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Abstract—The emergence of multi-screen cloud social TV has
the potential to transform TV experience, providing a unified
media experience across a diverse set of devices at an affordable
cost. One key technology to support unified media experience
across multiple screens is to instantiate a virtual machine (VM)
as a cloud clone of the user, to manage all his/her media outlets
(e.g., TV and smartphone), as implemented in our Cloud-Centric
Media Network (CCMN). In this case, as the user shifts his
attention from one device to another, the cloud clone can migrate
to another location for better quality of experience. In this paper,
we investigates the problem of cloud-clone migration for the
multi-screen social TV application, minimizing its monetary cost.
This problem can be cast into the Markov Decision Process
(MDP) framework, to balance a trade-off between the migration
cost and the transmission cost. Under this framework, we first
derive an upper and lower bound for the optimal monetary
cost, by considering a fixed placement policy and an offline
policy. We then follow up with an online policy using a dynamic
programming approach. Our numerical results indicate, up to
10% monetary cost can be saved, by optimally migrating the
cloud clone. Moreover, the cost reduction depends on the length
of content-delivery path, the data size associated with VM
migration, and the user behavior pattern. These insights would
offer operational guidelines to deliver cost effective multi-screen
social TV services over CCMN, potentially easing its adoption.

I. INTRODUCTION

Lately TV experience has been dramatically transformed,

with the emergence of multi-screen social TV [1]–[3]. First, a

traditional “laid-back” video watching experience is combined

with “lean-forward” social interactions among peer viewers,

resulting in an user-centric viewing environment [1]. Indeed,

one salient feature of social TV is to create a living-room TV

experience by allowing viewers in remote rooms to converse

around contents, via various communication modalities (e.g.,

text, graphics, audio, and video). Second, social TV offers

ubiquitous services that are available at anytime, anywhere, on

any device at an affordable cost, with personalized experiences

[2]. Finally, with the latest multi-screen or second-screen [3]

technology, users can transfer the ongoing sessions from one

device to another, without any service interruption. Nonethe-

less, given its highly regarded value, large-scale deployment

of social TV has been limited, if not totally absent.

In response to this market trend, we have designed and

implemented a multi-screen social TV system [4]–[6] over a

Cloud-Centric Media Network (CCMN) [7]. CCMN leverages

the cloud-computing paradigm to transform the media value

chain, by encapsulating a set of media services, including

distribution, rendering, processing and analytics, into a mid-

dleware and exposing them via Application Programming In-

terfaces (APIs) for application development. The multi-screen

cloud social TV is a pilot application on this platform, where

one particular feature is video teleportation [6]. In particular,

one can easily migrate video session back and forward among

different devices, with intuitive human-computer interactions.

The supporting technology is to instantiate a virtual machine

in the cloud as a cloud clone for each user1. It maintains all the

user sessions, transcodes contents and inserts personalized ads.

Moreover, the cloud clone would migrate to different locations

in the cloud, to optimize its performance.

In our multi-screen cloud social TV application, one design

objective is to minimize the monetary cost, potentially making

the service affordable to the general public. One possible

deployment scenario of our service is to rent cloud resources

from a vendor-neutral provider (e.g., AWS, Azure, etc). In

this case, we need to intelligently manage the resource rental

cost, dominated by the bandwidth cost. It consists of two parts,

including content transmission and cloud clone migration, both

of which in turn depends on the location of the cloud clone.

Therefore, an optimal policy to migrate the cloud clone should

be in place to minimize the total monetary cost.

Similar problems have been addressed by previous research,

often with a different cost metrics. In [8], the authors examined

the energy tradeoff between video transport and processing for

multi-view video streaming, to obtain the optimal location of

video processing node with the lowest energy cost. In [9],

the authors aimed to balance the tradeoff between content

transmission cost and storage cost, to find an optimal content

placement strategy with minimal monetary cost. However,

none of those works can be directly applied to our problem,

because they only investigated the fixed placement method,

while we want a dynamic cloud clone migration strategy.

In this paper, we formulate the cost-minimization problem

in the context of Markov Decision Process (MDP). Specfically,

we adopt a Markov process to model the user watching behav-

ior across TV and smartphone. The objective is to minimize

the monetary cost of operating the video teleportation service,

by migrating the cloud clone to the best location, as the user

1We will use virtual machine and cloud clone interchangeably in this paper.
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Fig. 1: Multi-screen cloud social TV Architecture

shifts his device. Under this framework, we first consider a

fixed placement policy and an offline policy to obtain an upper

and a lower bound for the optimal cost. We then propose

an online policy based on a dynamic programming approach.

Extensive simulations are conduct to evaluate the proposed

strategies, with inputs from real traces. Our numerical results

suggest, up to 10% monetary cost can be saved in typical

scenarios. The cost saving depends on the length of content

delivery path, the data size of VM migration and the user

behavior pattern. These insights would offer operational guide-

lines to deliver cost effective multi-screen social TV service

over CCMN, potentially easing its adoption.

The rest of this paper is organized as follows. In Section

II we present system architecture and problem formulation.

In Section III, we proposes three alternative algorithms to

derive the optimal cloud clone migration policy. In Section

IV, numerical evaluation of system performance is conduct

with real-trace. Section V summarizes this paper.

II. SYSTEM OVERVIEW & PROBLEM FORMULATION

In this section, we first present an architecture of the multi-

screen cloud social TV system. Then we focus on the video

teleportation feature, including its user behavior model and

cost model. Finally, we formulate the minimum-cost cloud

clone migration problem under a Markov Decision Process.

A. System Architecture

In Figure 1, we present a systematic view of our cloud

based multi-screen social TV system. The system is built upon

a media cloud, which provides on-demand media services,

including content distribution, media processing, content adap-

tation and media analytics via APIs. End users are connected

via residential gateways to the cloud.

Our system offers a highly-touted multi-screen experience

via video teleportation, in which one user simultaneously op-

erates multiple devices (e.g., TV and smartphone) and desires

to migrate video session from one device to another without

interruption. The enabling technology for this feature is that

each user is represented by a virtual machine (VM), serving as

his proxy in the cloud, to manage all the associated devices and

session information. It also offers other functionalities, such

as video transcoding and ad-insertion to support personalized

multi-screen experience. We call it cloud clone in our research.

(a) Real user case

PhoneTV

pt

pp

ptp= 1-pt

ppt= 1-pp

(b) Device switching model as a Markov chain

Fig. 2: User behavior model on video session migration

When substantiated, it locates in a position that best serves

the end user. As the user moves around or shift sessions

from one device to another, the cloud clone will migrate

correspondingly. In addition, the VM migration also aims to

minimize its monetary operational cost.

B. System Assumptions

1) Content Processing Model: In this paper, we assume that

the cloud clone performs two content processing functions,

including video transcoding and ad insertion. Through these

processing procedures, a content of size Bo will be changed

to Bt in the following two cases.

Bo ≤ Bt: When the user is consuming the content on a

bigger screen (e.g., TV), Bo would be smaller than Bt. In

this case, the cloud clone will insert a few personalized ads

into the original content, and delivery the combined video

streaming to end users. This method has become a key online

monetization strategy [10]. At the same time, some set-top

boxes may not support the latest video format (e.g., H.264

high profile), requiring the cloud clone to transcode the content

into a compatible one with bigger size (e.g., H.264 baseline

profile). Note, the transmission cost for the cloud clone to load

advertising videos is ignored, since we assume the cloud has

pre-loaded all those data at each node.

Bo > Bt: When the user is consuming the content on a

smaller screen (e.g., mobilephone), Bo would be larger than

Bt. The reason is, the video resolution and bitrate for such a

device are significantly lower than those of the original one.

2) User Behavior Model: We model user behavior across

different devices as a Markov process, which has been widely

adopted to characterize a variety of user behaviors on online

social activities [11] and IPTV interactions [12]. Without loss

of generality, the user is assumed to switch between two

devices (TV and phone), thus the model has two corresponding

states. This model can be easily extended for more devices.

Figure 2(a) captures a real use case when an user shifts his

attention between TV and mobilephone. This scenario can be

modelled by a Markov process with two states, as illustrated

in Figure 2(b). In this model, the state transition matrix is

completely determined by pt (the probability in which the user

uses TV in both the current and the next time slot) and pp (the

probability in which the user uses mobilephone in both the

current and the next time slot). Accordingly, we have ptp =
1 − pt, ppt = 1 − pp, where ptp and ppt are the user device

switching probability between TV and phone.
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3) Cost Model: In supporting cloud clone migration, the

system would incur three cost components, including a trans-

mission cost, a migration cost (if any) and a processing cost.

The transmission cost infers to the bandwidth cost when videos

are transmitted from the source to the user. The migration

cost corresponds to the bandwidth consumed for the cloud

clone migrates from one node to another. The processing

cost corresponds to the resources consumed when the cloud

clone responses to user requests, and processes the requested

contents. Note the processing cost is constant no matter where

the cloud clone is placed. As a result, we only focus on the

transmission cost and the migration cost in this paper.

In this research, we consider an operational model in

which the media service provider rents cloud resources from

a vendor-neutral cloud provider (e.g., Amazon AWS and

Windows Azure). We adopt the on-demand pricing model in

this work, because media service is often real-time.

For a chosen content, we assume a content delivery path

from the source to the end user. The path length is L, and there

are overall L+1 nodes including the source node, the end user

node and L − 1 intermediate nodes. Node along the path is

indexed as k according to its hop distance to the source. Note

that, the cloud clone can locate at neither the user side nor

the content source. We assume the monetary cost incurred by

transmission is proportional to the traversed hop distance and

the content size. When the cloud clone is at k, k ∈ {1, ..., L−
1}, the transmission cost in a time slot is,

Ctr(k) = αBok + αBt(L− k), (1)

where α is the per hop price to transmit per GB data, Bo is

the original content size, and Bt is the content size after the

cloud clone processes this content.

The monetary cost for cloud clone migration, includes both

VM processing cost to initialize and complete the migration,

and the transmission cost to send the session data to its new

destination. Therefore, the monetary cost charged by migrating

cloud clone from one node k to another node k′ is,

Cmig(k, k
′) = αVmig |k − k

′|+ β, k 6= k
′

, (2)

where k′ ∈ {1, ..., L − 1} denotes the hop distance from

the cloud clone to media source after migration, Vmig is the

migrated data volume, and β is the additional price to initialize

and complete each migration.

C. Markov Decision Process Formulation

Using the system models, we introduce Markov decision

process (MDP) to formulate the cloud clone migration prob-

lem. Specifically, the MDP formulation is a 4-tuple including

the system state set, the scheduling action set, the state

transition matrix and the cost function.

System States: We define a system state at time slot t as

st = (lt, ut) by jointly considering the location of cloud clone

and active user device type. lt ∈ {1, 2, ..., L− 1} denotes the

location of cloud clone at time slot t. ut ∈ {TV, Phone}
denotes the user device type at time slot t. As a result,

this system state set S = {s1, ..., sT } can represent both the

changes initiated by the user, and the corresponding cloud

clone migrations made by the system, where T denotes the

period that the user is interacting with our system.
Cloud Clone Migration Actions: The scheduler action set

A = {a1, ..., aT } defines the destination of the cloud clone

migration at each time slot. Specifically, we model the action

at as the migration decision at time slot t, where at = k,

k ∈ {1, ..., L− 1}, denotes the cloud clone migrates from its

current location lt to a new place lt+1 = k. We treat lt = lt+1

as the case that no migration is taken at time slot t.
State Transition: The transition from state st = s to

st+1 = s′ is determined by both the user behavior model and

the cloud clone migration decision. Since the user decision is

independent of the cloud clone migration, we have the transi-

tion probability Pat
(s, s′), that action a in state s = (l, u) at

time t will lead to state s′ = (l′, u′) at time slot t+ 1 as,

Pat
(s, s′) = Pr(st+1=(l′,u′)|st=(l,u),l′=at) (3)

= Pr(lt+1=l′|lt=l,l′=at)Pr(ut+1=u′|ut=u),

where Pr(ut+1=u′|ut=u) can be obtained from the transition

matrix of user behavior model, and Pr(lt+1=l′|lt=l,l′=a) is

determined by the action policy π(st) = at.

Cost Function: We define the cost function Rat
(s, s′) as

the total monetary cost consumed during the period from time

t to t+1. This cost includes both media transmission cost and

cloud clone migration cost. As a result, we have,

Rat
(s, s′) = Ctr(k) + (1− δ(k − k

′))Cmig(k, k
′), (4)

where δ(x) is the indicator function that δ(x) = 1 when x = 0,

and δ(x) = 0 otherwise. Thus 1− δ(k− k′) indicates whether

the migration should be taken at time slot t.

Optimization Objective: The goal is to find an optimal

migration policy π(st) = at, so that the cost can be minimized.

This objective can be further formulated as an unconstrained

optimization problem over a finite time horizon, as,

min
at

T−1∑

t=0

Rat
(st, st+1). (5)

III. MIGRATION STRATEGIES FOR CLOUD CLONE

In this section, we start with three simple case studies, to

illustrate the problem and the fundamental trade-off between

transmission cost and migration cost. Following that, we

propose three alternative methods to solve this problem.

A. Case Studies for Cloud Clone Placement

Figure 3 illustrates three cases for optimal cloud clone

placement. In these cases, we consider the content delivery

path as a line topology. Node S serves as the media source,

and the black node serves the cloud clone.
1) Case A: In this case, as shown in Figure 3(a), the end

user is always consuming the content on one device with a

larger screen (i.e. TV) and the retargeted content has a larger

size than that of the original content (i.e., Bo < Bt). It can

be shown that the optimal location for the cloud clone would

be the node nearest to the user along the delivery path, to

minimize the transmission cost.
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Fig. 3: Case studies on cloud clone migration

2) Case B: In this case, as shown in Figure 3(b), the end

user is always consuming the content on one device with a

smaller screen (i.e., smartphone) and the retargeted content has

a smaller size than that of the original content (i.e., Bo > Bt).

It can be shown that the optimal location for the cloud clone

would be the node nearest to the content source along the

delivery path, to minimize the transmission cost.

3) Case C: In this case, as shown in Figure 3(c), the

user switches between two devices when consuming the same

content. In the two phases, the optimal location for the cloud

clone could change in the process to minimize the total cost.

B. Fixed Placement & Cost Upper Bound

In this subsection, we propose a fixed placement strategy

for the cloud clone. We assume that the cloud clone does not

migrate during the content consumption period T . In this case,

the original problem is translated into a new problem of finding

one location along the content delivery path that would result

in the minimum transmission cost. The optimal cloud clone

location can be founded by an exhaustive searching approach,

in which we simply compute the cost for all L − 1 locations

and choose the one with the least cost.

Since the optimal location is a special case, the monetary

cost resulted from this fixed placement policy is an upper

bound for the minimum cost of the original migration problem.

C. Offline Algorithm & Cost Lower Bound

In this subsection, we investigate an offline algorithm, based

on dynamic programming approach, to solve the optimal

migration problem. Specifically, we assume that the scheduler

has the knowledge of all user behaviors U = {u1, ..., uT } in

advance. In this case, we have,

P̃at
(s, s′) =

{

1, u = ut, u′ = ut+1, l′ = at;

0, otherwise
. (6)

We denote v(st) as the minimal aggregated cost from st to

sT . Using value iteration in the backward induction, we have,

v(st) = min
at

{
∑

st+1

P̃at
(st, st+1)(Rat

(st, st+1) + v(st+1))}, (7)

where v(sT ) = 0 gives an initial value. By using this iterative

equation, we can find the optimal policy, given by,

π(st) = argmin
at

{
∑

st+1

P̃at
(st, st+1)(Rat

(st, st+1) + v(st+1))}. (8)

Since the scheduler has perfect information, it follows that

the monetary cost resulted from this offline algorithm is a

lower bound for the original clone migration problem. We will

verify this result with numerical simulations in Section IV.

D. Online Algorithm

This subsection proposes an online algorithm, based on

dynamic programming, to solve the problem. In this case, the

scheduler only knows the transition matrix of user behavior in

advance and can observe the user pattern as time evolves.

Similar to the offline method, we define v(st) as the minimal

expected aggregated cost from st to sT as,

v(st) = min
at

{
∑

st+1

Pat
(st, st+1)(Rat

(st, st+1) + v(st+1))}, (9)

where Pat
(st, st+1) is the transit probability as Eq. (3).

By still using a backward Bellman equation, we can derive

the optimal policy as,

π(st) = argmin
at

{
∑

st+1

Pat
(st, st+1)(Rat

(st, st+1) + v(st+1))}. (10)

It can be shown that the minimum cost resulted from this

online algorithm falls between the lower bound and upper

bound derived in previous two subsection, as verified by

performance evaluation in next section.

IV. PERFORMANCE EVALUATION

This section verifies the performance of those algorithms via

numerical simulations, based on real application scenarios.

A. Experimental Settings

We adopt the price information from Windows Azure [13].

Specifically, the per-hop price to transmit one Gigabyte data

is α = 0.12 USD/GB, the price to migrate cloud clone (i.e.,

create a new VM, and delete the previous one after all the

sessions have been migrated) is β = 0.02 USD, if we use the

extra small VM instance to implement cloud clone.

We use Cisco’s Media Experience Engine [14] as a refer-

ence to obtain the bitrate information. Specifically, we define

bo = 1500 kbps as the bitrate of live streaming sources with

640x480 resolution delivered by Veoh Network (a popular

Internet television provider). We set btt = 2000 kbps as the

bitrate, after the cloud clone inserts video advertisements into

the original video, and transcodes it into AVC (Advanced

Video Coding) SD (Standard Definition) output with 640x480

resolution for TV viewing. We set b
p
t = 400 kbps as the bitrate

when the source is transcoded into iPhone compliant MPEG-4

output with 480x320 resolution for iPhone player.
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Fig. 4: Minimal monetary cost vs. delivery path length

We assume each experiment lasts for 2 hours, and each time

slot is 10 seconds, since the video teleportation operation could

take around 10 seconds [4]. Thus, there are in total T = 720
slots in each period, and Bo = 1.875 MB, Bt

t = 2.5 MB,

and B
p
t = 0.5 MB in each time slot. In every experiment,

we run all the algorithms for 1000 rounds. At each round,

we generate the user behavior trace according to the Markov

model in section II-B. Only the average values are reported.

B. Monetary Cost

In this subsection, we evaluate the cost resulted from

different algorithms. Our focus is to understand the impact

of various system parameters on the monetary cost, ultimately

providing operational guidelines for deployment.

1) Delivery Path Length: Figure 4 shows the monetary cost

and the cost savings compared to the fixed placement, as a

function of delivery path length L, where pt=pp=0.99, and

Vmig=8 MB.

We have a few observations from this experiment. First, the

cost resulted from the online algorithm always falls between

the cost resulted from the fixed placement policy and the

offline algorithm, as suggested in our analysis in Section III.

This observation can be also applied to Figure 5 and 6. Second,

the monetary cost increases almost linearly as the delivery

length L increases. This observation can be traced by the

linear cost model as in Eq. (1) and (2). Finally, compared

to the fixed placement, our algorithm provides significant cost

saving, which increases as the length of the content delivery

path increases. For example, when L = 4 the optimal costs

from three algorithms are almost the same, whereas the cost

saving reaches more than 10% when L=17. In the latter case,

if the service would be offered to 100 users for one year, the

monetary cost saving can be as much as $100,000.

2) Migration Size: Figure 5 illustrates the monetary cost

and the cost savings, in terms of the migration size Vmig ,

where pt=pp=0.99, and L=10.

This experiment reveals a few insights. First, the cost

resulted from the fixed placement remains the same when

Vmig changes, because fact that there is no migration based

on this policy. Second, a threshold effect is observed, where

the cost remains constant when the migration size is beyond

the threshold. Specifically, for the set of chosen parameters in

the experiment, when Vmig < 100 MB, as Vmig increases, the

migration cost grows; when Vmig > 100 MB, the monetary
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Fig. 6: Minimal monetary cost vs. user behavior pattern

cost remains constant and is close to that from the fixed

placement. This effect can be understood as follows. When

the migration size is beyond a threshold, the migration cost

would be higher than the minimum transmission cost when

the cloud clone locates in the best location. In this situation, it

would be better if the cloud clone stays at its current location,

reducing to the case for the fixed placement policy.

3) User Behavior Pattern: Figure 6 illustrates the monetary

cost and the cost savings compared to the fixed placement, as a

function of user device switching probability ps = ptp = ppt,

where L=10, Vmig =64 MB, and pp = pt. This experiment

also reveals a threshold effect, in which the system behaves

differently on the two sides of the threshold transit probability

(ps = 0.01 in this case).

On one hand, when ps > 0.01, the cost savings are very

limited. Because if the user switches his device too often, the

high migration cost would prevent the cloud clone moving

such often. And the migration policy reduces to the fixed

placement policy. As such, the cost saving diminishes as the

transit probability increases.

On the other hand, when ps < 0.01, the minimum cost

grows, but the cost saving slightly decreases, as ps increases.

This can be understood as follows. When the device switch-

ing probably is relatively small, the the time spent on one

device dominates the other device; and as ps increases, the

relevant weight on one device starts to diminish. For the fixed

placement policy, the chance in which the cloud clone is not

placed in the optimal location increases, resulting in a higher

transmission cost; for the online algorithm, the frequency in

which the cloud cloud migrate is smaller than that for device

switching, resulting in a higher cost as in the fixed strategy.

The flat curve for the cost saving can be understood by

examing a saving function ∆(k, k′) by migrating cloud clone
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Fig. 7: Examples of the optimal migration scheduling policy

from location k to k′, defined as,

∆(k, k′) = tm(Ctr(k
′)− Ctr(k)) − Cmig(k, k

′), (11)

where tm is the time period from now to the next migration

(or the end of period T if there is no further migration). By

substituting Eq. (1) (2) into Eq. (11), we obtain,

∆(k, k′) =

{

α(k′ − k)(tm(B̄t − Bo)− Vmig) − β, k′ ≥ k

α(k′ − k)(tm(B̄t − Bo) + Vmig) − β, k′ < k
, (12)

where B̄t is the average retargeted content size during tm,

B̄t = (tpB
p
t + (tm − tp)B

t
t )/tm, (13)

and tp is the time the user spends on phone during tm.
In this case, the cost saving is determined by (B̄t − Bo),

which is in turn determined by tp. Since tp can not vary in a

large scale when ps < 0.01, the cost saving remains almost

the same, when ps changes.

C. Optimal Migration Polices

In this subsection, we investigate the optimal migration

policies through numerical simulations. Figure 7 presents four

examples of the online cloud clone migration scheduling.
We notice an interesting observation in all the examples,

that the optimal cloud clone location is either at the nearest

or the furthest node to user, regardless of delivery path length,

migration size and user behaviors. This can be understood

from Eq. (12), the cost saving function ∆(k, k′). Specifically,

the scheduler can check whether max∆(k, k′) > 0 to trigger

a migration. If a migration is required, the place which leads

to the maximal cost saving, is selected as the destination. It

can be seen that, ∆(k, k′) is a linear function of (k′ − k). As

a result, if ∆(k, k′) > 0, it is advantageous to migrate the

cloud clone to the furthest node to maximize (k′ − k), so that

the cost saving can be maximized. Otherwise, migration is not

required. Hence it is optimal to place the cloud clone at either

the nearest or the furthest node to user.

V. CONCLUSION AND FUTURE WORKS

This paper investigated the problem on minimizing mone-

tary cost via cloud clone migration in our social TV imple-

mentation. We formulated it as a Markov Decision Problem,

to balance a trade-off between the transmission cost and the

migration cost. Under this framework, we first consider a fixed

placement policy and an offline policy to obtain an upper and

lower bound for the optimal cost. We then proposed a more

practical online policy. The results indicated, up to 10% cost

can be saved in typical use scenarios, by optimally migrating

the cloud clone. The savings can be affected by the delivery

path length, the migration size and user behavior pattern.

Moreover, we also found the optimal cloud clone location is

either at the nearest or the furthest node to the user.
This work only considered the traffic from the source to the

users. The results might not hold if the traffic are from both

sides (e.g., video chatting when watching). We will investigate

it in our future works. Besides, our multi-screen social TV

system has been implemented on top of a private cloud at

NTU. It has been exposed to over 200 students in practice.

We will collect real user behaviors to verify our strategy.
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