
Content Routing and Lookup Schemes using Global

Bloom Filter for Content-Delivery-as-a-Service

Yichao Jin and Yonggang Wen

School of Computer Engineering

Nanyang Technological University

{yjin3, ygwen}@ntu.edu.sg

Abstract—Leveraging cloud computing technology, we have
proposed content-delivery-as-a-service (CoDaaS) to distribute
user generated content (UGC) in an efficient and economical
fashion. However, due to the exponential increases of Internet
traffic, traditional hashing-based content routing and lookup
scheme suffers from high delay. This paper introduces a global
compressed counting bloom filter (CCBF) into CoDaaS to address
this issue. The global CCBF adds our system with the capability
to early check the existence of any specific content among all
the peering surrogates, before any local checking on each cache
node. Using this global CCBF, we propose two content routing
and lookup mechanisms (parallel and cut-through schemes) to
reduce the delay for better user experience. We verify the com-
parative performance of those approaches via both mathematical
modeling and experimental simulation. The results show that
for light traffic load, the mean response time can be saved by
up to 65.2%. Besides, the impacts and overheads of different

synchronization schemes for the CCBF are quantified to provide
valuable insights for further optimizations.

I. INTRODUCTION

The rapid growth of user-generated content (UGC) on

the Internet stresses existing content distribution networks

(CDNs), and its unique characteristics require novel schemes

for the processing and distribution. UGC is currently one of

the fastest growing forms of contents [1]. In 2008, 42.8% of

Internet users in the U.S contributed to the UGC, and this ratio

is expected to reach 51.8% by 2013. UGC, due to its long-tail

nature and unique features (e.g., conversational media, social

interaction, etc), posits additional challenges for its delivery.

On the other hand, the leading CDNs service providers (e.g.,

Akamai, Limelight, etc), tailor their network architecture and

operational structure towards popular contents. As a result, it

is difficult to distribute heavily long-tailed contents over CDNs

in a profitable way. We have previously proposed a novel

architecture, Content-Delivery-as-a-Service (CoDaaS) [2], [3],

by leveraging cloud computing technologies, to distribute

UGCs in the most economic manner.

In addition to the cost objective, the proposed CoDaaS also

aims to provide the best possible user experience to the content

consumers. One of the quality-of-service (QoS) objectives is

to minimize the request response time [4]. The response time

basically depends on two processes in content distribution,

including content route and content lookup. In traditional

CDNs [5]–[7], these two processes are normally executed in

sequential order, which directly translates into poor QoS in

terms of high lookup latency and consequent long response

time. In CoDaaS, we seek to reduce the request response time

by parallelling these two processes.

In this research, we introduce a global bloom filter into

CoDaaS to minimize the request response time. Specifically,

the global bloom filter is maintained by all the surrogates in

CoDaaS, to represent the existence of cached contents. It pro-

vides the capability to make an early decision on whether the

requested content is cached in the CoDaaS before the request is

routed to the designated server. Compared to traditional CDNs,

our approach executes content route and lookup processes in

parallel. As a result, the request response time can be reduced,

providing an improved user experience.

Our contributions are multi-fold, including:

• We propose two content routing and lookup schemes (i.e.,

parallel and cut-through), using the global bloom filter to

reduce the response time.

• We introduce a mathematical model to justify the po-

tential gain of our proposed content routing and look

schemes, and analyze their limitations.

• We quantify the performance gain and the overhead of

our proposes schemes via a system-level simulation. Our

numerical results suggest that, for light-loaded traffic

(e.g., Twitter-like applications), the average request re-

sponse time for our proposed content routing and lookup

schemes can be reduced by up to 65.2%, compared to

the sequential one. Our simulation results also suggest

mechanisms to optimize the proposed schemes to reduce

the impact of false positive inherent to BF, and false

negative and the traffic overhead, resulting from the BF

synchronization.

These results provide a fundamental basis to understand the

benefits of using bloom filter for content routing and look

up, and offer operational guidelines to optimize the design of

CoDaaS for best possible user experience.

The rest of the paper is organized as follows. In Section II,

we show some related works. In Section III, we present the

system architecture for CoDaaS and the proposed schemes

by using bloom filter for content routing and lookup. In

Section IV, we introduce a mathematical model to examine

the potential gain and the overhead of the content routing

and lookup schemes. In Section V, we outline the simulation

environment and present the numerical results. In Section VI,

we summarize the paper and point out potential future works.



II. RELATED WORK

Pervious researches on content routing design for CDNs

mainly focused on the hashing-based approaches. The hashing-

based method [5] was proposed to route the content request to

desirable surrogate according to the hash value. Another semi-

hashing-based scheme [6] was proposed to strike a balance

between local hit ratio and cluster hit ratio. Other schemes

were also proposed to improve the CDNs performance, in-

cluding load and proximity-aware routing scheme [7], and

decentralized replica-selection for cloud services [8].

Bloom filter (BF) [9] was also used intensively for network

applications. Cache digest [10] uses BF to indicate the ex-

istence of local cached replications. L. Fan et al. introduced

counting bloom filter (CBF) for web cache sharing to improve

the Internet Cache Protocol (ICP) [11]. BF also was used to

route content within Internet routers [12].

Our work differentiates from these pervious researches in

several aspects. First, we use BF to jointly optimize the two

processes of content routing and lookup for content delivery.

Second, our design objective is to minimize the request

response time, which can be translated into a better QoS.

Finally, we introduce a mathematical framework to justify the

validity of our proposed scheme and the performance gain is

verifies by a system-level simulation over CDNsim [13].

III. SYSTEM OVERVIEW

In this section, we present a schematic overview of

the Content-Delivery-as-a-Service (CoDaaS) architecture, and

then explain the concept of bloom filter. Finally, we propose

two alterative schemes, based on the usage of a global bloom

filter, to improve the content routing and lookup scheme.

A. CoDaaS Architecture

The CoDaaS architecture consists of a media cloud, content

providers and consumers. The media cloud is made of a list of

interconnected virtual machines (VMs), which are instantiated

in geographically distributed data centers. The set of VMs can

form a CDN overlay dynamically to cache and render contents.

Content providers can publish their contents in origin servers

with a specified service level agreement (SLA). The content

consumers experience a better QoS with the controlled content

distribution. The resources consumed by the CDN overlay

can be scaled up and down to meet application demand,

thus reducing the total cost of ownership. More details about

CoDaaS can be found in [2], [3].

In Figure 1, we illustrate the joint process of content

routing and lookup for CoDaaS. When the consumer requests

a content, the request, after entering the CoDaaS system, will

be routed from its ingress point to the designated server. The

designated server will do a content lookup in its local storage

to determine whether the content has been cached. In case

of a cache hit, the content will be served from the designated

server to the users. In case of a cache miss, the content will be

retrieved from the origin server and then served to the users.

In CoDaaS, we aim to optimize these two processes to reduce

the response time, by introducing a global bloom filter.

Fig. 1: Content routing and lookup scheme for CoDaaS

B. Global Bloom Filter

1) Bloom Filter and Its Variation: In this paper, we use

a compressed counting bloom filter, which is a variation of

standard BF, for content routing and lookup in CoDaaS.

A standard bloom filter (BF) is a bit array of m bits to

represent a set of n elements S, by using k independent

hash functions h1, h2...hk. For each element s in S, it sets
each hi(s), i = (1, 2...k) bit to 1 for insertion. To check

the existence of any element x, it checks whether all the

hi(s), i = (1, 2...k) bits are 1. Due to the hashing collision, a
false positive [9] may occur with the probability as

fbf ≈ (1− e−kn/m)k. (1)

The counting bloom filter (CBF) is derived from the stan-

dard BF. It uses m fixed size integers instead of m single

bits for presence. For an insertion or deletion operation, the

corresponding counters increase or decrease by 1. Thus, CBF

provides the deletion capability. In this work, we use four bits

counters to construct our CBF, which has been shown to be

sufficient for most network applications [11].

To reduce the transmission size of CBF as a message,

compressed counting bloom filter (CCBF) is used. This work

adopts the multi-layer compressed counting bloom filter (ML-

CCBF) [14] that uses the run-length code to encode CBF

messages. This encoding process can save up to 50% of the

transmission traffic. Moreover, we also use a Delta compres-

sion scheme to further reduce the transmission size by only

transferring the changes for each layer in our CCBF.

2) Synchronization Schemes: Synchronization is a process

of establishing consistency of the global bloom filter among all

the surrogates by exchanging sync messages. In this research,

we consider two alternative trigger schemes for CCBF syn-

chronization. One is the periodic update mode, in which each

surrogate broadcasts its update in a regular interval. The other

is the event-driven update model, in which the broadcast is

triggered by some predetermined events (e.g., the reception of

a fixed number of requests). These two sectionalization modes

will have different impact on the performance gain and the

overhead, as verified in Section V.

C. Workflows for Content Routing and Lookup Schemes

In this paper, as illustrated in figure 2, we consider three

alternative content routing and lookup schemes for CoDaaS.



(a) Sequential Scheme

(b) Parallel Scheme

(c) Cut-through Scheme

Fig. 2: Workflow diagrams for three alternative content routing

and lookup schemes in CoDaaS

Figure 2-(a) illustrates the workflow of the traditional

scheme, in which content routing and lookup processes are

executed sequentially. In a DHT-based scheme, the routing

process takes on average dlog2 Ne hops to reach the desig-

nated server, where N is the active number of the surrogates

in CoDaaS. The content lookup process starts when the request

is routed to the designated server. For the cache hit case, the

designated server immediately replies to the user. Otherwise, it

will retrieve the content from its origin server and then render

it to the consumer.

The key idea in this research is to use a global CCBF

to determine whether the request content has been cached

in CoDaaS, at the ingress point of each request. This early

decision offers a chance for CoDaaS to retrieve the content

in parallel with the request routing. Using this insight, we

propose two content routing and lookup schemes for CoDaaS,

including a parallel scheme and a cut-through scheme.

Figure 2-(b) illustrates the workflow of the parallel scheme.

In case of a cache miss, the ingress directly acquires the con-

tent from its origin server. The ingress server, upon receiving

the content from the original server, renders the content to

the consumer and forward a copy to the designated server for

caching. This scheme executes content routing and content

lookup in parallel, thus reducing the request response time.

Figure 2-(c) illustrates the workflow of the cut-through

Fig. 3: Service Components for Content Routing and Lookup

scheme. Upon a cache miss, the ingress redirects the request

from the user directly to the origin server. At the same time, the

request is routed to the designated server, which will retrieve

a copy of the content directly from the original server for

caching purpose. This scheme reduces the request response

time significantly by cutting through the CoDaaS system;

however, it increases the traffic load to the origin server.

In next two sections, we will compare the performance of

these three schemes analytically and numerically.

IV. MATHEMATICAL FORMULATION

In this section, we develop a mathematical model to com-

pare the performance of the aforementioned three schemes for

content routing and lookup in CoDaaS.

A. Latency for Content Routing and Lookup

1) System Stability: We first ensure the system is stable to

keep every service queues are finite.

The request arrival process at ingress Ii for a particular

content c, can be modeled as a Poisson process with mean

arrival rate λc
i . The ingress server Ii serves these requests with

a rate of µij , at which they will be forward to their designated

surrogate Dj . We assume the capacity of the routing path is

Cij , (i 6= j). Thus, the system stability condition is given by,
∑

∀c

λc
i <

∑

∀j

{min(µij, Cij)}. (2)

In CoDaaS, each surrogate may either be the ingress, relay

or the designated server to serve the requests. When surrogate

i works as an ingress or a relay, it checks the routing table to
determine the next hop for current requested content c. When

surrogate i works as the designated server, it checks its own

storage with the service rate µi to determine whether there is

a cache hit or miss, denoted as pc (0 for cache miss and 1

for cache hit). We refer µo as the serving rate at origin server,

and Co as the bandwidth capacity at origin server. The stability

condition for the original server is given by,
∑

∀i

∑

∀c

λc
i (1 − pc) < min(µo, Co). (3)

2) Service Components for Content Routing and Lookup:

As indicated in figure 3, there are several service components

involved in the content routing and lookup process. They serve

as the foundations to calculate the expected request repones

time under a chosen scheme.



The routing process directs the requests from the ingress to

their designated server. It can be viewed as a M/M/1 queue

with the mean arrival rate λc
i and the mean service rate µij at

surrogate i. Thus, we have the mean routing latency Tr as,

E[Tr] = dlog2Ne(
∑

∀j

µij −
∑

∀c

λc
i )

−1. (4)

The lookup process occurs in the designated servers for each

requests. It can be modeled as a M/M/1 queue with the service

rate µi at surrogate i. Assuming the hash functions are well

designed, the contents must be evenly distributed among all

the surrogates. Thus, the mean content lookup delay Tl is,

E[Tl] = (µi −
1

N

∑

∀i

∑

∀c

λc
i )

−1. (5)

For the cache miss cases, the content retrieve process, which

also constructs a M/M/1 queue, is required at the origin server.

Assuming α is cache hit rate and 1−α is cache miss rate, we

have the expectation of the content retrieve time To as,

E[To] = (µo − (1− α)
∑

∀i

∑

∀c

λc
i )

−1. (6)

Finally, there exists a M/M/1 queue when designated surro-

gates j return the request content to users via its network card
with service rate µ′

j . The mean content return time Tc is,

E[Tc] = (µ′

j −
∑

∀i

∑

∀c

λc
ij)

−1. (7)

3) Workflow Analysis: Figure 4 illustrates the processing

models for the three content routing and lookup schemes.

Analytic results are presented based on these models.

Figure 4-(a) shows the workflow of sequential scheme. Each

incoming request in this way has to follow the content routing

and the lookup process no matter there is a cache hit or a

cache miss. Moreover, for a cache miss, it will cost extra To

time to retrieve the content from origin server. At last, for

both conditions, the designated surrogates returns the content

to users only after all the previous requests are served. Thus,

we have mean response time Rt for traditional scheme as,

E[Rt] = αE[Tr+Tl]+(1−α)(E[Tr+Tl]+E[To])+E[Tc]. (8)

The parallel scheme parallelizes the retrieve operation with

the content routing and lookup process as shown in figure 4-

(b). Hence, for a cache miss, Tr could be saved to make the

response. However, the overhead of this operation includes

both false positive fp, false negative fn and the extra sync

messages. The mean response time Rp for this scheme is,

E[Rp] = (α+ fp − fn)(E[Tr + Tl] +
fpE[To]

α+fp−fn
) (9)

+ (1− α− fp + fn)E[To] + E[Tc].

The cut-through scheme further cuts the content return time

from designated surrogate by redirecting requests to the origin

server for cache misses as indicated in figure 4-(c). Thus the

mean response time Rc for cut-through scheme is,

E[Rc] = (α+ fp − fn)(E[Tr + Tl] +
fpE[To]

α+fp−fn
) (10)

+ (1− α− fp + fn)E[To].

(a) Sequential Scheme

(b) Parallel Scheme

(c) Cut-Through Scheme

Fig. 4: Processing Models on the Three Schemes

Nevertheless, the cut-through scheme doubles the traffic

load at origin server for cache misses. Therefore, it may cause

congestion, which can further lead to severe delay. Let η be

the corresponding congestion factor [15], and Sc be the size of

requested content. To avoid the congestion at the origin server,

the following inequality must be satisfied,

2(1− α− fp + fn)E[Sc]
∑

∀i

∑

∀c

λc
i < ηCo. (11)

B. Overhead of Importing Global CCBF

1) False Positive & False Negative: Two factors may lead

to false positive, including the nature of CBF and the incon-

sistency problem when the cached content has been replaced.

Since in CoDaaS, the cached content must be the most popular

ones, and the requests follow zipf law [18], the false positive

caused by inconsistency is negligible. As a result, the false

positive fp is roughly equal with fbf as expressed by Eq. (1).

The false negative is only introduced by the consistency

issues when each surrogate synchronize the global CCBF.

Thus, it is affected only by the frequency of synchronization.

2) Synchronization Messages: Apart from the congestion

that may occur at the origin server, the sync messages could

also introduce jams inside the CoDaaS. For each surrogate

i, its outcoming traffic consists of sync messages, content

transfer and request forwarding. The overall traffic must not

exceed its bandwidth capacity to avoid the traffic congestion.

For the parallel scheme, the content transfer occurs for both

cache misses and hits. And for cache misses, this traffic will

be doubled. Let λs as the sync rate, Sf as the size of CCBF,

and Sr as the size of content request. The following inequality

should be satisfied to avoid congestion,

λsE[Sf ]+((2−α−fp+fn)E[Sc]+E[Sr])
∑

∀c

λ
c
i < η

∑

∀j

Cij . (12)

Similarly, for cut-through scheme, the content transfer from

surrogate to customers only happens for cache hits. Thus, the



congestion free condition for cut-through scheme is given by,

λsE[Sf ] + ((α+ fp − fn)E[Sc] +E[Sr])
∑

∀c

λ
c
i < η

∑

∀j

Cij . (13)

V. SIMULATION AND RESULTS

This section provides the details on simulation methodology

and settings. Then the analysis on the results are presented.

A. Simulation Methodology and Setup

1) Simulation Tool: We use CDNsim [13] to build our

simulation environment. CDNsim is a discrete event simula-

tion tool based on OMNeT++ library designed for CDNs. We

modify some basic modules to fit our implementation and add

the three content routing and lookup policies into this tool.

We simulate N = 50 homogenous VMs as geographically

distributed surrogates to construct the media cloud inside the

CoDaaS. All the surrogates are coordinated by a DHT ring

using Chord protocol [16]. The modulo function is used to

hash the identification of both contents and surrogates. The

cache capacity of each surrogate is 2% of the total size of

the objects in the origin server. And the cache replacement

policy is Least Recently Used (LRU). We use GT-ITM [17] to

generate a real Internet topology model, Transit-Stub model

with 1008 routers dispersed at different areas. There is only

one origin server, which hosts 50000 unique content objects

with the total size of approximately 5GB retrieved from a

social website. The service capacity is 500reqs/s for each sur-
rogate, and 1000reqs/s for the origin server. We assume the

size of each request occupies 60 Bytes (i.e., Sreq = 480bits).
Besides, we define the link capacity among all the nodes as

Co = 100Mbps, and
∑

∀j Cij = 100Mbps for surrogate i.
We generate requests from 100 client groups with the mean

interval time at 0.01 second (i.e.,
∑

∀i

∑
∀c λ

c
i = 100reqs/s).

The distribution of the interval time of all the request follows

exponential distribution, and distribution of requested content

follows zipf law [18] to make the access pattern much closer to

realistic ones. In this setting, the stability of our CDN system

can be ensured by satisfying both Eq. (2) and (3).

The hash functions of the bloom filter are built by dividing a

128-bits MD5 signature for each URL into four 32-bits words,

and the modulus of each word by the number of counters

are the hash values. The maximum volume of the counter

bloom filter is set at 20Kb (i.e., 5000 counters) which is a

reasonable size that can keep the false positive rate below 1%

for zipf distributed enquires. We compress the global counting

bloom filter using ML-CCBF [14]. And the delta compression

algorithm is used to compress the sync message to further

reduce the transmission size.

B. False Positive & False Negative

Figure 5 shows the relationship between synchronization

frequency and false positives/negatives. We implement both

periodical and event-driven sync schemes. The results indicate

that the two schemes present almost the same trend. This can

be attributed to the fact that for a given incoming pattern, the

expectation for the inter-arrival time is fixed.

(a) Event-Driven Scheme (b) Periodical Scheme

Fig. 5: False Hit/Miss under Two Synchronization Schemes

(a) Light Traffic (b) Heavy Traffic

Fig. 6: User Perceived Response Time under Two Scenarios:

(a) Popularity of Content is Inversely Proportional to Its Size;

(b) Popularity of Content is Proportional to Its Size

As the interval increases, the false negatives increase ac-

cordingly, while the false positives maintain at a certain level

as discussed in section IV-B. When the sync frequency is

extremely high (i.e., one sync for every single request), there

is no false negatives at all. But this setting could generate

intensive synchronization traffic. When the frequency is higher

than once per 400 requests for event-driven scheme or once

per 100 seconds for periodical scheme, the false negatives can

be controlled below 1 %. And in this case the traffic load could

also be kept at a relatively low level.

C. Improvement on User Perceived Response Time

We simulate two scenarios to test our system. One is that

the popularity of an object is inversely proportional to its size,

that is, the smallest content is most popular. The other one is

that the largest content has the highest popularity. Hence, the

average size of requested content Sc for these two scenarios

is around 32Kb and 170Kb respectively, to simulate different

level of traffic load on data plane. The sync frequency for

the global bloom filter is set at once per 400 requests using

the event-driven scheme. Various cache hit rates are set by

initializing the global bloom filter and the cached content in

each surrogate. This simulation lasts for 1000 seconds. The

results are presented by figure 6.

In the first scenario, the average response time of cut-

through scheme is the lowest, while the traditional scheme

costs the highest delay among all the three mechanisms, as

expressed in Eq. (8) (9) (10). When there is no cache hit, the

gap between our proposed schemes and the traditional one is

the largest for all the cases. The parallel scheme and the cut-

through scheme are able to reduce the mean response time by



(a) Event-Driven Sync Scheme (b) Periodical Sync Scheme

Fig. 7: Synchronization Frequency vs. User Response Time

23.6% and 65.2% compared with that required by the sequen-

tial one. As the cache hit ratio goes up, the performances of

the three schemes get closer, because the workflows are the

same for cache hits. Finally, when all the requests are cache

hit, the results from the three policies arrive at the same point.

The interesting observation in figure 6-(a) is the mean re-

sponse time of both traditional sequential scheme and parallel

scheme decreases, while the time required by cut-through

scheme increase, as the cache hit ratio raises. It indicates

that as long as there is no traffic congestion (i.e., Eq. (11)

is satisfied), it is advantageous to redirect the missed requests

to origin server in terms of minimizing the response time.

In the second scenario, the parallel scheme still needs

less response time than that of the sequential scheme for

all the cases, while the cut-through scheme suffers from the

congestion when the true cache hit rate is lower than 30%.

But the cut-through scheme performs most efficiently again

when the cache hit rate passes the congestion threshold as

derived from Eq. (11). It may motivate us to adopt an adaptive

algorithm, which adopts the cut-through scheme when there

is no congestion, and dynamically changes into the parallel

scheme when the cache miss rate exceed the threshold.

D. Impact of Synchronization Traffic

Figure 7 presents the relationship between the sync fre-

quency and the response time. To investigate the impact of

sync traffic on the response time, we experiment on a set of

sync frequency based on both event-driven and time-driven to

generate different levels of sync traffic. This simulation is un-

der the condition that the popularity of content is proportional

to its size, and the cache hit rate is 50%.

Figure 7-(a) shows how the sync frequency of event-driven

scheme affects the response time. Specifically, the response

time is much longer when the frequency is higher than once

per 5 requests for both schemes. The reason can be attributed

to the traffic jam inside CoDaaS as discussed in Eq. (12) (13).

As the frequency continues to increase, the sync traffic load

becomes lighter, but on the other hand, the false negative

increases. Such combined effects make the response time

lowest at the point of approximately one sync per 400 requests.

Figure 7-(b) shows how the frequency of periodical scheme

affects the response time. The response time is constrained by

the congestion inside the CoDaaS when the frequency is high

(i.e., higher than 10 syncs per second). In contrast, when the

frequency is extremely low (i.e., lower than one sync per 1000

seconds), the incurred false negative causes more faking cache

misses. This further introduces congestion at origin server, and

thus increases the response time.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose parallel and cut-through content

routing and lookup schemes by using a global compressed

counting bloom filter (CCBF). Mathematical models are pre-

sented to analyze both the user perceived response time

and the overheads of importing this CCBF, including false

positive/negative, traffic congestion, and synchronization cost.

Simulations are conducted to prove the performance of those

metrics. The simulation results match well with our analytic

models, indicating our proposed schemes can save up to 65.2%

mean response time for light traffic loads.

Our future work will aim to a congestion-aware adaptive

algorithm to further improve the efficiency of our content

routing and lookup scheme for all the traffic loads. We will

also aim to fully make use of VMs in CoDaaS, where the

service rate and storage capacity can be dynamically adjusted.

REFERENCES

[1] Paul Verna, A Spotlight on UGC Participants, online resource,
http://www.emarketer.com/Article.aspx?R=1006914 (2009)

[2] Y. Wen, G. Shi, et. al., Designing an inter-cloud messaging protocol for
content distribution as a service (CoDaaS) over future internet, 6th Int’l
Conference on Future Internet Technologies, pp. 91-93, 2011.

[3] Y. Jin, Y. Wen, et. al., CoDaaS: An Experimental Cloud-Centric Content
Delivery Platform for User-Generated Contents, 2012 Int’l Conference
on Computing, Networking and Communication, pp. 934-938, 2012.

[4] J. Chen, SHG. Chan, VOK. Li, Multipath routing for video delivery over
bandwidth-limited networks, IEEE JSAC, vol. 22, pp. 1920-1932, 2004.

[5] D. Karger, A. Sherman, et al., Web Caching with Consistent Hashing,
Computer Networks, vol. 31, no. 11-16, pp. 1203-1213, 1999.

[6] J. Ni, and D. Tsang, Large Scale Cooperative Caching and Application-
level Multicast in Multimedia Content Delivery Networks, IEEE Commu-
nications, vol. 43, pp. 98-105, 2005.

[7] M. Pathan, C. Vecchiola and R. Buyya, Load and Proximity Aware
Request-Redirection for Dynamic Load Distribution in Peering CDNs,
On The Move To Meaningful Internet Systems: OTM, 2008.

[8] P. Wendell, J. Jiang, et al., DONAR: Decentralized Server Selection for
Cloud Services, ACM SIGCOMM 2010, pp. 231-242, 2010.

[9] B. Bloom, Space/time tradeoffs in hash coding with allowable errors,
Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[10] A. Rousskov and D. Wessels, Cache Digests, Computer Networks and
ISDN Systems, vol. 30, pp. 2155-2168, 1998.

[11] L. Fan, P. Cao, et al., Summary Cache: A Scalable Wide Area Web Cache
Sharing Protocol, IEEE/ACM Trans. on Networking, vol. 8, no. 3, pp.
281-293, 2000.

[12] M. Lee, K. Cho, et al., SCAN: Scalable Content Routing for Content-
Aware Networking, IEEE ICC 2011, pp. 1-5, 2011.

[13] K. Stamos, G. Pallis, et al., CDNsim: A Simulation Tool for Content
Distribution Networks, ACM Transactions on Modeling and Computer
Simulation, 2009.

[14] D. Ficara, S. Giordano, et al., Multilayer Compressed Counting Bloom
Filters, IEEE INFOCOM 2008, pp. 311-315, 2008.

[15] R. Banner and A. Orda, Multipath routing Algorithms for Congestion
Minimization, IEEE/ACM Trans. on Networking, vol. 15, no. 2, pp. 413-
424, 2007.

[16] I. Stoica, R.Morris et al., Chord: A Scalable Peer-to-Peer Lookup Pro-
tocol for Internet Applications, IEEE/ACM Transactions on Networking,
vol. 11, no. 1, pp. 17-32, 2003.

[17] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an INternet-
work, IEEE INFOCOM 1996, pp. 594-602, 1996.

[18] L. Breslau, P. Cue, P. Cao, et al.,Web caching and Zipf-like distributions:
Evidence and implications, IEEE INFOCOM 1999, pp.126-134, 1999.


