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Abstract—In-network content storage has become an inher-
ent capability of routers in the content-centric networking ar-
chitecture. This raises new challenges in utilizing and provision-
ing the in-network caching capability, namely, how to optimally
provision individual routers’ storage to cache contents, so as to
balance the trade-offs between the network performance and
the provisioning cost. To address this problem, we first propose
a holistic model to characterize the network performance of
routing contents to clients and the network cost incurred by
globally coordinating the in-network storage capability. We
then derive the optimal strategy for provisioning the storage
capability that optimizes the overall network performance
and cost, and analyze the performance gains via numerical
evaluations on real network topologies. Our results reveal
interesting phenomena; for instance, different ranges of the
Zipf exponent can lead to opposite optimal strategies, and
the trade-offs between the network performance and the
provisioning cost have great impacts on the stability of the
optimal strategy. We also demonstrate that the optimal strategy
can achieve significant gain on both the load reduction at origin
servers and the improvement on the routing performance.

Keywords-in-network caching, content-centric networks, co-
ordinated caching

I. INTRODUCTION

Internet has become a ubiquitous, large-scale content dis-
tribution system. To date, not only traditional Web contents,
but also an increasingly large number of video contents
have been delivered through the Internet (see, e.g., [1], [2],
[3]); moreover, video content delivery over the Internet is
expected to grow even more tremendously in the next few
years [4], [5]. These have posed significant challenges to the
Internet, e.g., how to store and disseminate the large-scale
contents to support more robust, efficient, and expedited
services for the users.

To address these challenges, Content Delivery Networks
(CDNs) with built-in large-scale, distributed content caching
mechanisms have been adopted in the Internet. CDNs are
typically deployed and operated independently by third-
party CDN carriers (e.g., Akamai [6]), where CDNs are
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interdomain overlays spanning across multiple underlying
networks; each of such underlying networks may be oper-
ated by different Internet Service Providers (ISPs). Some
other CDNs are deployed by individual ISPs within their
own networks for intradomain content dissemination (e.g.,
AT&T [7] and Level3 [8]). In both cases, content caching
is one of the key mechanisms that make CDNs successful.
However, content caching is only deployed as an overlay
service rather than an inherent network capability, due to
lack of the storage capability at individual routers.

Recently, in-network storage (and caching) as an inherent
and integral network capability has been proposed in the
emerging content-centric networking (CCN) architecture [9],
[10]. CCN is a content-oriented future Internet architecture
where content stores are available in routers; thus, content
caching and dissemination become an inherent feature of
routers. In such networks, users focus only on contents,
rather than the physical locations from which contents can
be retrieved. Moreover, the network routing and in-network
storage are most likely provisioned by the same network
carrier in a content-centric manner.

Content caching in CCN can be either coordinated or non-
coordinated, similar to that in the Internet (see, e.g.,[11],
[12], [13], [14], [15], [16]). On one hand, coordinated
caching mechanisms require that CCN routers store contents
in a coordinated manner, which allows more contents to be
efficiently cached in the “cloud” of content stores closer to
the users, thus improving the overall content delivery per-
formance. Hence, the cost of coordinating content caching
and the performance of routing traffic become main con-
cerns in CCN. On the other hand, non-coordinated caching
mechanisms store only the locally most popular contents at
each CCN router, without coordination with other routers.
Therefore, such mechanisms not only incur less coordination
cost but also are more likely to store less distinct contents
due to lack of coordination. Furthermore, studies have shown
that the popularity of both Web and video contents follows
the Zipf distribution [17], [18], [19], and that user-generated
contents distributed through social networks are expected to
become one of the most significant contributors to Internet
traffic [5]; hence, a dominant portion of contents are not



popular. As a result, non-coordinated caching mechanisms
are likely to suffer from the long-tail distribution, due to that
contents are more likely fetched from distant origin servers
that serve these contents.

Therefore, there exist clear trade-offs between the network
performance and the coordination cost when designing in-
network caching mechanisms for CCN. More specifically,
coordinated caching mechanisms may trade the coordina-
tion cost for the network performance (e.g., lower average
latency), while non-coordinated caching mechanisms may
incur a significantly lower cost on provisioning in-network
caching and may degrade the network performance due to
lack of fine-grained control on where contents are cached,
retrieved and routed to users.

In this paper, we focus on in-network caching mecha-
nisms and their trade-offs in content-centric networks, where
routers possess both the routing and the in-network storage
capabilities. We make the first attempt to address the new
challenge in CCN, namely, how to optimally provision CCN
routers’ storage capability and investigate the trade-offs
between the network performance and the coordination cost.

More specifically, we develop a simple holistic model,
which allows us to systematically analyze the optimal strat-
egy for provisioning the in-network storage capability. We
provide rigorous proofs for the existence and uniqueness of
the optimal strategy, which guides us to investigate the trade-
offs between the network performance and the coordination
cost. For the special case where the coordination cost is not
a concern, we derive the closed-form solution of the optimal
strategy and quantify the performance gains obtained when
applying the optimal strategy.

We summarize our contributions as follows:
• We develop a simple holistic model to capture the

network performance of routing contents to clients and
the network cost incurred by globally coordinating the
provision of the in-network storage capability.

• We derive the optimal strategy of provisioning the
in-network storage capability to optimizes the overall
network performance and cost, with mild conditions
under which the optimal strategy is guaranteed to be
unique.

• Through numerical analysis, we observe interesting
phenomena. In particular, we observe that the stability
of the optimal strategy is sensitive to key factors such as
the the parameter of the content popularity distribution
and the trade-off weights for the network performance
and the coordination cost.

The rest of the paper is organized as follows. In Sec-
tion II, we motivate our studies using a simple example. In
Section III, we develop a holistic model that characterizes
the overall network performance and cost to facilitate the
analysis. In Section IV, we derive and analyze the optimal
strategy for provisioning the in-network storage capability.
In section V, we present the numerical evaluations and

results to analyze the performance gains of the optimal
strategy. In Section VI, we present the related work. We
conclude the paper with future work in Section VII.

II. MOTIVATION

We first motivate our study through an illustrative example
shown in Figure 1, which shows an intradomain network
consisting of three routers R0, R1 and R2, and one origin
server O serving two content objects a and b. The network
belongs to a single administrative domain (represented by
the cloud). All routers have the routing capability to forward
contents to peer routers or clients. Moreover, R1 and R2
have storage capacity to store one single content object only,
whereas R0 does not have any available capacity for storing
a or b.

We assume that there are two sets of clients (not shown in
the figure) sending two request flows to their first-hop routers
R1 and R2, respectively. The two request flows are identical,
represented by a repeating sequence {a,a,b}. We assume
that the performance (e.g., latency) of fetching contents from
a peer router is much better than from the origin server
O, since in real network, the origin may reside quite far
away from the network. Then, apparently, storing contents
at the routers R1 and R2 would reduce the overall delay and
improve the network performance that clients experience.
Due to the limited storage capacity, the problem is how to
select contents to store at each router so as to improve the
network performance and reduce the coordination cost.

Figure 1. A motivating example.

We consider the following two in-network caching strate-
gies and their trade-offs: (1) Non-coordinated caching: R1
and R2 work independently, where they both adopt the
canonical caching policy based on frequency or historical
usage. Assume that the content popularity distribution is
consistent, and that routers R1 and R2 have already cumu-
lated the information that a is requested more often than b. In
this case, both R1 and R2 store a. (2) Coordinated caching:
R1 and R2 work jointly and always prefer each other over
the origin server whenever possible. In this case, R1 and R2
may store a and b respectively. Without loss of generality,
we assume that R1 stores a, and R2 stores b. Then, on cache
misses, a requested content will always be retrieved from
either R1 or R2, rather than the origin server O.



We compare the coordinated and non-coordinated caching
strategies when the network is in the steady state (i.e., the in-
network storage at R1 and R2 has been steadily populated),
by using three metrics: the load on origin, the routing
hop count, and the storage coordination cost. Note that
the first two metrics can be used to measure the network
performance, while the third metric can be used to measure
the cost of provisioning the in-network storage capability.
We summarize the comparison results in Table I.

Table I
COMPARING THE COORDINATED AND NON-COORDINATED STRATEGIES.

Non-coordinated caching Coordinated caching
Load on origin 33% 0%

Routing hop count ≈ 0.67 0.5
Coordination cost 0 1

First of all, the load on origin is measured by the percent-
age of all requests served directly by the origin server O.
With the non-coordinated strategy, the requests for content a
will be directly served by R1 or R2 (recall that both R1 and
R2 store a in this case), while the requests for b will have to
be served by the origin server. This means a total 1/3 of all
requests from two flows incur the traffic load on the origin
server. However, with the coordinated strategy, since both a
and b are stored locally (i.e., at R1 and R2 respectively), all
requests from the clients can be served by either R1 or R2.
Hence, the load on origin is 0 when using the coordinated
strategy, much less than that when using the non-coordinated
strategy.

Secondly, the routing hop count is measured by the
average number of network hops traversed when fetching
contents (we focus only on the links between R0, R1, R2 and
O). Using the non-coordinated strategy, clients requesting for
a can directly fetch a from R1 or R2 without going through
any peer router, while requests for b have to go to the origin
which is two hops away via router R0 (i.e., the total hop
count is 2). Therefore, the average routing hop count for non-
coordinated strategy is 1

3 ·2 ≈ 0.67 per request. In contrast,
using the coordinated strategy, only requests for b sent to R1
and requests for a sent to R2 trigger content fetching from
their one-hop peer router, namely, R2 and R1, respectively.
Hence, the average routing hop count is 2

6 · 1+ 1
6 · 1 = 0.5

per request.
Moreover, the coordination cost is measured by the

number of messages that have to be exchanged among
routers in order to reach consensus on the caching decision.
Apparently, in the non-coordinated strategy,routers decide
which contents to store purely based on their local infor-
mation; therefore, non-coordinated caching does not incur
any coordination cost. However, to implement coordinated
caching, non-trivial communication costs are necessary to
coordinate the caching decisions of both R1 and R2. In this
example, to ensure that R1 and R2 store different contents,
at least one message has to be exchanged between them.

In this example, the coordinated caching strategy leads to

a lower load on origin and a lower routing hop count, while
the non-coordinated strategy incurs a lower coordination
cost. This suggests that there exist trade-offs between the
coordination cost and the network performance. Hence, it
is important to investigate how to provision the in-network
caching capability and understand the trade-offs.

III. NETWORK AND PERFORMANCE-COST MODEL

In this section, we develop a holistic approach to quanti-
fying the overall network performance of routing traffic and
the cost of coordinating the in-network storage capability.

A. A Simple, Holistic Network Model

We consider a simple, holistic network model for content-
centric networks. We focus on the network of a single
administrative domain (e.g., an autonomous system), where
a set of routers with both the routing and storage capability
serve content requests originated from end users, as shown
in Figure 2. The origin server O stores all content objects,
referred to as the “origin”; therefore, requests for any content
object can always be satisfied by O. Note that O is an
abstraction of multiple origin servers (in practice, there are
multiple origin servers hosting different contents).

O

d
1

d
2

d
0

C

Figure 2. A simple, holistic network model.

We assume that there are n routers in the network and
the number of contents N is sufficiently large. To simplify
the analysis, we also assume that contents are equally large
and all routers have the same storage capacity c; therefore,
we are able to normalize the content size to one unit with
respect to routers’ storage capacity. Note that in the recently
proposed content-centric networking architecture [9], [10],
contents are segmented into smaller pieces, each of which
is treated as an individually named content object, to allow
flexible distribution and flow control. Content segmentation
has also been adopted in many existing overlay content
distribution systems, e.g., BitTorrent [20] and eMule [21].
These observations suggest that a homogeneous content
model is reasonable in content-centric networks.

Many studies have shown that the content popularity
follows the Zipf distribution (see, e.g., [17], [18], [19]). The
Zipf’s law predicts that out of a population of N elements,



the frequency of elements of rank i, denoted by f (i;s,N), is

f (i;s,N) =
1/is

∑
N
j=1(1/ js)

=
1/is

HN,s
, i = 1,2, · · · (1)

where s is the Zipf exponent and HN,s =∑
N
j=1 j−s is the N-th

generalized harmonic number of order s. Note that s is a key
parameter of the Zipf distribution and is close to 1 but in
general not equal to 1. We consider s ∈ (0,1)∪ (1,2) in our
analysis. In other words, f (i;s,N) is the likelihood of the
i-th ranked content object being requested.

The storage capability of CCN routers can be provisioned
in either a non-coordinated or a coordinated manner. In the
non-coordinated provision case, each router stores only the
most popular contents locally so that clients can fetch them
from directly connected routers. Since no coordination is
necessary, routers make caching decisions independently and
do not incur any cost of coordination. On the contrary, in the
coordinated provision case, routers store popular contents
in a coordinated and collaborative manner. Hence, more
contents will be cached at peer routers in the network, and
clients may experience less delay when fetching contents.

However, the coordination among routers comes at certain
costs. Suppose that there exists a conceptually centralized
coordinator (i.e., C) in Figure 2. Then in order to manage
the coordinated caching across the network, the coordinator
has to collect the information of content stores from and
disseminate necessary messages to all routers in the network.
Note that the coordinator is conceptually centralized; in
practice, it can be implemented in a fully distributed manner.

In the following subsection, we will develop a
performance-cost model to characterize the network per-
formance and costs. Our model is general and unifies the
coordinated and non-coordinated caching mechanisms.

B. Performance-Cost Model

We primarily consider the network routing performance
and the coordination cost in CCN.

1) Routing performance: The network routing perfor-
mance refers to the performance of routing contents from
one point to another in a content-centric network. The net-
work carriers define their own routing performance metrics,
for instance, the average total number of hops all traffic
traverses in the network, or the average latency experienced
by end users. In this paper, we use the average latency
as the main routing performance metric. When there is no
ambiguity, we also refer to the average latency as the routing
performance. Note that our model is applicable to other
metrics such as the average hop count.

As shown in Figure 2, we denote by d0 the average latency
of serving requests from clients’ closest routers (which store
the requested contents locally). d1 represents the average
latency of serving a request from a peer router in the given
network, namely, a directly connected router does not have
the requested content but can fetch it from a peer router

in the same administrative domain. Moreover, d2 denotes
the average latency of fetching contents from the origin.
Note that d1 includes two types of latency: the average
latency between a client and its corresponding router (i.e.,
d0), and the average latency of transferring contents from
peer routers. Therefore, d1 > d0. Similarly, d2 > d1. Note
also that d0,d1 and d2 collectively reflect the average latency
incurred by routing contents in the network. We further
define t1 = d1

d0
as the first-tier latency ratio, t2 = d2

d1
as the

second-tier latency ratio, and γ = d2−d1
d1−d0

as the ratio of tiered
latency (or tiered latency ratio for short).

We consider a unified general model to formulate both
coordinated and non-coordinated caching mechanisms by
introducing a parameter x ∈ [0,c], which denotes the amount
of storage capacity allocated for coordinated caching mech-
anisms at each router. Each router stores in its local storage
(i.e., the c− x portion) the top ranked contents in a non-
coordinated manner, and all routers collaboratively store n ·x
contents that are ranked from c−x+1 to c−x+nx. We use
f (k;s,N) to characterize the probability of the k-th ranked
content. Moreover, we compute the overall probability of
requesting for the top k contents by

F(k;s,N) =
k

∑
i=1

f (i;s,N) =
Hk,s

HN,s
, k = 1,2, · · ·

where Hk,s and HN,s are the k-th and N-th harmonic numbers
of order s. Therefore, the average latency of serving a
content request is

T (x;d0,d1,d2) = F(c− x;s,N) ·d0

+
[
F(c− x+ xn;s,N)−F(c− x;s,N)

]
·d1

+
[
1−F(c− x+ xn;s,N)

]
·d2. (2)

The rationale is that each router uses the c − x portion
of its storage to store the most popular contents, and use
the remaining x portion to store (distinct) contents in a
coordinated manner. As a result, the total number of unique
contents stored in all routers is (c−x)+x ·n (recall that the
content object size is normalized to 1).

2) Coordination cost: The coordination cost refers to
the cost incurred by coordinated provisioning of the stor-
age capability among all participating routers. We consider
three types of costs incurred to coordinate the in-network
content caching decisions, including the computational cost
of calculating the optimal storage provisioning policy for
all routers and all contents, the communication cost of
collecting statistics from and distributing optimal policies
to all routers, and the enforcement cost of implementing the
optimal policy at each individual router.

Among these three types of costs, the communication
cost is a function of x. More specifically, the states of the
coordinated storage at each router should be communicated
to other routers in order for all routers to collectively
compute the optimal policy. Such communication cost can



contribute non-negligible amount of traffic. Many studies
suggest that ISPs tend to define their own piece-wise linear
functions to capture such cost (see, e.g., [22]); therefore, we
adopt a linear function to capture the communication cost.

Note that the computational cost is dependent on the
number of contents (i.e., N), coordinated contents per router
(i.e., x), and many other factors such as the network topology
and content popularity distribution. Recall that the number
of contents is typically extremely large and is most likely to
dominate other factors. Note also that the enforcement cost is
independent of x, for instance, the complexity of hash-based
algorithms for matching requests with stored contents does
not depend on the number of stored contents. Therefore, we
consider both the computational cost and the enforcement
cost as constants, and characterize the overall coordination
cost in CCN by

W (x;w, ŵ) = w ·n · x+ ŵ, (3)

where ŵ is the invariant computational and enforcement cost,
w is the expected communication cost per content per router
(referred to as the unit coordination cost for short), and w ·
n · x is the overall communication cost.

IV. PROBLEM FORMULATION AND ANALYSIS

In this section, we formulate the problem of how CCN
routers’ storage capability should be provisioned as an
optimization problem, and systematically study the optimal
solution, i.e., the optimal provisioning strategy for the in-
network storage capability. More specifically, we provide
a rigorous proof for the existence and uniqueness of the
optimal strategy.

A. Problem Formulation

In practice, the network routing performance and the
coordination cost may not be well aligned. Inspired by
many studies where there exist multiple types of network
performance and costs (see, e.g., [23], [24]), we introduce
a trade-off weight parameter α ∈ [0,1] and formulate the
overall performance/cost as a convex combination of the
routing performance1 and the coordination cost:

Tw(x;α,w, ŵ,d0,d1,d2) =α ·T (x;d0,d1,d2)

+(1−α) ·W (x;w, ŵ). (4)

The goal of coordinating in-network caching is to find the
optimal x∗ that minimizes Tw, namely,

x∗(α) = argmin
x

Tw(x;α,w, ŵ,d0,d1,d2). (5)

We define `(α) = x(α)
c as the coordination level and refer to

`∗(α) = x∗(α)
c as the optimal strategy, namely, the optimal

percentage of coordinated storage.

1Recall that we use the average latency to measure the routing perfor-
mance.

In order to ease the analysis and derive meaningful results,
we apply the assumption that N is sufficiently large and
approximate F(x;s,N) using a continuous function

F(x;s,N)≈
∫ x

1 t−sdt∫ N
1 t−sdt

=
x1−s −1
N1−s −1

, s ∈ (0,1)∪ (1,2). (6)

B. Existence of Optimal Strategy

By checking the existence of the first-order deriva-
tive and the positivity of the second-order derivative of
Tw(x;α,w, ŵ,d0,d1,d2), both with respect to x, we can
formally prove the following lemma, which suggests the
existence of the optimal strategy (see the Appendix for a
complete proof):

Lemma 1: Tw(x;α,w, ŵ,d0,d1,d2) is a convex function
of x. The optimal solution to (5) exists, if the following
conditions for system parameters hold:

• 0 ≤ x ≤ c and c > 0,
• The number of contents is sufficiently large (N � 1),
• the number of routers n > 1,
• 0 < s < 2 and s 6= 1, and
• d0 < d1 ≤ d2.

We remark that the conditions for guaranteeing the ex-
istence of the optimal strategy are reasonable and are most
likely to hold in practice. The number of contents is typically
large, i.e., N � 1, and s is typically a positive number
between 0 and 2 (see, e.g., [17], [18], [19]). The number of
routers n could range from a dozen to a couple of hundred
in an administrative domain.

Additionally, as far as the latency is concerned, the
condition d0 < d1 ≤ d2 is most likely to hold in realistic
networks. First, d0 can be approximated by the latency
between the end users and their first-hop routers. Its typical
values are about 100 milliseconds in cellular networks (see,
e.g., [25]), 10–20 milliseconds in cable access networks (see,
e.g., [26]), and 30 milliseconds in ADSL access networks
(see, e.g., [27]). Second, d1−d0 can be approximated by the
latency between routers in the same administrative domain,
and its values typically range from a few to 20 milliseconds
on average, depending on the geographical coverage of the
network (e.g., [27]). Last, d2 typically ranges from more
than one hundred to a couple of hundred milliseconds with
heavy-tailed distribution (see, e.g., [28]).

C. Uniqueness of Optimal Strategy

The following lemma characterizes the optimal strategy
`∗, which can be proven by letting the first-order derivative
of Tw(x;α,w, ŵ,d0,d1,d2) equal to zero:

Lemma 2: The optimal strategy `∗ satisfies the following
equation:

a`−s = (1− `)−s +b, (7)



where a ≈ γ ·n1−s and b ≈ 1−α

α
· N1−s−1

1−s · (n−1)w
d1−d0

cs, α ∈ [0,1],
γ > 0, s ∈ (0,1)∪ (1,2), n > 0, N > 0, c > 0, w > 0, and
d1 −d0 > 0.

We next apply Lemma 2 to prove the uniqueness of `∗ in
Theorem 1 as follows.

Theorem 1: There exists a unique solution to (7).
Proof: Given a particular trade-off weight parameter α,

we define y(`) = a`−s and z(`) = (1−`)−s+b, respectively.
Firstly, we show that within ` ∈ (0,1), both y(`) and z(`)
are continuous and monotonically decreasing and increasing,
respectively.
Continuity. Since for any ` ∈ (0,1), both derivatives of y(`)
and z(`) exist; namely, dy(`)

d` =−a`−s−1 and dz(`)
d` =−s(1−

`)−s−1, y(`) and z(`) are continuous with respect to ` ∈
(0,1).
Monotonicity. Given any 0 < `1 < `2 < 1 and s ∈ (0,1)∪
(1,2), we have

y(`1)− y(`2) = a(`−s
1 − `−s

2 ) =
a

`s
1`

s
2
(`s

2 − `s
1)> 0,

thus y(`) monotonically decreases, when increasing ` ∈
(0,1). Similarly, we have 1 > 1− `1 > 1− `2 > 0 and the
following inequality holds

z(`1)− z(`2) =
`s

1 − `s
2

(1− `1)s(1− `2)s < 0,

which in turn proves that z(`) monotonically increases, when
increasing ` ∈ (0,1).

Moreover, we observe that lim`→0 y(`) =∞, lim`→1 y(`) =
a, lim`→0 z(`) = 1+b, and lim`→1 z(`) = ∞. Hence, y(`) and
z(`) must have a unique intersection point in the range (0,1).

D. Optimal Strategy for Routing Performance Optimization

We next focus on the optimal strategy when the routing
performance is the dominant concern (i.e., α = 1). We will
derive the closed-form optimal strategy and analyze the
impacts of various system parameters.

Theorem 2: When α = 1, the unique optimal strategy for
(5) is

`∗ =
x∗

c
≈ 1

γ
1
s n1− 1

s +1
. (8)

Proof: Let ∂T (x;d0,d1,d2)
∂x = 0, we have

α(1− s)(d2 −d1)

N1−s −1
(
γ(c− x)−s − (n−1)(c+(n−1)x)−s)= 0.

Since n is typically sufficiently large, both (n− 1)−1 ≈ 0
and n−1 ≈ n hold. Then the above equation can be further
simplified as

(1− `)s = γ · (n−1)−1 ·
(
1+(n−1) · `

)s ≈ γ ·ns−1 · `s, (9)

where γ > 0, s ∈ (0,2) and s 6= 1, n > 0. Solving (9) yields
the optimal strategy `∗ for α = 1.

It is important to note that `∗ is a function of the tiered
latency ratio γ (i.e., ratio between d2−d1 and d1−d0), rather
than the absolute values of the individual latencies (such
as d0, d1 and d2). We refer to this property as the latency
scale free property (or scale free for short). This property
is particularly desirable and helpful in designing, deploying
and provisioning storage capability optimally in a network.

Note that in real networks, the average latencies (e.g., d0,
d1, and d2) are all bounded in a few to a hundred millisec-
onds; thus, γ is bounded between 1 and 100 in general, while
the number of routers n can scale up dramatically as the
network size increases. Hence, we consider how increasing
n impacts the optimal strategy `∗ while taking γ as a bounded
constant. More specifically, when s ∈ (0,1), the optimal
strategy `∗ quickly approaches 1 as n increases; in other
words, all routers should dedicate all their storage capacity
to coordinated caching when the number of routers is large.
However, when s ∈ (1,2), the optimal strategy `∗ converges
to 0 as n increases, meaning that all routers’ storage capacity
should be dedicated to non-coordinated caching instead.

This observation reveals that s = 1 is a singular point;
s ∈ (0,1) and s ∈ (1,2) lead to opposite optimal strategies.
We will evaluate and discuss in more details how various
factors affect the optimal strategy `∗ in the next section.

E. Performance Gain

We now quantify the performance gain as a result of the
optimal strategy `∗. We consider two types of performance
gain, the origin load reduction GO from the origin server’s
perspective, and the routing performance improvement GR
from the network carrier’s perspective.

1) Origin load reduction GO: GO is the total load re-
duction on the origin server, namely, the improvement on
the total traffic load incurred on the origin server under the
optimal strategy compared to the non-coordinated caching
strategy. Based on the assumption of unit-size contents,
the traffic load that the origin server sees can be directly
expressed as the ratio between the number of contents served
by the origin server when using the optimal strategy and
when using the non-coordinated strategy.

More specifically, the traffic demand at the origin using
the optimal caching strategy is 1−F(c+(n− 1) · x∗;s,N),
while the demand at the origin using the non-coordinated
caching strategy is 1 − F(c;s,N). Therefore, the ratio of
expected load at the origin with the optimal strategy over
the non-coordinated strategy is

GO = 1− 1−F(c+(n−1)x∗);s,N)

1−F(c;s,N)

=
(c+(n−1)x∗)1−s − c1−s

N1−s − c1−s

2) Routing Performance Improvement GR: GR is the
total improvement on the routing performance, namely, the



Table II
TOPOLOGIES USED IN EVALUATIONS

Topology |V | |E| Region Type
Abilene 11 28 North America Educational

CERNET 36 112 East Asia Educational
GEANT 23 74 Europe Educational

US-A 20 80 North America Commercial

improvement on the overall routing performance under the
optimal strategy versus the non-coordinated strategy.

Note that when routers are non-coordinated (i.e., x = 0),
the routing performance in (2) is

T (0;d0,d1,d2) =
(N1−s − c1−s) ·d2 +(c1−s −1) ·d0

N1−s −1
.

Therefore, the overall routing performance improvement is

GR = 1− T (x∗,d0,d1,d2)

T (0,d0,d1,d2)
.

V. EVALUATIONS

In this section, we quantify the optimal strategy and the
performance gain through numerical evaluations on four real
network topologies. More specifically, we first introduce the
four real network datasets and our evaluation (parameter)
settings. Then, we evaluate how various factors affect the
optimal strategy `∗ and the performance gain obtained when
applying `∗.

A. Datasets and Evaluation Setup

We use four real network topologies in our evalua-
tions, namely, Internet2 (the Abilene Network) [29], CER-
NET [30], GEANT [31], and an anonymized tier-1 network
carrier US-A in North America.

In particular, Abilene is a high-performance backbone
network established by the Internet2 community in the late
1990s. The old Abilene network was retired and became
the Internet2 network in 2007. It has 11 regional network
aggregation points and the backbone connections among
them are primarily OC192 or OC48. CERNET is the first
nation-wide education and research network in China. It is
funded by the government and managed by the Ministry
of Education in China. It is constructed and operated by
Tsinghua University and other leading universities in China,
with 36 aggregation points and OC192 links. GEANT is
a pan-European data network dedicated to the research
and education community. Together with Europe’s national
research networks, GEANT connects 40 million users in
over 8,000 institutions across 40 countries. GEANT has 23
aggregation points with links ranging from OC3 to OC192.

Each network topology, denoted by G = (V,E), has the
location information for each router i ∈V (the total number
of routers n = |V |). We also obtain the pair-wise latency di j
for every pair of routers i, j ∈V in each topology.

Let di j denote the average latency between two routers i
and j. We estimate the unit coordination cost w by taking
the maximum expected latency among routers, namely,

Figure 3. The Abilene network topology

w = maxi, j∈V di j, since the communications among routers
(or between the conceptual centralized coordinator and all
routers) can be implemented in parallel, and the maximum
latency plays a key role in determining the speed of con-
verging to the optimal strategy.

Additionally, let hi j denote the hop count of the shortest
path between i and j. The average routing performance,
measured by the average hop counts of the shortest paths
among router pairs, is (d1 − d0) =

1
|V |2 ∑i, j∈V hi j. Note that

the routing performance can also be measured by the other
metrics, e.g., the average pair-wise latency (d1 − d0) =

1
|V |2 ∑i, j∈V di j. In our evaluations, we applied both metrics
and observed similar results; thus we only present the results
for the routing performance measured by the hop count.

We summarize the statistics of the four networks in
Table II. We show the topological structure of the Abilene
network in Figure 3, and omit the other three networks for
brevity. Table III lists the topological parameters obtained
from four real networks.

Table III
TOPOLOGICAL PARAMETERS

Topology n w (ms) d1 −d0 (ms) d1 −d0 (hops)
Abilene 11 22.3 14.3 2.4182

CERNET 36 33.3 16.2 2.8238
GEANT 23 27.8 16.0 2.6008

US-A 20 26.7 15.7 2.2842

We list in Table IV the general empirical ranges of
network parameters, as well as detailed parameter settings
in our evaluations. Note that we choose n, w, and d1 − d0
from the real network topologies, as listed in Table III. We
obtain similar results for all four network topologies, so
we only present the results for the topology of US-A for
brevity. Moreover, in order to investigate how the topological
parameters affect the optimal strategy, we also vary the
number of routers (n) and the communication cost (w) in
our evaluations.

We comment that the exact values that each parameter
takes can vary over time across different networks; however,
the overall trends are less likely to change.

B. Optimal strategy `∗

We first evaluate how various parameters affect the opti-
mal strategy `∗.



Table IV
SYSTEM PARAMETERS USED IN ANALYSIS.

Parameters α γ s n N c w(ms) d1 −d0(hops)
Ranges [0,1] 1 ∼ 10 (0,1)∪ (1,2) 10 ∼ 500 109 106 10 1

∼ 1012 ∼ 109 ∼ 100 ∼ 10
Figure 4, 8, 12 (0,1) {2,4,6,8,10} 0.8 20 106 103 26.7 2.2842
Figure 5, 9, 13 [0.2,1] 5 [0.1,1)

⋃
(1,1.9] 20 106 103 26.7 2.2842

Figure 7, 11 [0.2,1] 5 0.8 20 106 103 10 ∼ 100 2.2842
Figure 6, 10 [0.2,1] 5 0.8 10 ∼ 500 106 103 26.7 2.2842
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Figure 7. The unit coordination cost

1) Trade-off parameter α: We first investigate the impacts
of the trade-off weight parameter α to the optimal strategy
`∗ in Figure 4.

We observe that when α increases, namely, the routing
performance is weighted more than the coordination cost,
the optimal strategy `∗ increases monotonically from 0 to 1.
This happens because as the routing performance becomes
more dominant in the objective function (4), an increasingly
larger portion of the storage should be dedicated to the
coordinated caching in order to optimize the overall network
performance and cost.

We also observe that for the same α, a higher γ leads
to a higher level of coordination. Moreover, given a certain
γ, when α is relatively small, `∗ increases slowly over α.
However, when α is sufficiently large, `∗ grows rapidly and
becomes more sensitive to changes of α.

These interesting phenomena suggest that α should be
adjusted carefully when it is in the sensitive range, which
is governed by other parameters, e.g., γ. For example, as
shown in Figure 4, when γ = 2, the sensitive range is around
α ∈ [0.2,0.4], and the range shifts to [0.6,0.8] when γ = 10.

2) Zipf exponent s: We observe in Figure 5 that as s
increases, `∗ exhibits various trends over s. Note that s = 1
is a singular point, and is taken away from the range of
s, because s = 1 leads to a constant routing performance
T (x;d0,d1,d2) = d2, which is invariant to the coordination
level `.

We make the following observations. Firstly, for α = 1,
i.e., only the routing performance is considered, the optimal
strategy `∗ decreases from 1 to 0.35, as s changes from 0 to
2. This observation confirms our theoretical results presented
in Theorem 2, namely, for s ∈ (0,1) (resp. s ∈ (1,2)), `∗

converge to 1 (resp. 0), with an increasing n.
Secondly, when α < 1, the optimal strategy `∗ converges

to 0, namely, non-coordinated caching mechanisms are more
preferred, when s approaches 0. This happens because

caching is becoming less effective (due to less contents are
popular enough to stay in routers’ storage) and the coordi-
nation cost is gradually dominating the routing performance
when using coordinated caching mechanisms. Moreover, for
0 ≤ α < 1, there exists a maximum `∗ around 0.5 ∼ 0.9;
while in reality, s turns out to be approximately around
0.5 ∼ 0.9 (see, e.g., [17], [18], [19]). This illustrates that in
practice, the optimal strategy `∗ usually indicates a higher
coordination level.

Lastly, the optimal strategy `∗ decreases when α is de-
creasing; namely, the higher the weight on the coordination
cost is, the lower the optimal coordination level is. This
means that when the coordination cost is the major concern,
non-coordinated caching mechanisms are more preferred.

3) Network size n: Figure 6 shows how `∗ changes with
a varying size of an intradomain network (i.e., the number
of routers n).

We observe that the optimal strategy `∗ decreases as n
increases, because the more routers a network has, the higher
the coordination cost is. Moreover, for a given network size,
`∗ increases drastically as we put a higher weight on the
routing performance (i.e., α increases), suggesting that a
higher coordination level can help to reduce more traffic
and thus to further improve the routing performance.

4) Unit coordination cost w: We observe in Figure 7 that
when the routing performance dominates in (4), i.e., α = 1,
`∗ is a constant close to 1, whereas for small α, e.g., α <
0.4, `∗ decreases drastically as the unit coordination cost
w increases. This suggests that a low coordination level can
help improve the overall network performance and cost when
w is large. Moreover, a larger α leads to a larger `∗ for the
same w, which confirms the results presented in Figure 4.
This trend is also similar to the observation we made in
Figure 6.
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C. Performance Gain

We next evaluate the performance gain of the optimal
strategy from both the origin’s and the carrier’s perspectives.

1) Origin load reduction GO: We observe in Figure 8 that
as the trade-off parameter α increases, the gain on origin
load reduction increases, due to the fact that a higher `∗

allows routers to store more contents. Note that a higher
γ leads to a higher overall origin load reduction. We also
observe in Figure 9 that for a relatively smaller α, the overall
origin load reduction is higher and reaches the maximum at
around s = 1.3. Note that s = 1 is a singular point.

Figure 10 illustrates how the total number of routers
affects the load reduction at the origin server. When α

is relatively small, the origin load reduction stays roughly
constant over n, and a higher α leads to a higher origin load
reduction. However, when α is approaching 1, the effect of
the network size emerges; namely, the origin load reduction
increases with an increasing n. This observation indicates
that when the coordination cost is not dominated by the
routing performance (i.e., α is small), the network size n
has nearly no effect on the origin load reduction.

Moreover, Figure 11 indicates that when α is small (e.g.,
0 ≤ α < 0.4), the origin load reduction decreases rapidly as
the unit coordination cost increases. The reason is that when
the unit coordination cost increases, the optimal coordination
level `∗ decreases drastically, meaning that routers can store
a much smaller number of distinct contents, and eventually
the origin server has to serve more requests due to cache
misses at routers. This phenomenon implies that for a large
w, the gain on origin load reduction is low. In addition,
when α is relatively large, or in other words the routing
performance is weighted more, the origin load reduction
becomes almost invariant with respect to a varying unit
coordination cost.

2) Routing performance improvement GR: We observe in
Figure 12 that as we increase the weight of the routing per-
formance (i.e., α increases), the overall routing performance
improvement GR increases, and a higher γ will further raise
the overall level of improvement. In particular, the routing
performance improvement can be as significant as 60–90%
when the trade-off parameter and the tiered latency ratio are
reasonably large (e.g., α ≥ 0.5 and γ ≥ 8).

Additionally, Figure 13 shows that when s is further
away from 1, i.e., closer to 0 or 2, the routing performance
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improvement is smaller; whereas for s close to 1 (s = 1
is a singular point), the routing performance improvement
is large (reaching the maximum at around s = 1), which
suggests that for those scenarios with the Zipf exponent s
closer to 1, the optimal strategy is more efficient since more
significant improvement on the routing performance can be
achieved. When varying the parameters w and n, we observe
results similar to Figure 10 and 11, therefore we omit them
here for brevity.

VI. RELATED WORK

Content caching has been a key component of Internet-
based services for many years (see, e.g., [6], [32], [33]),
and there have been many studies in literature on content
caching techniques (see, e.g., [11], [12], [15], [16], [34],
[35], [36], [37]). In particular, coordinated (or collaborative)
content caching has been studied extensively. Researchers
have investigated the effectiveness of collaborative caching
(see, e.g., [11], [38]) and proposed numerous collaborative
caching schemes for both general networks and networks
with specific structures, including general Internet-based
content distribution (see, e.g., [12], [16], [39]), delivering
special types of contents (e.g., [13]), content caching in
networks with special topological structures (e.g., [15]), and
content caching in ad hoc networks (e.g., [34]), mobile
broadcast environment (e.g., [35]), 3G networks (e.g., [37]),
and peer-to-peer networks (e.g., [36]).

Our work differs from these studies in two ways. First, our
network model for content-centric networks is novel, with
storage at router level as an inherent in-network capability.
As a result, we formulate the problem by focusing on the
overall network performance and cost from the network
carriers’ perspectives. Most of previous studies assumed
different network models (e.g., overlay network models) and
did not characterize such overall network performance and
cost. Secondly, we consider both the routing performance



and the coordination cost, and investigate the trade-offs
between them.

Additionally, there exists a line of recent work on emerg-
ing Content-Centric Networking [9] and Named Data Net-
working (NDN) [10], where content storage becomes an
inherent capability of network routers. CCN and NDN are
closely related, with the latter focusing more on fundamental
research. CCN/NDN has become one of the representative
alternatives for the future Internet architecture. Both CCN
and NDN have attracted much attention. There has been
an increasingly large body of literature on CCN and NDN,
to name a few, naming and name resolution (e.g., [40],
[41]), data transfer (e.g., [42]), flow and traffic control
(e.g., [43]), routing and router design (e.g., [44], [45]),
mobile and ad hoc networks (e.g., [46], [47]), privacy
(e.g., [48]), and caching (e.g., [49], [50], [51], [52], [53]). In
particular, in [50], Xie et al. proposed a traffic-engineering-
guided content placement and caching algorithm for CCN;
and in [51], Sourlas et al. proposed content placement
and caching algorithms to minimize overall traffic cost of
content delivery, specifically designed for CCN. However,
none of the existing work addresses the optimal strategy of
coordinated content caching and investigates the trade-offs
between the routing performance and the coordination cost
in the context of CCN/NDN. To the best of our knowledge,
our work is the first attempt to formally investigate and
providing insights in addressing these issues.

VII. CONCLUSION

In content-centric networks, routers possess both the
routing and the in-network storage capability, which raises
new challenges in network provisioning, namely, how to
optimally provision individual routers’ storage capability
for content caching, so as to optimize the overall network
performance and provisioning cost.

In this paper, we developed a holistic model to quan-
tify the overall network performance of routing contents
to clients and the overall provisioning cost incurred by
coordinating the in-network storage capability. Based on this
model, we derived the optimal strategy for optimizing the
overall network performance and cost, and evaluated the
optimal strategy using real network topologies. We observed
interesting phenomena; for example, different ranges of the
Zipf exponent, a key parameter of the content popularity
distribution, can lead to opposite optimal strategies, and the
trade-off parameter α has great impacts on the stability of the
optimal strategy. Our evaluation results also demonstrated
significant gain on both the load reduction at origin and the
improvement on the routing performance.

There are several directions for our future work. First
of all, we plan to generalize the holistic model to cap-
ture the network dynamics and design online self-adaptive
algorithms to adjust the coordination level. We are also
interested in a heterogeneous model where the network has

heterogeneous storage capability and performance metrics
(e.g., both the routers’ storage capacity and the metrics for
the network performance may vary). Last but not least,
we will perform extensive Internet-based experiments to
understand the implementation challenges.
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VIII. APPENDIX

A. Proof of Lemma 1

We accomplish the proof by checking the existence of the
first-order derivative and the positivity of the second-order
derivative of Tw(x;α,w, ŵ,d0,d1,d2). Note that by using the
approximation in (6), F(x;s,N) is differentiable, and its first-
and second-order derivatives are ∂F(x,s,N)

∂x = 1−s
N1−s−1 ·x

−s and
∂2F(x,s,N)

∂x2 =− s(1−s)
N1−s−1 · x

−s−1, respectively.
We rewrite (4) as below:

Tw(x;α,w, ŵ,d0,d1,d2) = α(d0 −d1)
(c− x)1−s −1

N1−s −1

+α(d1 −d2)
(c+(n−1)x)1−s −1

N1−s −1
+αd2 +(1−α)(wnx+ ŵ).

Its first-order derivative ∂Tw(x;α,w,ŵ,d0,d1,d2)
∂x is

(1− s)α
N1−s −1

[
(d1 −d0)(c− x)−s

− (d2 −d1)(n−1)(c+(n−1)x)−s]+(1−α)wn,
(10)

and its second-order derivative ∂2Tw(x;α,w,ŵ,d0,d1,d2)
∂x2 is

s(1− s)α
N1−s −1

[
(d1 −d0)(c− x)−s−1

− (d2 −d1)(n−1)2(c+(n−1)x)−s−1].
The positivity of (10) can be proven as follows. Since

c+(n−1)x > 0 holds, we have (c+(n−1)x)−s−1 > 0, with
c ≥ x ≥ 1 and n ≥ 1. Similarly, (c− x)−s−1 ≥ 0. Moreover,
we assume that the number of contents in the network is
sufficiently large, i.e., N � 1. When s∈ (0,1), both 1−s> 0
and N1−s − 1 > 0 hold. In contrast, when s ∈ (1,2), both
1− s < 0 and N1−s −1 < 0 hold. Hence, s(1−s)

N1−s−1 > 0 always
holds true for any s ∈ (0,1)∪ (1,2) and N > 1. Therefore,
with d2 − d1 ≥ 0, (n− 1)2 > 0, and d1 − d0 > 0, we prove
∂2Tw(x;α,w,ŵ,d0,d1,d2)

∂x2 > 0.


