted Data. (b) Mean Freezing Time.

Fig. 7. Mean energy consumption induced by downloading wasted data under
different ratios of download rate and streaming rate ,

.

Second, we analyze the performance of our CBM strategy
under different freezing-time tolerance ratios (i.e., ). From
Fig. 8, we can see that the mean energy cost decreases when
increasing . Moreover, we can observe that the convexity of
the curve suggests that, the marginal gain in the energy cost
diminishes as increases. Specifically, as increases from 0.01
to 0.03, the reduction of the mean energy cost is around 20%. If
increasing from 0.08 to 0.1, the reduction of the mean energy
cost is only around 5%. Intuitively, more stringent requirements
on freezing time will force mobile users to download more
video data when the download rate is high, in order to mitigate
the impacts of network condition fluctuation.
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Fig. 8. Mean energy cost under different tolerance ratios of freezing time,
, .

Fig. 9. Mean energy cost under different power-saving utility thresholds,
, .

Finally, we investigate how our CBM strategy would behave
under different values of , which indicates the time average
power-saving utility threshold during one time slot. Larger
drives mobile users to download more video data when the net-
work condition is good, because mobile users can gain more
utilities if downloading more video data when a higher down-
load rate is possible. Fig. 9 illustrates the impacts of various
. The mean energy cost increases with , and the underlying
reason is that more video data will be requested and downloaded
when the download rate is high.

D. Virtual Queues Analysis

In our online strategies, and are used as the bounds for
the two virtual queues and . The user-defined sunk
cost function is defined as .
To validate whether the mean energy cost under the CBM

strategy can approach to the optimal mean energy cost of
Problem (2) with distance ( can be any small number),
we need to confirm the existence of finite and . Fig. 10
shows the results under various values of and . The value
of is normalized by the playback rate of the video.
From the figure, we can observe that the mean energy cost

is constant when and are larger than a certain threshold
value. Therefore, the upper bounds on the occupancy of the two
virtual queues under the optimal solution of Problem 2 are finite;
Otherwise, the mean energy cost will increase with and all
the time (proven in Theorem IV.2). We also observe that large
values of and (i.e., and as illustrated in

Fig. 10. Impacts of and on the mean energy cost under the CBM strategy
( , , ). (a) Mean energy cost under
various . (b) Mean energy cost under various .

Fig. 10) can ensure that the CBM strategy approaches to the
optimality with any small distance without violating the QoE
constraints.

VI. CONCLUSIONS

In this paper, we investigated the over-buffering problem
widely observed in mobile video streaming applications, by
introducing an intelligent buffer management strategy. We
formulated the buffer management problem as a constrained
stochastic optimization problem, whose objective is to mini-
mize the total sunk cost, including both energy consumption
and bandwidth cost, under QoE and utility constraints. Lever-
aging the Lyaponov optimization framework, we derived an
online cost-aware buffer management strategy CBM , which
adaptively controls the buffer level in response to the stochastic
channel condition and the buffer state. Our online algorithm
has been verified via extensive simulations with real trace data.
Compared to other buffer management strategies, our CBM
strategy can significantly reduce the sunk cost due to uncon-
sumed video data in the buffer, while providing a decent QoS
measured by the percent of video freezing time. In our future
work, we plan to extend our framework to address the same
issue for adaptive bit rate (ABR) mobile streaming applications.
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