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Abstract—Among different setups of cloud storage systems,
fountain-codes based distributed cloud storage system provides
reliable online storage solution through placing coded content
fragments into multiple storage nodes. Luby Transform (LT)
code is one of the popular fountain codes for storage systems
due to its efficient recovery. However, to ensure high success
decoding of fountain codes based storage, retrieval of additional
fragments is required, and this requirement introduces additional
delay, which is critical for content retrieval or downloading
applications. In this paper, we show that multiple-stage retrieval
of fragments is effective to reduce the content-retrieval delay. We
first develop a delay model for various multiple-stage retrieval
schemes applicable to our considered system. With the developed
model, we study optimal retrieval schemes given the success
decodability requirement. Our numerical results demonstrate
that the content-retrieval delay can be significantly reduced by
optimally scheduling packet requests in a multi-stage fashion.

I. INTRODUCTION

Cloud storage systems provide a scalable online storage

solution to end users who require flexible amount of storage

space but do not wish to own and maintain storage infras-

tructure [1], [2]. Cloud storage systems consist of a collection

of storage nodes that are connected through private or public

Internet. A content such as a large file or a video is often

fragmented and distributed in a set of storage nodes.

To offer high reliability and availability of storage services,

redundancy of contents may be employed. Fragments of con-

tents may be simply replicated and stored in different storage

nodes to achieve redundancy. Erasure codes may be used

for storage redundancy to improve storage efficiency of the

system. In a distributed storage system with erasure coding, a

large content is first divided into a number of fragments, say k
fragments, usually of same size. These fragments undergo an

encoding procedure specified by a particular erasure coding

to produce an enlarged number of coded fragments, say n
coded fragments, where n−k is the storage redundancy. These

coded fragments are distributed into different storage nodes

for improved fault tolerance. In an optimal performing erasure

code, the original content can be retrieved by obtaining any

of the k coded fragments to reconstruct the content.

In general, there are two research efforts in designing an

efficient distributed storage system with erasure codes for

robustness. The first research effort falls on the design of

enhanced erasure codes that improve system performance. In

[3], Hafner presented Weaver codes as a highly fault tolerant

erasure code for storage systems. By optimizing the Cauchy

distribution matrix, Plank et al. introduced an enhanced Reed-

Solomon codes for networked storage system [4]. In [5],

Huang et al. proposed Pyramid codes where they explored

employment of nested erasure codes as a single code. Oggier

proposed Self-Repairing codes et al. [6] that achieves local

decodability suitable for repairing of fragments in distributed

storage systems.

Another research effort focuses on the design of storage sys-

tem operational optimization based on existing erasure codes

to achieve some specific optimal performance matrices. These

operational designs may include storage redundancy overhead

optimization, storage allocation and repair, optimal retrieval

of storage, and others. In [7], Sardari et al. investigated the

optimal storage allocation with limited storage budget consid-

ering Maximum Distance Separable (MDS) codes. Leong et
al. studied storage allocation for high reliability [8]. Dimakis

et al. introduced Regenerating codes for repairing of missing

fragments considering linear network coding [9]. The first

study investigating the relationship between storage system

setup and retrieval delay is reported in [10] by Leong et
al. where the authors studied relationship between storage

allocation strategy and retrieval delay. Our research work falls

under this effort of optimizing retrieval delay for a distributed

storage system.

As high performance erasure codes often incur high com-

plexity of computational, low computational complexity era-

sure codes appear advantageous in practical usage. Among

various classes of erasure codes, fountain codes are a class

that offers flexible redundancy due to its rateless property and

relatively low computational complexity. One popular realiza-

tion of fountain codes is Luby Transform (LT) codes [11].

LT codes enjoys relatively low computational complexity of

O(k ln(k/δ)). However, to achieve this relatively low compu-

tational complexity, additional encoded fragments in the order

of O(
√
k ln2(k/δ)) are needed for LT decoder to achieve

a successful decoding probability of 1 − δ. The need for

additional encoded fragments adds stress to the bandwidth and

introduces delay in the retrieval.

In particular, to ensure a high probability of successful

decoding probability, a storage collector operating LT decoder

requires additional encoded fragments from the storage sys-

tem. However, these additional encoded fragments add delay

in storage retrieval, which is critical for content retrieval

or downloading applications. Thus a tradeoff between the

successful decoding probability and storage retrieval delay
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Fig. 1. System Architecture for a distributed data storage system.

exists. In this paper, we study this tradeoff and introduce a

multiple stage storage retrieval scheme where we show that

storage retrieval delay can be reduced without sacrificing the

performance on decoding probability. We further demonstrate

the optimal retrieval setup for the case of a 2-stage retrieval.

With this optimal retrieval scheme, we believe it will benefit

practical cloud storage systems through providing better QoS

in terms of retrieval delay.

The remainder of this paper is organized as follows. In

Section II, we introduce the system architecture and present

the formal definition of the optimal retrieval scheme problem.

Section III presents a rigorous analysis on the delay for

different retrieval scheme together with simulation validation.

We then demonstrate the tradeoff of the delay and probability

of successful decoding in Section IV. Finally, some important

conclusions are drawn in Section V.

II. SYSTEM ARCHITECTURE AND PROBLEM STATEMENT

In this section, we first present a detailed description of

a distributed data storage system, in which LT-encoded data

fragments are spread out across a pool of storage nodes.

Following that, we formulate an optimal file retrieval problem,

which aims to minimize the retrieval delay by strategically

scheduling packet retrieval requests.

A. System Architecture

We focus on a distributed data storage system (e.g., an

community-based cloud storage system as in Tahoe-LAFS

[12]) in which each storage node stores both LT fragments

or packets1 and normal packets for different contents. As

illustrated in Fig. 1, the users can store and retrieve a file

from the cloud storage system, via a dedicated portal. When

storing a file into the cloud, the portal encodes the file with the

LT code and spreads all the encoded fragments across different

storage nodes for reliability. Upon receiving the file retrieval

request, the portal sends a few packet retrieval requests to

different storage nodes, and reassemble the list of received

packets into the file and forward it to the user.

1Here we use the term packet interchangeably with fragment as we assume
that an IP packet carries an LT encoded fragment in the system.

Fig. 2. Arrival process of LT encoded packets seen at the portal.

We assume that there is only one user who will request LT

packets. The traffics generated by the requests from the rest

users are treated as ambient traffics. Fig. 1 shows a snapshot

of the considered system.

B. Traffic Model

In the portal, we consider a packet transmission queue with

a fixed processing rate of r. The ambient traffic arrives with

an exponential inter-packet time (i.e., an arrival rate of λ).

The length of packets associated with the ambient traffic is

L, which is a random variable with mean l and variance σ2.

Moreover, storage nodes transmit LT-encoded packets back to

the portal, with an exponential inter-packet arrival time (or rate

of θ). The length of LT encoded packets is a constant denoted

by lLT .

To recover a file of k original packets, the user may

request n encoded packets from the portal in order to achieve

successful decoding probability p. After the portal receives the

request for n LT encoded packets, it retrieves these packets

from the storage nodes. The requested n packets will then

arrive at the portal at a random time which follows exponential

distribution with a mean of 1/θ. According to [13], the arrival

rate of i-th LT packets is (n− i+1)θ. This arrival process of

LT packets is illustrated in Fig. 2.

C. Problem Statement

In the considered distributed storage system, the bottleneck

lies on the portal, because a large number of users can issue

their file requests to the portal. In this paper, we focus on the

file retrieval delay, defined as the duration between the time

for portal receiving a LT-encoded file request and the time for

the last LT packet leaves the portal. We aim to minimize the

file retrieval delay by strategically scheduling the LT packet

requests.

The optimal file retrieval problem is stated as follows.

We assume a probabilistic file retrieval model. Specifically,

in order to achieve the probability of successful decoding

of p, the portal needs to request n LT encoded packets.

Traditionally, the n packets are requested in one shot and the

portal waits for all these packets to decode and retrieve the file.

This scheme is referred to as an one-stage request scheme.

In this paper, we propose to use a multiple stage request

scheme to improve the file retrieval performance. Specifically,

the portal can divide the request into t stages, each consisting

of requests for n1, n2, · · · , nt packets (
∑

i ni = n). If the

portal successfully decodes the file at stage m, it will stop

requesting the rest
∑t

i=m+1 ni packets.

Intuitively, multiple stages of packet retrieval incurs addi-

tional delay in storage retrieval. Interestingly, we found that
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(a) One stage case (b) Two stage case

Fig. 3. Components of delay.
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Fig. 4. Delay in one stage request.

multiple stages of packet retrieval can outperform a single

retrieval in terms of delay. This is because in multiple stages of

packet retrieval, retrieving a just adequate number of fragments

may already give sufficiently high success decodability which

eliminates the need for further rounds of retrieval. In case

that the decoding fails, a further round of retrieval may take

place. By properly configure the multiple stage packet retrieval

scheme, the gain in delay with a multiple stage retrieval

outruns the loss due to additional rounds of retrieval. We

demonstrate this by presenting an optimization of two-stage

request scheme.

III. FILE-RETRIEVAL DELAY ANALYSIS

We characterize the average file-retrieval delay for different

request schemes in the presence of ambient traffic. We use

computer simulation to validate our analytical results. In

simulations, we set that the length of packets in the ambient

traffic follows an exponential distribution. Although it is a

simplified model, the insights obtained with this simple model

can be applied to guide practical system design. Table I lists

the default values of some parameters in the simulator. All

the presented simulation results in the following sections are

averaged from 1000 trails.

TABLE I
DEFAULT VALUES IN SIMULATION

Notation Value
l 1024 bits

lLT 1024 bits
r 100 kbps

A. Delay Analysis for One Stage Request Scheme
We first investigate the file-retrieval delay D1(n) for n LT

packets in the one stage request case. This delay consists of

two parts as shown in Fig. 3(a). The first part arises from the

traffic arriving before the LT request and the second part arises

from the traffic arriving after the LT request. The first part only

contains ambient traffic. The first part is treated as a classical

M/G/1 queue with delay denoted by W . The second part can

be further divided into two sub-parts. Firstly, it contains a

constant which is the transmission time of n LT packets, which

can be derived as nlLT

r . The rest is the time to process the

ambient traffics which arrive at the portal during the inter-

arrival time of each LT packet. This part is denoted by T .

Thus, the delay D1(n) can be expressed as

D1(n) = W +
nlLT

r
+ T. (1)

Taking an expectation on both sides, we obtain

E(D1(n)) = E(W ) + E(T ) +
nlLT

r

=
λ(σ2 + l2)

2r2(1− λr
l )

+
λl

r

n−1∑

i=0

E(ζ∗i+1 − ζ∗i ) +
nlLT

r

= Γ +
λl

r

n∑

i=1

1

iθ
+

nlLT

r

� Γ +
λl

rθ
(ln(n) + 1) +

nlLT

r
, (2)

where Γ is a constant, ζ∗i is arriving time for the ith LT

encoded packet and ζ∗0 = 0.
In Fig. 4, we plot the numerical file retrieval delay, com-

pared with the simulation results, as a function of the number

of packets request, for various traffic loads. Notice that the

numerical results match the simulation results well, verifying

the applicability of our derived file-delay in (2). The results

also demonstrate that the file-retrieval delay grows linearly

with the number of packets requested.
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B. Delay Analysis for Multiple Stage Request

In this subsection, we first investigate the file-retrieval delay

for the two stage request scheme. The packet arrival process

is illustrated in Fig. 3(b).

Suppose in the first stage, the user requests n1 LT encoded

packets. The delay for the first stage is D1(n1). After decoding

these n1 packets, if the user fails to decode the original file,

it continues to request the n2 packets. Here we assume that

during the decoding process of n1 packets, the transmission

queue in the portal has already returned to the steady state.

This assumption is reasonable since it does take some time

for the user to determine if the n1 LT-encoded packets are

decodable. Thus, the delay for the second stage is identical to

the first stage except for the number of encoded packets the

user requests. As a result, the overall file-retrieval delay for

the two stage request case is given by

D2(n1, n2) = f(n1)D1(n1)

+ (1− f(n1))(D1(n1) +D1(n2)), (3)

where f(n) is the probability of successful decoding with n
LT encoded packets. The determination of f(n) is given sep-

arately in [14] and [15]. Here we adopt the model introduced

in [15] due to its computational efficiency.

In Fig. 5, we plot the successful decoding probability as a

function of the number of received packets when k = 50 and

k = 100 respectively.
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(b) k = 100

Fig. 5. The probability of successful decoding as a function of the number
of received LT-encoded packets.

Using the results from Fig. 5, we can obtain the number of

required packets for a targeted decoding probability. We plot

in Figs. 6-7 the file-retrieval delay for the two-stage request

scheme, as a function of the number of packets requested in

the first stage, under different setting of k, n and traffic loads.

Notice that the numerical results match the simulation results

well, regardless of the traffic load. Moreover, in all results,

the file-retrieval delay first decreases and then increases as the

number of packets requested in the first stage increases. This

consistent trend indicates a potential for file-retrieval delay

minimization by choosing an appropriate number of packets

requested in the first stage. We shall address this optimization

in Section IV-A.

The result for the two stage request scheme can be gen-

eralized into arbitrary t stage request. Specifically, the delay

expression for t stage request can be defined recursively,

Dt(n1, n2, · · · , nt) = (1− f(n1))(D1(n1) (4)

+ Dt−1(n2, · · · , nt))

+ f(n1)D1(n1),

where the initial values for D1 and D2 are defined in (1) and

(3).

IV. OPTIMAL SCHEDULING FOR PACKET RETRIEVAL

In this section, we will first investigate the optimal schedul-

ing of packet requests to minimize the file-retrieval delay for

two-stage request scheme, and then present a fundamental

trade-off between the file retrieval delay and the probability

of file decodability.

A. Optimal Request Scheme

The results in Fig. 6-7 suggest an optimal two stage request

scheme from (3). Solving the optimization problem yields the

optimal number of packets requests in the first stage for a two-

stage request scheme. In Fig. 8- 9, we plot, for the optimal two-

stage request scheme, the ratio (n1/n) between the number of

requested packets in the first stage and the total number of

packets needed, as a function of the decoding probability, for

different traffic loads.

From these figures, we make an observation. We see that the

optimal portion of packets requested in the first stage decreases

as the target probability of successful decoding increases. This

observation can be understood as follows. From the aspect

of decodability probability, every packet contributes in the

decoding process. From Fig. 5, we see an unequal contribution

of each packet to the decodability probability. The contribution

of an additional packet to the decodability probability is high

when the probability stays at a lower level. As the probability

progresses higher, the contribution of each additional packet

drops.

Notice from Fig. 4 that delay in one stage request scheme

increases linearly with the number of requested packets.

Instead of requesting all the packets required by the target

decodability probability at once, requesting a small portion

of the number of packets needed in the first stage will

generate a decoding probability that contributes most to the

final decoding probability; while the marginal contribution

from the second stage is relatively small. As a result, a two-

stage request scheme helps keep the average delay lower than

the one-stage request scheme.

B. Delay-Decodability Tradeoff

We now investigate the fundamental tradeoff between the

targeted decoding probability and the file-retrieval delay for

different request schemes. This delay-decodability tradeoff

is important since it helps users to make rational request

scheme depending on the requirement of their applications.

Using the results from previous two subsections, we plot the

aforementioned trade-off for the one-stage request scheme and

the two-stage request schemes, in Fig. 10-11, for different

system loads.
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Fig. 6. Delay in two stage request when k = 50 and n = 100.
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Fig. 7. Delay in two stage request when k = 100 and n = 200.
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Fig. 8. Ratio of number of requested LT packets in first stage when k = 50.

As observed in these figures, the delay for one-stage request

increases sharply when the decoding probability crosses 90%.

In comparison, for the two-stage request scheme, the delay

is consistently lower. This advantage reflects the gain from

being able to decode in the first stage with an adequate instead

of excessive number of LT packets. Based on the reported

delay-decodability tradeoff, user can choose an appropriate

target of decodability probability, i.e. for some delay sensitive

applications like stream video, a lower decodability probability

can be adopted such that the average retrieval delay can be

maintained under a certain threshold.

V. CONCLUSION

In this paper, we investigate the problem of optimal file

retrieval under a distributed cloud storage system. The file is

first LT-encoded and spread out into a list of distributed storage

nodes. When retrieval, the portal schedules the packet request

in a multi-stage manner, with an objective to minimize the

average file retrieval delay. We developed an accurate model

to characterize the average file-retrieval delay for different

request strategies. Using this model, we derived an optimal

two stage request scheme for a given decoding probability.

Both simulation and numerical result confirm that this optimal

scheme can reduce the average delay dramatically. We believe

such delay-optimized retrieval scheme can benefit practical

distributed cloud storage systems through providing better QoS

in terms of retrieval delay.
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