
Private Data Deduplication Protocols in Cloud Storage

Wee Keong Ng
SCE, NTU

50 Nanyang Avenue
Singapore 639798

wkn@pmail.ntu.edu.sg

Yonggang Wen
SCE, NTU

50 Nanyang Avenue
Singapore 639798

YGWEN@ntu.edu.sg

Huafei Zhu
I2R, A∗STAR

1 Fusionopolis Way
Singapore 138632

huafei@i2r.a-star.edu.sg

ABSTRACT
In this paper, a new notion which we call private data dedu-
plication protocol, a deduplication technique for private data
storage is introduced and formalized. Intuitively, a private
data deduplication protocol allows a client who holds a pri-
vate data proves to a server who holds a summary string
of the data that he/she is the owner of that data with-
out revealing further information to the server. Our no-
tion can be viewed as a complement of the state-of-the-art
public data deduplication protocols of Halevi et al [7]. The
security of private data deduplication protocols is formal-
ized in the simulation-based framework in the context of
two-party computations. A construction of private dedu-
plication protocols based on the standard cryptographic as-
sumptions is then presented and analyzed. We show that
the proposed private data deduplication protocol is prov-
ably secure assuming that the underlying hash function is
collision-resilient, the discrete logarithm is hard and the era-
sure coding algorithm can erasure up to α-fraction of the bits
in the presence of malicious adversaries in the presence of
malicious adversaries. To the best our knowledge this is the
first deduplication protocol for private data storage.

Keywords
Cloud computing, Data storage, Private data deduplication

1. INTRODUCTION
Data deduplication is a technique that stores only a single

copy of each file on a storage server regardless of how many
clients ask to store that file. In a data deduplication system,
a client P sends to a storage server S only a summary string
v of a file F , say a Merkle-tree hash value of F . S checks
to see whether the received summary string v has stored in
its database: if v is not in the database then S asks P to
upload the entire file F ; otherwise, it tells P that there is
no need to send F itself and marks P as an owner of F .

Although the data deduplication technique is considered
to be the most-impactful storage technique [11], it is vulner-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$5.00.

able to powerful attacks. Harnik et al [8] demonstrate how
data deduplication technique can be used as a side chan-
nel which reveals information about the contents of files of
other users. Specially, Harnik et al consider an attacker
that is able to temporarily compromise a server machine,
getting access to its internal cache, which includes the hash
values for all the recently accessed files. Having obtained
this piece of information, the attacker is able to download
all these files, which may include confidential files of others.

To overcome such attacks, Halevi et al [7] introduced and
formalized the notion of proofs of ownership (the HHPS pro-
tocol), where a client P proves to a server S that it actually
holds the data of file F and not just some short summary
string v. As noted in [7], the data deduplication protocol
are closely related to the proofs of retrievability [9, 12, 13]
and proofs of data possession [1] but they are significantly
different in the sense that the proofs of retrievability and
data procession often use a pre-processing step that cannot
be used in the data deduplication procedure.

In a nutshell, the HHPS protocol works by encoding the
file F using an erasure code E which is resilient to erasure
of up to α fraction of the bits, and then building a Merkle-
tree over the encoded file X = E(F). More precisely, let H
be a collision resistant hash function with output length of
λ-bit. Let MTH,λ(X) be the binary Merkle-tree over buffer
X using λ-bit leaves and the hash function H. The veri-
fier computes the encoding X = E(F) and the Merkle-tree
MTH,λ(X) and keeps the root of the tree as a summary
string v. During a proof of an ownership, the verifier chooses
at random u leaf indexes l1, . . . , lu, where u is the smallest
integer such that (1−α)u < ε, a soundness bound. The ver-
ifier asks the prover for the sibling-paths of all the leaves,
and accepts if all the sibling paths are valid with respect to
MTH,λ(X). The HHPS protocol has been shown that it is
a proof-of-the-ownership with soundness ε.

1.1 The motivation problem
The state-of-the-art deduplication technique [7] reveals

leaf blocks Xl1 , . . . , Xlu to S for u selected leaf indexes
l1, . . . , lu. This leakage causes no problem since the entire
file F is assumed to be stored at S and thus allows S to
learn every bit of the file F . Hence the HHPS protocol is a
deduplication protocol for public data storage (public data
deduplication protocol, for short).

This paper studies private data deduplication technique
for cloud storages. Intuitively, a private data deduplication
protocol allows a client who holds a private data proves to a
server who holds a summary string of the data that he/she is
the owner of that data without revealing further information

to the server. Our motivation problem is illustrated by the
following data sharing among a group members in the cloud
computing scenario:

Let {P1, . . . , Pm} be a set of members in a group. Let
(pki, ski) be a pair of publc/secret keys of Pi, i = 1, . . . , m.
Each member (say Pi) is willing to share its data F among
the group members by uploading an encrypted data Epki(F, r)
to a common cloud server S so that individual group mem-
ber (say Pj) can decrypt the ciphertetxt Epki(F, r) and thus
enables him/her to read the message F (notice that such
a decryption algorithm exists if a trusted coordinator is al-
lowed to help Pj to decrypt the ciphertetxt generated by Pi.
We refer to the reader [3] for more details).

Similar to the public data deduplication scenario, when
Pi uploads an encryption Epki(F, r) of a file F , she/he first
sends to the server S only a summary string v who checks to
see whether an encryption of F has been stored in the server
(for example, a ciphertext of F has already been uploaded
in the common storage server S by another group member
Pj). A subtle issue in a private data deduplication protocol
is a computation of summary string v. If a summary string v
is computed from a probabilistic function, say, a ciphertext
Epki(F, rF) of F is first computed from a semantically secure
encryption scheme Epki(·, ·) and v is then computed from
the Merkle-tree hash values, a check of summary v will be
a difficult task since the summary string v computed from
the current upload Epki(F, rF) may be different from that
stored in the server.

Alternatively, one may assume that a summary string is
computed according to the HHPS protocol where F is known
to the server. We however do not know how to compute
the common summary string v from the private data file
F (notice that the HHPS protocol cannot be applied in our
scenario since F should not be revealed to S in our case, this
is the very notion of private data deduplication protocols we
consider in this paper).

Research problems: A challenging research problem thus is
that − how to formalize the functionality of private data
deduplication protocols? how to define the security of pri-
vate data deduplication protocols and how to construct pri-
vate data deduplication protocols if exist?

1.2 This work
While there are known constructions of public data dedu-

plication protocols assuming the existence of collision-resistent
hash functions [7], this paper takes the first step to study
the feasible result of private data deduplication protocols
under the standard cryptographic assumptions and makes
the following three-fold contributions:

• in the first fold, a new notion called private data dedu-
plication protocol is first introduced and formalized
(Definition 1 in Section 2) in this paper. Our notion
can be viewed as a complement of the state-of-the-
art public data deduplication protocols of Halevi et
al [7]; The security of private data deduplication pro-
tocol is formalized in the simulation-based framework
(Definition 3 in Section 2) in the context of two-party
computations;

• in the second fold, a feasible result of private data
deduplication protocols in the standard complexity as-
sumptions is presented. The idea behind our construc-

tion is that − a leaf in a Merkle-tree stores a com-
mitment of a block Bi of a private file F . A sum-
mary string v is computed from the Merkle-tree com-
mitments (hence the computation of v is independent
with an uploaded ciphertetxt, this observation is cru-
cial for constructing our feasible result). That is, the
value vi of a leaf ni is the commitment Ci of the block
Bi and the value of an internal node nj is the hash
vj =H(vl, vr), where vl and vr are the values of left-
and right- children of vj . If vl and vr are leaf nodes
then vl =Cl and vr =Cr (i.e., the computation of v
does not involve F but a commitment of F). The root
value is v. To prove an ownership of F , a verifier S
randomly selects a leaf ni; and the prover P sends a
valid path from the leaf value vi to the root v together
with a proof that P knows (Bi,1, . . . , Bi,m) such that

Ci = g
Bi,1
1 . . . g

Bi,m
m mod p. The verifier accepts the

proof if all checks are valid.

• in the third fold, we show that the proposed imple-
mentation is secure in the simulation-based framework
assuming that the underlying discrete logarithm prob-
lem defined over Zp is hard and the underlying hash
function is collision resilient.

2. PRIVATE DATA DEDUPLICATION PRO-
TOCOL: FUNCTIONALITY AND SECU-
RITY

In this section, the functionality and security of dedupli-
cation protocols for private file storage (or private dedupli-
cation protocols) is introduced and formalized in the secure
two-party computation model.

2.1 Private data deduplicationFpdd

Intuitively, a private data deduplication protocol is a task
between two parties, a client P and server S, where P
and S have a common summary string v and a ciphertetxt
c = Epk(F, rF) (an encryption of a file F under public-key
pk using randomness rF) so that at the end of the protocol
execution S is convinced that P is a data owner of a sum-
mary string v. Let Rv(·, ·) be a Boolean predict defined over
v. Let x be a transcript of a proof and w be a witness. If
Rv(x, w) =1, then S should accept the proof x; otherwise
it will reject. Base on this observation, we formalize the
functionality of private data deduplication protocols Fpdd

in terms of the zero-knowledge proof framework [2].

Definition 1. Parameterized by a binary relation Rv, an
imaginary trusted third party TTP proceeds as follows

• Upon receiving an input (prove, sid, x, w) from some
party P , TTP verifies that sid =(P, S, sid′) for some
S; else it ignores the input; Next, if Rv(x, w) holds then
TTP generates a public delay output (verified, sid, x)
to S, else, it does nothing. From now on, TTP ignores
further (prove, . . . ,) inputs.

• Up receiving a message (corrupt − prover, sid) from
an adversary, TTP sends w to the adversary. Fur-
thermore, if the adversary now provides a value (x, w)
such that Rv(x, w) holds, and no output was yet writ-
ten to S, then TTP outputs (verified, sid, x) to S.

2.2 The security
The security of private data dedupliction protocols is there-

fore formalized in the standard simulation-based framework
in the context of two-party computations, where a client P
is called a prover while a server S is called a verifier.

Notations [5, 6]: Let I be a countable index set. An ensem-
ble indexed by I is a sequence of random variables {Xi}i∈I ,
where each Xi is a random variable. Let I =N and {Xn}n∈N
and {Yn}n∈N be sequences of distributions with Xn, Yn

ranging over {0, 1}l(n) for some l(n) = nO(1).
{Xn}n∈N and {Yn}n∈N are computationally indistinguish-

able, denoted by Xn ≈ Yn, if for every polynomial time D
and polynomial bounded p(n), and sufficiently large n,

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ 1

p(n)

Execution in the ideal model : Let f=(f1, f2) be a two-party
functionality, and P1 and P2 be two parties. Let A be a
non-uniform probabilistic polynomial time machine, and let
C ⊆ {P1, P2} be the index of a corrupted party, controlled by
an adversary A. An ideal execution of proceeds as follows:

• Inputs: each party obtains an input (the ith party’s
input is denoted by xi, i ∈ {1, 2}). The adversary A
receives an auxiliary input denoted by aux.

• Sending inputs to the trusted party: any honest party
Pi sends its received input xi to the trusted third party
TTP. The corrupted party C controlled by A may ei-
ther abort, send its received input, or some other input
to the trusted party. This decision is made by A and
may depend on the value xj for j ∈ C and its auxiliary
input aux. Denote the vector of inputs sent to the
trusted party by ω=(ω1, ω2). Notice that ω does not
necessary equal x=(x1, x2); If the trusted party does
not receive valid messages, then it replies two parties
with a special symbol ⊥ and the ideal execution ter-
minates; otherwise, the execution proceeds to the next
step.

• TTP sends its output to A: TTP computes f(ω) and
sends fi(ω) to the party Pi, for i ∈ C;

• A instructs TTP to ”continue” or ”halt”: A sends
either ”continue” or ”halt” to the trusted party. If it
sends ”continue”, the trusted party sends fj(ω) to Pj ,
for Pj /∈ C. Otherwise, if it sends ”halt”, TTP sends
⊥ to Pj , for Pj /∈ C.

• Outputs: an honest party always outputs the mes-
sage it obtained from the trusted party. The corrupted
party outputs nothing. The adversary A outputs any
arbitrary function of the initial input xi and the mes-
sage fi(ω), i ∈ C obtained from the trusted party.

The ideal execution of f on inputs x, auxiliary input aux to
A and security parameter k, denoted by IDEALf,A(aux),C(x, k)
is defined as the output vector of the honest party and the
adversary A from the above ideal execution.

Execution in the real model : The adversary sends all mes-
sages in place of the corrupted parity, and may follow an
arbitrary polynomial-time strategy. In contrast, the honest

party follows the instructions of the protocol π for com-
puting f . The real execution of π on input x, auxiliary
information aux to A and security parameter k, denoted by
REALπ,A(aux),C(x, k) is defined as the output vector of the
honest party and the adversary A from the real execution
of π.

Definition 2. A protocol π securely computes a two-party
function f with abort if for every non-uniform probabilistic
polynomial time machine A for the real model, there exists a
non-uniform probabilistic polynomial time machine S for the
ideal model, such that for every C ⊆ {P1, P2}, every balanced
vector x (for every i and j, |xi| =|xj |), and every auxiliary
input z ∈ {0, 1}∗:

{IDEALf,S,C(x, k)}k∈N ≈ {REALπ,A(aux),C(x, k)}k∈N

where ≈ indicates computational indistinguishability.

Definition 3. Let Fpdd be private date deduplication func-
tionality and π be an implementation of Fpdd. We π securely
realizes the private data deduplication functionality Fpdd if
it securely computes Fpdd.

3. DEDUPLICATION PROTOCOL: DESCRIP-
TION AND SECURITY ANALYSIS

Following [7], we assume that a server typically has to
handle a huge number of files and the files themselves are
stored on a secondary storage with a large access time. The
server can store only a small amount of data per file in fast
storage but it cannot afford to retrieve the file or parts of
it from secondary storage upon every upload request. As
a result, the private data deduplication scheme must allow
the server to store only an extremely short information per
file that will enable it to check claims from clients that they
have that file without having to fetch the file contents for
verification.

3.1 Notations and cryptographic assumptions
Collision-resistant hash functions: Informally, a collision-

resilient hash function is a polynomial time computable func-
tion H mapping binary strings of arbitrary length into rea-
sonably short ones, so that it is computationally infeasible
to find any collision, that is any two different strings x and
y for which H(x)=H(y). In this paper, we assume that H:
{0, 1}∗ ← {0, 1}λ. A hash function H: {0, 1}∗ ← {0, 1}λ
is called a random oracle if the distribution of H(x) is uni-
formly distributed.

Merkle-tree: We define the parent of a vertex v, PARENT(v)
as follows: PARENT(vb) = v for any bit b. We also say vb
(v0 or v1) is a child of v. We denote by Tk to be a binary tree
with at most 2k leaves at level k. We identify the vertices of
Tk’s by their labels, e.g., given a leaf x = x1 · · ·xn, the path
from the root ε to x is ε, x1, x1x2, · · · , x1 · · ·xn = x.

Given a collision-resilient hash function H, a subtree T
of Tk is turned into a Merkle-tree MH,λ(X) by storing in
every node v of Tk a value Vv in the following manner[10]:
any childless node can store any non-empty string, but any
other node must store the value H(ab) whenever its left child
stores a and its right child stores b, that is v = H(v0v1).

The discrete logarithm problem [4]: Let p be a large prime
number such that p = 2q + 1, where p, q are two prime
numbers. Let G ∈ Z∗

p be a cyclic group of prime order

q and g is assumed to be a generator of G. The discrete
logarithm problem is defined below:

• input: g ∈ G, h ∈r G

• output: logg(h)

An algorithm that solves the the discrete logarithm prob-
lem is a probabilistic polynomial time Turing machine, on
input g ∈ G, h ∈r G, outputs logg(h) with non-negligible
probability. The discrete logarithm assumption means that
there is no such a probabilistic polynomial time Turing ma-
chine. This assumption is believed to be true for many cyclic
groups, such as the prime sub-group of the multiplicative
group of finite fields.

3.2 A description of deduplication storage pro-
tocol

System parameters: Let p and q be two large prime num-
bers such that p = 2q + 1 (such a p is called a safe prime
number). Let G ⊂ Zp be cyclic group with order q. Let
g1, . . . , gm be m generators of G. Let H be a collision
resistant hash function with output length of λ-bit. Let
MTH,λ(X) be the binary Merkle-tree over buffer X using
λ-bit leaves and the hash function H.

Let E: {0, 1}M → {0, 1}M
′

be an erasure code, resilient
to erasure of up to α fraction of the bits (for some constant
α > 0). Namely, form any (1 − α)M ′ bits of E(F) it is
possible in principle to completely recover the original F ∈
{0, 1}M . Let X= E(F), where X = {B1, . . . , Bs} and Bi =
(Bi,1, . . . , Bi,m).

Computations of summary string : Given X, the prover
P computes a committed Merkle-tree MTH,λ(X) as follows
(a committed Merkle-tree is a Merkle-tree, where each leaf
value vi is a commitment)

• assigning data block Bi = (Bi,1, . . . , Bi,m) to a leaf

node vi: Let Ci = g
Bi,1
1 . . . g

Bi,m
m mod p be a commit-

ment of Bi (notice that Bi,j ∈ Zq, j = 1, . . . , m). Let
vi =Ci for the ith leaf value.

• assigning value to an internal node vi: let vi =H(vi0, vi1)
where vib is a child of node vi, b ∈ {0, 1} and vib is node
value of vib. Let v be the root value of the tree.

Notice that the commitment scheme in our model is a de-
terministic algorithm, it follows that the summary string v
depends only on the original data F .

Interactive proof system: To prove ownership of < v, Epk(F) >,
P and S runs the following interactive proof protocol (no-
tice that the following sub-routine will be invoked u times on
leaves indexes l1, . . . , lu)

• S chooses a random i ∈ [s] and sends the leaf index i
to P ;

• P provides a sibling path from the selected leaf index
i with value Ci and then proves its knowledge Bi =
(Bi,1, . . . , Bi,m) such that

Ci = g
Bi,1
1 . . . g

Bi,m
m mod p

according to the following procedure

1) P selects B̃i = (B̃i,1, . . . , B̃i,m) at random, and com-

putes C̃i = g
B̃i,1
1 . . . g

B̃i,m
m . P sends C̃i to S;

2) Upon receiving C̃i, S selects e ∈ Zq uniformly at
random and sends e to P ;

3) Upon receiving e, P computes B′
i,1 = B̃i,1 + eBi,1 mod q

(i = 1, . . . , m) and sends B′
i = (B′

i,1, · · · , B′
i,m) to S;

4) S outputs 1 if g
B′

i,1
1 . . . g

B′
i,m

m = C̃i Ce
i mod p.

This ends the description of private data deduplication
protocol.

3.3 Correctness and soundness for our knowl-
edge proof system

We want to show that our protocol π is a proof of knowl-
edge (i.e., there exists a knowledge extractor KP such that
KP outputs all data blocks B1, . . . , Bs stored in the commit-
ted Merkle-tree with non-negligible probability in the pres-
ence of malicious adversaries specified in Section 2).

Correctness: One can verify that if a honest prover P
who holds F (and hence it knows all data blocks Bi =
(Bi,1, . . . , Bi,m), i ∈ [s]) and a honest verifier S follow the
protocol π, then the honest verifier always accepts. As a
result, the protocol π is complete.

Knowledge extractor : We want to show that our protocol is
a proof of knowledge. That is, assuming that a prover P
succeeds in answering u leaves {l1, . . . , lu} with probability
(1− α)u + δ for a fixed X and H, then there exists a black-
box extractor KP such that KP outputs all data blocks
B1, . . . , Bs stored in the committed Merkle-tree with non-
negligible probability. Our construction of the knowledge
extractor KP is almost same as that presented in [7] (the
only difference is that the knowledge extractor defined in this
paper works in the committed Merkle-tree while the knowl-
edge extractor presented in [7] works in the plain Merkle-
tree):

Proof. Let P ∗(l1, . . . , lu) be a prover that succeeds in
answering u leaves {l1, . . . , lu} with probability (1−α)u + δ
for a fixed X and H. Let eP∗(l1, . . . , lu) be an event that P ∗

replies with sibling paths from all the leaves when queried on
leaf indexes l1, . . . , lu and eP∗(l1, . . . , lu) = 1 if and only if
P ∗(l1, . . . , lu) is valid, i.e., P ∗ replies with valid sibling paths
from all the leaves when queried on leaf indexes l1, . . . , lu and
eP∗ = 0 otherwise.

Let [n] = [1, . . . , n]. For a leaf index l ∈ [s], and a query
index i ∈ [u], let ei(l)(l1, . . . , lu) be an event eP∗(l1, . . . , lu)
where the i-th index is l while the others are chosen at ran-
dom. We denote ei(l)(l1, . . . , lu) = 1 if and only if P ∗ replies
with valid sibling paths from all the leaves when queried on
random leaf indexes l1, . . . , lu, where ith index li is replaced
by l.

Let Ei be the event that ei(l)(l1, . . . , lu) = 1 happens
with probability Prl1,...,lu [ei(l)(l1, . . . , lu) = 1]≥ δ

u
. For each

i ∈ [u], we define E+
i = {l ∈ [s]: Ei happens}. We now show

that |E+
i | ≥ (1−α)s. By contradiction, if not then we have

Prl1,...,lu [eP∗(l1, . . . , lu) = 1]
= Prl1,...,lu [eP∗(l1, . . . , lu) = 1 ∧ all li ∈ Ei]
+ Prl1,...,lu [eP∗(l1, . . . , lu) = 1 ∧ not all li ∈ Ei]
≤ Pr[all li ∈ E+

i] +
∑u

i=1 Pr[eP∗(l1, . . . , lu) = 1∧ li /∈ E+
i]

< (1− α)u + u δ
u

= (1− α)u + u

Notice that we assume that P ∗ succeeds in answering u
leaves {l1, . . . , lu} with probability (1 − α)u + δ for a fixed
X and H. As a result, we have contradiction. This means
that |E+

i | ≥ (1− α)s.

The knowledge extractor KO is defined below

1. for i = 1 to u and l =1 to s

2. repeat τ = du(log(s) + 1)e

• choose l1, . . . , lu ∈ [s] uniformly at random

• query P ∗(l1, . . . , li−1, l, li+1, . . . , lu)

3. output sibling paths for all the leaves

One can check if l ∈ E+
i , then during the loop with i, l, the

prover will return a valid answer with probability at least
1− e−τ . Hence we arrive that the index i for which |E+

i | ≥
(1 − α)s, we will find a valid sibling paths for an (1 − α)-
fraction of the leaves with probability at least (1− 1/e).

Given Cl1 , . . . , Cl(1−α)s
commitments stored in the Merkle-

tree, if we are able to extract all these committed values
Bl1 , . . . , Bl(1−α)s

(this statement is true, see Soundness be-

low), then we are able to recover the whole file F since we
assume that the erasure code E resistant up to α-fraction of
the bits.

Soundness: The protocol π securely computes the dedupli-
cation functionality Fpdd in the presence of malicious prover
P assuming that the discrete logarithm problem defined over
G is hard, H is collision-resistant and the underlying erasure
code E can erasure up to α-fraction of the bits in the pres-
ence of malicious adversaries (in the Definition 2).

Proof. Let Ci be a value stored at a leaf ni. Let C̃i be
the initial message generated by the adversary A on behalf

of P ; Upon receiving C̃i, the simulator S randomly chooses
a string e ∈ Zq as a challenging message and gets a response

message B′
i = (B′

i,1, . . . , B
′
i,m) such that g

B′
i,1

1 . . . g
B′

i,m
m = C̃i

Ce
i mod p.
The simulator S rewinds the adversarial P by sending a

different challenging message e′ 6= e. Let B∗
i = (B∗

i,1, . . . , B
∗
i,m)

be a corresponding response message such that g
B∗

i,1
1 . . . g

B∗
i,m

m

= C̃i Ce∗
i mod p. S computes blocks Bi,1, . . . , Bi,m commit-

ted in the leaf ni by the following procedure (j = 1, . . . , m)

• computing ∆i,j = B′
i,j −B∗

i,j mod q;

• extracting Bi,j ← ∆i,j

e−e∗ mod q.

The extracted blocks Bi = (Bi,1, . . . , Bi,m) are then sent
to the deduplication functionality Fpdd. We now argue that
the extracted blocks Bi = (Bi,1, . . . , Bi,m) must be an input
value of P ; otherwise, we can use P to attack the discrete
logarithm problem. More precisely, let g be a random gen-
erator of G ⊂ Zp, where p = 2q + 1, p and q are two large
prime number. Let gi =gxi mod p. Let C ∈ G be a tar-
get element chosen uniformly at random. Let Ci ← C (the
node value is assumed to be the target element C). For dif-
ferent challenge messages e and e∗ 6= e, we obtain the corre-
sponding response messages B′

i = (B′
i,1, . . . , B

′
i,m) such that

g
B′

i,1
1 . . . g

B′
i,m

m = C̃i Ce
i mod p and B∗

i = (B∗
i,1, . . . , B

∗
i,m)

such that g
B∗

i,1
1 . . . g

B∗
i,m

m = C̃i Ce∗
i mod p. Consequently, we

have the following equation

g
∆i,1
1 . . . g

∆i,m
m = Ce−e∗ mod p

It follows that

x1∆i,1 + · · ·+ xm∆i,m = logg(C)(e− e∗) mod q

As a result,

logg(C) =
x1∆1 + · · ·+ xm∆m

(e− e∗)
mod q

We thus arrive at the contradiction (the hardness assump-
tion of the discrete logarithm problem defined over G ⊂
Zp).

Theorem: The proposed private data deduplication pro-
tocol is provably secure assuming that the underlying hash
function is collision-resilient, the discrete logarithm is hard
and the underlying erasure code E can erasure up to α-
fraction of the bits in the presence of malicious adversaries.

Proof. Let party P be a corrupted prover. We now de-
fine the following simulator for the ideal-world computation
below. Whenever the simulator S obtains a transcript t of
a proof that is accepted by the honest verifier S, it rewinds
the corrupted P to obtain an input of corrupted party P
(this is guaranteed by the soundness of the protocol assum-
ing that the discrete logarithm problem is hard and the hash
function is collision-resilient). Let F ∗ be an extracted file
using the knowledge extractor algorithm KO. The simulator
S then sends F ∗ to the private data deduplication function-
ality Fpdd.

From the simulator described above (described in the sound-
ness and knowledge extractor proofs), one can verify that
{IDEALFpdd,S,C(x, k)}k∈N is computationally indistinguish-
able from {REALπ,A(aux),C(x, k)}k∈N .

4. CONCLUSION
In this paper, a new notion which we call private data

deduplication protocols is introduced and formalized in the
context of two-party computations. A feasible result of pri-
vate data deduplication protocols has been proposed and
analyzed. We have shown that the proposed private data
deduplication protocol is provably secure in the simulation-
based framework assuming that the underlying hash func-
tion is collision-resilient, the discrete logarithm is hard and
the erasure coding algorithm E can erasure up to α-fraction
of the bits in the presence of malicious adversaries.

5. REFERENCES
[1] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola,

Joseph Herring, Lea Kissner, Zachary N. J. Peterson,
Dawn Xiaodong Song: Provable data possession at
untrusted stores. ACM Conference on Computer and
Communications Security 2007: 598-609

[2] Ran Canetti: Universally Composable Security: A New
Paradigm for Cryptographic Protocols. FOCS 2001:
136-145.

[3] Ernesto Damiani, Sabrina De Capitani di Vimercati,
Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
Pierangela Samarati: Key management for multi-user
encrypted databases. StorageSS 2005: 74-83

[4] Whitfield Diffie and Martin Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
IT No.2(6):644-654, November 1976.

[5] Oded Goldreich, Foundations of Cryptography,
Cambridge University Press, 2001.

[6] Oded Goldreich, Foundations of Cryptography,
Cambridge University Press, 2004.

[7] Shai Halevi, Danny Harnik, Benny Pinkas and Alexandra
Shulman-Peleg: Proof of ownership in remote storage
systems. eprint, IACR, 2011/207.

[8] Danny Harnik, Benny Pinkas, Alexandra Shulman-Peleg:
Side Channels in Cloud Services: Deduplication in Cloud
Storage. IEEE Security & Privacy 8(6): 40-47, 2010

[9] Ari Juels, Burton S. Kaliski Jr.: Pors: proofs of
retrievability for large files. ACM Conference on
Computer and Communications Security 2007: 584-597.

[10] Ralph C. Merkle: A Certified Digital Signature.
CRYPTO 1989: 218-238.

[11] Dave Russell: Data Deduplication Will Be Even Bigger
in 2010, Gartner, 8 February 2010

[12] Hovav Shacham, Brent Waters: Compact Proofs of
Retrievability. ASIACRYPT 2008: 90-107

[13] Qian Wang, Cong Wang, Jin Li, Kui Ren, Wenjing Lou:
Enabling Public Verifiability and Data Dynamics for
Storage Security in Cloud Computing. ESORICS 2009:
355-370

