
On File-based Content Distribution over Wireless
Networks via Multiple Paths: Coding and Delay

Trade-off
Jun Sun
MIT

Yonggang Wen
Nanyang Technological University

Lizhong Zheng
MIT

Abstract—With the emergence of the adaptive bit rate (ABR)
streaming technology, the video/content streaming technology is
shifting toward a file-based content distribution. That is, video
content is encoded into a set of smaller media files containing
video of 2-10 seconds before transmission. This file-based content
distribution, coupled with increasingly rapid adoption of smart-
phones, requires an efficient file-based distribution algorithm to
satisfy the QoS demand in wireless networks. In this paper,
we study the transmission of a finite-sized file over wireless
networks using multipath routing, with the objective to minimize
file transmission delay instead of average packet delay. The file
transmission delay is defined as the time interval from the instant
that a file is first transmitted to the time at which the file
can be reconstructed in the destination node. We observe that
file transmission delay depends not only on the mean of the
packet delay but also on its distribution, especially the tail. This
observation leads to a better understanding of the file transfer
delay in wireless networks and a minimum delay file transmission
strategy.
In a wireless multipath communication scenario, we propose

to use packet level erasure code (e.g., digital fountain code) to
transmit data file with redundancy. Given that a file with k

packets is encoded into n packets for transmission, the use of
digital fountain code allows the file to be received when only
k out of n packets are received. By adding redundant packets,
the destination node does not have to wait for the packet to
arrive late, hence reducing the delay of the file transmission. We
characterize the tradeoff between the code rate (i.e., the ratio of
the number of transmitted packets to the number of the original
packets) and the file delay reduction. As a rule of thumb, we
provide practical guidelines in determining an appropriate code
rate for a fixed file to achieve a reasonable transmission delay.
We show that only a few redundant packets are needed to achieve
a significant reduction in file transmission delay.

I. INTRODUCTION

With the growing popularity of smartphones such as the
iPhone and the Android phone, mobile data traffic, driven
mostly by video content, will increase at an estimated com-
pound annual growth rate of 108 % in next few years [21].
Therefore, a key challenge in wireless network is to maintain
a high level of QoS for the emerging mobile video data.
There is a rich set of research in the area of video streaming

communication which use flow based packet transmission
model [13] [14] [15]. However, with the emergence of adaptive
bit rate (ABR) streaming technology [16][17][18][19], the
video/content streaming technology is shifting toward a file-
based content distribution. Specifically, instead of sending a

huge media file, which validates the flow-based model, the
video content is normally encoded into a set of smaller media
files, each of which contains video content of 2-10 seconds. All
these smaller media files are scheduled to transfer to the client,
according to the organization specified in a manifest file. In
light of this new development in video streaming technique,
designing efficient filed-based content distribution algorithm
becomes crucial in providing the end-user an enjoyable expe-
rience. Ideally, each of the media files should arrive as early
as possible to meet its playback deadline. Hence in this paper,
we focus on the problem of minimizing the file transmission
delay in a wireless network.
To improve the delay performance in a wireless network,

researchers have been exploring multiple paths that may
exist between a source and destination pair by using parallel
transmission. That is, for a file with a fixed number of packets,
one can assign a certain fraction of these packets on each
path and transmit them simultaneously. This strategy has been
used in various communication scenarios such as the sparse
MANET(Mobile Ad-hoc Network) with random mobility and
the multi-beam satellite network with multiple ground stations.
The sparse MANET communication scenario was studied in
[10] and [11], and it is becoming technically feasible with the
emerging smart phones. For example, Android phones [20]
can work both as a video consumer and as an access point to
relay traffic. In a sparse MANET, nodes independently roam
within a specified area, and nodes can communicate with each
other only when they are close to each other. When two nodes
are within the communication range of each other, one can
transfer a single packet (packet size scalable) to the other
before the link severed. Since nodes are roaming randomly,
a natural packet transmission strategy is to have the source
node sending packets to some relay nodes, and let relay nodes
deliver the packet to its destination when relay nodes and the
destination node are close to each other. Each different relay
node can be thought of as a disjoint path between the source
and destination nodes. Similarly, in a multi-beam satellite
system with multiple ground stations where the ground stations
are connected through a terrestrial network, each channel from
the satellite to a ground station can be thought of as a disjoint
path.
In the aforementioned communication scenarios, the file

transmission delay then can be very different from the packet



transmission delay especially when the distribution of the
packet transmission delay has a heavy tail. After a source
distributed packets of a file among the available paths, the
destination can reconstruct the file when all the packets of
that file have arrived. This may take a long time due to the
heavy tail of the packet delay distribution. The potential long
file transmission delay prompts us to code the original file
at the packet level. Specifically, for a file with k packets
originally, the source transmits n > k packets by adding some
redundant packets to the original file. At the destination node,
upon receiving the first k packets out of the n transmitted
packets, the destination node can reconstruct the original file.
This type of coding scheme at the packet level exists such as
the digital fountain code or tornado code [8].
Our objective in this paper is to obtain an intuitive un-

derstanding of the tradeoff between the code rate and delay
reduction in a communication setting with a single or multiple
source-destination pairs that sharing a set of parallel paths.
In the single source-destination case, given a file size, we
provide a practical guideline in determining a code rate that
achieves a good balance between the packet redundancy and
the file transmission delay. We show that only a few redundant
packets are required for achieving a significant reduction in
file transmission delay. The trade-off between the file trans-
mission delay and code rate in a multiple users environment
is presented in [3].
The problem of two nodes communicating using multiple

paths has received considerable attention in various contexts.
[1] [2] [4] [9] study the multipath communication problem in
wireline scenarios. [12] [5] [6] focus on wireless scenarios.
Due to space limitation, we will not discuss them in detail.
The rest of this paper is organized as follows: Section II

describes the detailed formulation of this file transmission
delay minimization problem. In section III, the coding and
delay tradeoff in the case of a single source and destination
pair is presented. Finally, section IV concludes this paper.

II. PROBLEM FORMULATION
In this paper, we consider a communication network with a

rich set of disjoint paths between a source and destination pair
of interest. Given this set of disjoint paths, we focus on the
problem of how to best utilize these paths to minimize the file
transmission delay from the source node to the destination
node. Here, the transmission delay of an object is defined
as the time interval from the instant that the object is first
transmitted to the time at which the object can be reconstructed
at the destination node. This object can be a file or a packet.
To characterize the file transmission delay and the packet
transmission delay, we make the following assumptions:

• (A1) On each path, the packet transmission delay are
independent and identically distributed random variables.

• (A2) The packet transmission delay are independent
across all paths.

• (A3) On each path, the transmission delay of a group of
consecutive packets is the sum of the transmission delay
of each individual packet in that group. For example,

given the transmission delay for packet 1 and packet 2
are T1 and T2 respectively, the transmission delay for
sending both packet 1 and packet 2 is T1 + T2.

In A3, note that the transmission delay for sending both packet
1 and packet 2 is not T1 + T2 in most wireline networks. In
those networks, a significant portion of T1 and T2 will overlap
each other. The transmission delay for sending both packet 1
and packet 2 will be smaller than T1 + T2.
To justify the above assumptions, we consider the two

communication scenarios mentioned in the previous section:
a sparse MANET with random mobility [10] and a multi-
beam satellite network with multiple ground stations. Relating
the sparse MANET communication scenario to the multiple
paths delay problem here, we see that each relay node can
be thought as a disjoint path to the destination. Assumption
A1 makes sense due to the random roaming nature in time of
a relay node. For a particular relay node, the time between
each encounter with the destination node is independent and
identically distributed random variable. Since all nodes roam
independently, the packet transmission delay of one relay node
is independent from the other relay nodes; hence, A2 holds.
A3 is valid because relay node can transfer only one packet
to the destination during their encounter. For a relay node to
deliver two packets to the destination node, two encounters
with destination node are required.
In a multi-beam satellite system with multiple ground

stations where the ground stations are connected through
a terrestrial network, each channel can be modeled as an
ON/OFF channel due to blockage. Assume that one packet can
be transmitted in an ON slot, and the channel state (ON/OFF)
in different slots are independent and identically distributed
Bernoulli random variables. Also assume each channel is
independent both in time and to each other (a reasonable
assumption given the ground station are located far apart). We
see that A1 and A2 immediately follows. Since a packet can
only be transmitted during an ON slot, sending two packets
on a path would require two ON slots. Hence, A3 holds as
well.
In above communication scenarios, one can verify that the

single packet transmission delay distribution has long tail (i.e.,
the probability of having a very large delay is nonzero). In
fact, the packet transmission delay distribution approaches
exponential distribution in both communication scenarios. It is
straightforward to see this in the multibeam satellite network.
To see this in the sparse MANET communication scenario,
note that the packet transmission delay consists of two parts:
the time needed for the source node to find a relay node and the
time needed for the relay node to find the destination node.
Due to random mobility, packet transmission delay will be
dominated by the time needed for the relay node to find the
destination node (i.e., it is easy for the source node to find a
relay node). Hence, we ignore the time needed for the source
node to find a relay node in the transmission delay. It is easy to
see that the distribution of the time needed for the relay node to
find the destination node appraoches exponential distribution.
For simplicity, here we use exponential distribution with rate



µ to model the delay distribution of a single packet.
At the source node, a file consists of k packets. We assume

there are np paths between the source and destination pair.
The source can then encode this file into n packets such that
the destination node can decode the whole file as soon as
it received k packets (i.e., Digital Fountain code). Note that
Digital Fountain code actually require the destination node to
receive k(1 + ε) packets in order to decode the original file,
where ε is small. For the first part of the paper, we consider
the case that the source is the only node that has packets to
send to the destination node. Assume that a file is generated
at the source node at time zero. The file transmission delay,
denoted here as D, is the time at which the destination node
receive k packets. The code rate is define to be n/k.

III. DELAY-CODING TRADEOFF FOR A SINGLE SOURCE
DESTINATION PAIR

We start this section by giving the following motivating
example. Consider sending a file with k packets, numbered
(P1, · · · , Pk), from the source to the destination. Let the
number of paths np = 2, and these two paths be identical.
The time required for sending a packet Pi, denoted here as
τi, is an i.i.d. exponential random variable with mean 1

µ . To
transmit the file using both paths, a simple way would be to
allocate packets (P1, · · · , Pk/2) on the first path and packets
(Pk/2+1, · · · , Pk) on the second path, assuming that k is even.
Let Tj , j ∈ {1, · · · , np}, represents the total time needed for
a path to clear all packets assigned to it. Here, we have the
average packet delay

T1 = τ1 + · · · + τk/2, T2 = τk/2+1 + · · · + τk. (1)

The file transmission delay D = max{T1, T2}. For the case
where k is much larger than np, we have

D/(k/2) ≈ T1/(k/2) ≈ T2/(k/2).

Since k is large, both paths will be busy in serving the packets.
In this case, the average packet delay will be a good indicator
of the average file transmission delay. There is not much we
can do to further reduce the file transmission delay. However,
in this paper, we focus on the case where k is not much larger
than np.
Now, consider the case where a file consists of only six

packets and np = 2. We can assign packets (P1, P2, P3) to the
first path and (P4, P5, P6) to the second path. If any one of
the two paths clear its packets first, it will remain idle while
the other path is transmitting its packets. We see that there
is an non-negligible fraction of system time wasted in idle
instead of serving packets. A natural way to resolve the above
problem and reduce the file transmission delay is to do the
following: assigning packets (P1, P2, · · · , P6) on path one and
transmitting these packets in this order; similarly, assigning
packets (P6, P5, · · · , P1) on path two and sending them in
this order. This way, whenever the destination received a total
of six packets, the original file can be reconstructed. Since both
paths are transmitting packets (i.e., a faster path can serve more
packets than the slower path instead of waiting idly), the file

transmission delay will be reduced. In fact, the arrangement
will minimize the file transmission delay. Therefore, as we
added redundant packets on each path, the file transmission
delay can be reduced. We now come to the first points that we
want to illustrate in this paper: there is a relationship between
the redundancy and the file transmission delay.
With only two paths, the above transmission strategy

achieves the minimum file transmission delay. With np ≥ 3, it
is not clear how to allocate packet on each path so as to reduce
the file transmission delay. In that case, we use digital fountain
code for transmission so that we do not have to worry about
the assignment of each specific packet on a particular path. All
we need to concern is the total number of packets assigned
to a particular path. In the following section, we are going
to present the trade-off between coding and file transmission
delay for two different cases: n ≤ np and n > np.

A. Case I: n > np

First, we consider the case where the number of packets
in the file is greater than the number of parallel paths. For
convenience, we let k = l ·np and n = m ·np. In this section,
we study the tradeoff between the file transmission delay and
the amount of redundant packets added to the file. Specifically,
we consider the file delay of a single source and destination
pair with np identical and disjoint paths between them. We
also define a transmission strategy to be a packet allocation
vector #a = {a1, a2, · · · anp

}, where ai denotes the number of
packets that needs to be transmitted on path i. The following
lemma provides the optimal transmission strategy for using
the multiple paths.
Lemma 1: Given a set of identical paths between a source

and destination pair, the expected file delay is minimized when
allocating packets evenly on each path.
The proof of the above lemma is omitted for brevity. For

a file with l · np packets, the source can encoded the file to
m·np packets. From the above lemma, we know that allocating
packets evenly on each path will result in the minimum
expected file transmission delay. Now, consider all np paths.
With each path assigned m packets, we define Ni(t) to be
the number of packets that had arrived the destination node
by time t on path i. We also define N(t) similarly to Ni(t)
except that N(t) does not associate with any particular path.
To reconstruct the original file at the destination node at time
t, the following condition has to be satisfied:

np
∑

i=1

Ni(t) ≥ l · np or
1

np

np
∑

i=1

Ni(t) ≥ l (2)

The file transmission delay is given by:

D = inf{t :

np
∑

i=1

Ni(t) ≥ l · np} (3)

As the number of path gets large, from the law of large
number, we have

lim
np→∞

1

np

np
∑

i=1

Ni(t) → E[N(t)], (4)



and the file transmission delay can be written as:

D = inf{t : E[N(t)] ≥ l} (5)

Let N̂(t) denote the number of arrivals by the time t for a
poisson process with rate µ. In the case where the packet
transmission is exponentially distributed with rate µ, note that
the first m arrivals of the process N(t) and N̂(t) are statisti-
cally identical. Hence, we can write the expected number of
packet arrived by time t as the following:

E[N(t)] =
m

∑

i=1

i ·P (N̂(t) = i)+m ·
∞
∑

i=m+1

P (N̂(t) = i) (6)

To get the file transmission delay, we need to first evaluate
E[N(t)]. Expand Eq. (6), we have:

m
∑

i=1

iP (N̂(t) = i) =
(µt)Γ(m,µt)

Γ(m)

m
∞
∑

i=m+1

P (N̂(t) = i) =
Γ(m + 1) − Γ(m + 1, µt)

Γ(m)

(7)

where

Γ(m,µt) = Γ(m)e−µt
m−1
∑

i=0

(µt)i

i!

and Γ(m) = 1/(m − 1)!. Thus, we have

E[N(t)] =
(µt)Γ(m,µt) + Γ(m + 1) − Γ(m + 1, µt)

Γ(m)
(8)

Since E[N(t)] is a continuous function in t, the file trans-
mission delay D satisfies E[N(D)] = l. The above equation
for E[N(t)] is hard to solve in general. However, when
µ · t = m, Eq. (8) has a simpler form. In this case, we have

(µt)Γ(m,µt) − Γ(m + 1, µt) = −(µt)me−µt = −mme−m

and
E[N(t)] = m −

mme−m

(m − 1)!
(9)

By using the Stirling approximation, we can further simplify
the above equation as follows:

E[N(t)] = m −
mme−m

(m − 1)!
= m − m ·

mme−m

m!

≈ m − m ·
mme−m

√
2πmmme−m

= m −
√

m

2π

(10)

At this point, one may think that µt = m is merely an equation
that simplifies E[N(t)]. However, as we will show later, the
equation µt = m provides important insight in obtaining an
asymptotically optimal coding and file delay tradeoff. First,
let’s examine the implication of µt = m. This equation tells
us the following: Given a file that contains (m−

√

m/2π)np

packets, the source first encodes the file into m · np packets
and transmits m packets on each path. To reconstruct the file
at the destination node, the destination node has to wait for
(m−

√

m/2π)np packets to arrive. The time takes for (m−

√

m/2π)np packets to arrive the destination node, or the file
delay, is simply t = m/µ.
For a file with a fixed size, it is intuitive to see that

the file delay will decrease as more redundant packets are
added during the actual transmission of the file. However, the
above communication scenario only provides the delay for one
specific code rate (i.e., m/(m −

√

m/2π)). It does not give
us the file delay for other code rates. As the source adds
redundant packets for transmission, at the beginning a few
redundant packets may reduce the delay significantly while
each additional redundant packet may not reduce the file delay
much. Without a complete code rate and delay curve, it seems
that we do not know how to achieve an appropriate balance
between code rate and delay. Nevertheless, we are going to
show next a coding strategy that achieve a good balance
between the code rate and the file delay by using the equation
µt = m. First, we derive the minimum file transmission delay,
denoted here as Dmin , for a file with fixed size l · np in the
following lemma.
Lemma 2: Given a file with l · np packets, the minimum

achievable file transmission delay Dmin = l
µ .

The following theorem presents a coding scheme that pro-
vides a good tradeoff between the code rate and the file
transmission delay.
Theorem 1: For a file with k = l · np packets, coding the

file with n = m · np packets, where

m =

(

1/
√

2π +
√

1/(2π) + 4l

2

)2

,

will result in a file transmission delay that is O(
√

l)/µ away
from Dmin.
We omit the proof of the theorem due to limited space. The

above theorem states that using coding rate

(
1/
√

2π +
√

1/(2π) + 4l

2
)2

1

l

we can achieve a file transfer delay that is asymptotically
optimal. That is, let

ε =
D −Dmin

Dmin
,

we have the difference between the delay obtained using our
simple coding scheme and the minimum delay goes to zero
as l gets large (i.e., ε = O(1/

√
l)). This idea is illustrated

in Fig. 1. For simplicity, we let µ = 1 when we generate
Fig. 1. The x-axis of the plot indicates the file transmission
delay. The y-axis denotes the number of packet (per path) in
the original file. Each curve in the plot represents a coding
and file delay tradeoff for a fixed number of packets assigned
to each path. For example, the top curve represents the coding
and file delay tradeoff if we assign six packets to each path. Let
the x-axis and y-axis of the points A and B be represented by
(Ax, Ay) and (Bx, By) respectively. Thus, if the original file
contains By packets per path, the file transmission delay will
be Bx if we encoded the original file to six packets per path.
As for point A, if the original file size is still By = Ay , the



delay will be Ax if we encoded the original file with infinity
number of packets on each path. The benefit of using a code
rate of infinity rather than 6/By is the reduction of the file
transmission delay by Bx −Ax. The reduction of a file delay
for using a code rate of 5/By instead of infinity is also shown
in the plot. For the same file, the code rate of 6/By and 5/By

will result in a different file transmission delay. Obviously,
depending on the source’s preference, one rate may be more
suitable than the other. Using the transmission strategy stated
in Theorem 1, the resulting coding and file delay tradeoff is
plotted with a dashed line. As l gets large, this transmission
strategy achieves a code rate of almost one (i.e., the redundant
packets is negligible comparing with the original file size), and
a file delay that is within O(

√
l)/µ of the minimum file delay.

Hence, Theorem 1 can serve as a practical guideline for adding

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Coding and file delay tradeoff

delay

nu
m

be
r o

f p
ac

ke
t p

er
 p

at
h 

(k
)

n=6 

n=4 

n=2 

A B 
n=5 

Fig. 1. Coding and file delay tradeoff.

redundant packets to the original file in order to reduce the file
transmission delay.

B. Case II: n ≤ np

In the case where the number of parallel paths, np, is larger
than the number of encoded packets in a file, n, the expected
file transmission delay can be obtained without the assumption
that np is large. Assigning at most one packet to each path, the
expected file transmission delay will be the expected value of
the kth largest random variable out of the n random variables.
Let Xi for i = 1, · · · , n denote the arrival time of the ith
packet. Then, let Si for i = 1, · · · , n denote the order statistics
of Xi. The expected file transmission delay (i.e., the expected
value of Sk) is given by the following:

E[D] = E[Sk] =
k−1
∑

i=0

1

(n − i)µ
. (11)

In the case where the number of packets in a file is large
while still satisfying k < n < np, we have the file transmission

delay given by the following:

D = −
1

µ
ln(1 −

k

n
). (12)

See [3] for detailed analysis.

IV. CONCLUSION
In this paper, we explore the use of multipath routing

to reduce the file transmission delay in a wireless network.
By avoiding the long tail in the distribution of a packet’s
transmission time, we show that the file transmission delay can
be significantly reduced with only a few redundant packets in
the single source destination case. For a given file, an encoding
strategy is provided to obtain a good code and file transmission
delay tradeoff.

ACKNOWLEDGMENT
We acknowledge gratefully the helpful discussions with

Professor Vincent W. S. Chan. The first author also like to
thank the support of Professor Eytan Modiano.

REFERENCES
[1] V. W. S. Chan and A. H. Chan, “Reliable Message Delivery Via

Unreliable Networks,” IEEE International Symposium on Information
Theory, Ulm, Germany, 29 June - 4 July 1997.

[2] N.F. Maxemchuck, “Dispersity routing,” IEEE ICC’75, San Francisco,
CA, June 1975, IEEE, vol. 41, pp. 10-13.

[3] J. Sun, Dynamic Channel Allocation in Satellite and Wireless Networks,
PhD thesis, MIT, May 2007.

[4] S. Mao, S. S. Panwar and Y. T Hou, “On Optimal Partitioning of Realtime
Traffic over Multiple Paths,” INFOCOM 2005, Miami, March 2005.

[5] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-Coding
Based Routing for Opportunistic Networks,” SIGCOMM’05 Workshops,
Philadelphia, August 2005.

[6] S. Jain, M. Demmer, R. Patra, and K. Fall, “Using Redundancy to Cope
with Failures in a Delay Tolerant Network,” SIGCOMM’05, Philadelphia,
August 2005.

[7] M. Neely, E. Modiano, and C. Rohrs, “Power Allocation and Routing in
Multi-Beam Satellites with Time Varying Channels,” IEEE Transactions
on Networking, February 2003.

[8] M. Mitzenmacher, “Digital Fountains: A Survey and Look Forward,”
Information Theory Workshop, 2004.

[9] Y. Wen and J. Sun, “On Minimum-Delay File Transport over Two-
Connected Heterogenous Networks,” 2007 IEEE Wireless Communication
and Network Conference, Hong Kong, P. R. China, March 2007.

[10] M. Grossglauser and D. Tse, “Mobility Increases the Capacity of Adhoc
Wireless Networks,” IEEE/ACM Transactions on Networking, August
2002.

[11] M. Neely and E. Modiano, “Capacity and Delay Tradeoffs for Ad Hoc
Mobile Networks,” IEEE Transactions on Information Theory, May 2005.

[12] A. Eryilmaz, A. Ozdaglar, and M. Medard, “On Delay Performance
Gains from Network Coding,” Proc. of Conference on Information
Sciences and Systems (CISS), 2006.

[13] S. Mueller, R. P. Tsang and D. Ghosa, “Multipath Routing in Mobile
Ad Hoc Networks: Issues and Challenges,” Lecture Notes in Computer
Science, Volume 2965, April 2004.

[14] J. He and J. Rexford, “Towards Internet-wise Multipath Routing,”
Technical Report, Princeton University, 2008.

[15] C. Cetinkaya and E. K. Knightly, “Opportunistic Traffic Scheduling over
Multipath Network Paths,” INFOCOM, 2004.

[16] http://www.smoothhd.com/
[17] http://movenetworks.com/
[18] http://www.adobe.com/devnet/video/articles/osmf overview 03.html
[19] http://en.wikipedia.org/wiki/QuickTime
[20] http://code.google.com/events/io/2010/
[21] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2009-2014.


