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Abstract—In this paper we develop a class of structured receivers 
for a lightpath diversity scheme, which was introduced to provide 
ultra-reliable communication with low delay in vulnerable all-
optical networks. We explore the trade-off between 
implementation complexity and error probability to achieve 
optimum and near-optimum performance within a class of 
structured receivers. Using a Doubly-Stochastic Point Process 
model, we develop receiver architectures for both the optimal 
receiver with respect to error performance, and the equal-gain-
combining receiver with sub-optimum error performance but 
simpler receiver architecture. Closed-form error bounds for both 
receivers are obtained and compared with the ‘Genie-aided’ limit 
of the lightpath diversity transmission scheme. The comparison 
shows that the error performance of both receivers approaches 
the ‘Genie-aided’ limit when the signal is strong. Numerical 
results also demonstrate that additional power over what is 
required for the optimum receiver is needed to be transmitted in 
order for the equal-gain-combining receiver to achieve the same 
target error probability, and the power penalty decreases with 
decreasing noise level. These results suggest that the simpler 
equal-gain-combing receiver provides similar performance as the 
optimal receiver in the high signal-to-noise ratio (SNR) regime, 
but the optimal receiver should be used in the low SNR regime 
for significantly better performance. 

I. INTRODUCTION  
When deployed, all-optical networks [1][2], will trigger an 

architectural revolution for future broadband networks by 
eliminating all optical-to-electrical conversions along the light-
path. Originally proposed to exploit the huge bandwidth within 
the low attenuation transmission window of optical fibers to 
meet the exponential growth of traffic demand, optical 
networks have been evolved to provide other highly desirable 
features, such as wavelength switching, dynamic reconfigure-
tion and improved reliability. These enhanced features can 
support highly reliable services that can transport, for instance, 
aircraft control signals between cockpit and control surfaces 
over lightweight all-optical networks. 

However, as in other networks, all-optical networks are also 
vulnerable to component failures, such as fiber cut and node 
hardware failure. To counteract these failures, one prevailing 
method, the protection-switching mechanism [3][4], is to locate 
these failures and restore the connection via either shared or 
dedicated backup links or lightpaths. Unfortunately, the 
protection-switching mechanism can induce a rather long delay 
(e.g., 50-ms restoration time, a Synchronous Optical Network 
(SONET) standard [5]). The high delay during restoration 
makes it inappropriate for transporting critical messages, which 
may have tight delivery deadline (~1-ms) faster than the speed 
at which most optical components can switch, over all-optical 
networks. 

In order to achieve ultra-reliable communication with low 
delay in all-optical networks, we have proposed using multiple 
link-disjointed lightpaths [6] to provide end-to-end reliable data 
delivery in the presence of failures. The mechanism is 
illustrated in Fig. 1. For each channel symbol, the modulated 
lightwave is split and sent through multiple independent 
lightpaths.  At the receiver, received optical signals are either 
combined optically before detection, or individually detected 
and electrically combined for symbol-by-symbol decisions.  

The advantages of the proposed reliable transmission 
scheme, which is based on spatial diversity via multiple disjoint 
lightpaths belonging to different shared-risk groups, are at least 
two-fold. First, because the entire mechanism is implemented 
at the Physical Layer and reaction time is within a single 
symbol interval, it provides a much faster response to failures 
than protocols that provide end-to-end reliability at higher 
layers, such as the Transmission Control Protocol (TCP) at the 
Transport Layer. Second, as shown in [6], the symbol error 
probability of light-diversity transmission is significantly lower 
than that of single-lightpath transmission in medium and high 
signal-to-noise ratio (SNR) regimes. In particular, for a source-
destination pair connected by M  lightpaths, the symbol error 
probability in the high SNR regime is asymptotically Mf , 
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where f is the individual lightpath failure probability. This is 
the asymptotic reliability limit of the multiple-lightpath 
transmission scheme. By choosing the number of lightpaths 
used, this limit can be made arbitrarily small compared to the 
asymptotic symbol error probability of using a single lightpath 
between the source-destination pair.  

 We have characterized the lightpath diversity architecture 
using a Doubly-Stochastic Point Process model and an 
idealized Genie-aided receiver in [6]. Using the derived symbol 
error probability, we have also optimized the system 
performance under different objective functions by choosing an 
optimum number of lightpaths. These performance limits, 
called the Genie-aided limits, can serve as a benchmark for the 
design of more practical receivers. In this paper, we develop a 
class of easily implementable structured receivers and compare 
their performance to that of the Genie-aided receiver.  

This paper is organized as follows. In Section II, a class of 
structured receivers is proposed, and the error-complexity 
trade-off is discussed.  In Section III, the architecture of the 
optimal receiver is derived, and its error probability bounds are 
obtained and compared with that of the Genie-aided receiver. A 
sub-optimal receiver, the equal-gain-combining receiver, is 
developed in Section IV, and its performance is compared to 
that of the Genie-aided receiver. 

II. STRUCTURED RECEIVER ARCHITECTURE 
We can design optical receivers using two different 

approaches. Due to the quantum nature of weak optical signals, 
one method is to use a full quantum description of the receiver 
and optimize it over the class of physically realizable 
measurements [8]. In this paper, we take a second “structured” 
or “semi-classical” receiver approach [9]. Although they suffer 
a loss of 3-dB energy efficiency over optimal quantum 
receivers for binary signaling, they are easy to implement with 
current techniques. As illustrated in Fig. 2, the architecture of 

all possible structured receivers can be divided into three 
cascaded processing modules: an optical signal processing 
module, an optical detection module, and an electrical signal 
processing module. The three modules must be jointly 
optimized to achieve a globally optimal performance. Causal 
feedbacks among these blocks are also permissible, which can 
yield structured receivers that achieve the quantum limit for 
binary signaling [16]. However, due to their complexity, we 
will not consider them here. 

Within the class of structured receivers, the art of practical 
design is basically a trade-off between implementation 
complexity and symbol error probability. In general, in order to 
achieve a lower error probability, the receiver needs to estimate 
the lightpath states for symbol decisions. This joint estimation 
and detection approach can result in a complicated receiver 
structure. On the other hand, a simpler receiver uses simpler 
lightpath state estimators or does not estimate the lightpath 
states at all, but usually has a higher error probability since it 
does not exploit all the information available at the receiver. In 
this paper, we explore two extreme cases for the complexity-
error trade-off: 

1) The optimal receiver: It has the lowest symbol error 
probability, but has the most complicated receiver 
architecture.  

2) The Equal-Gain-Combining receiver: The receiver 
architecture is much simpler. However, the error performance 
is sub-optimum since it does not exploit all the available 
information at the receiver. 

Between the two extreme cases are other reasonably good 
sub-optimal receivers.  Their error performance is usually 
better than that of the equal-gain-combining receiver, and 
worse than that of the optimal receiver. On the other hand, their 
complexity is higher than that of the equal-gain-combining 
receiver, and lower than that of the optimal receiver. One of 
our objectives in this research is to understand how these 
receivers perform in different SNR regimes and generalize 
rules of thumb to balance the complexity-error trade-off in 
practical optical receiver design. 

Fig. 1. The lightpath diversity transmission scheme.   
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Fig. 2.  Structured receiver architecture. It is divided into three cascaded 
modules: an optical signal processing module, an optical detection module 
and an electrical signal processing module. 
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III. OPTIMUM RECEIVER  
In this section, we seek the optimal receiver that can be 

implemented with current optical and electronic techniques. In 
particular, at the optical signal processing module, optical delay 
lines are used to compensate for delay variations among 
different lightpaths (fiber delays can also be replaced by time 
delays in the electrical processing stage since we will use M  
parallel detectors); at the detection module, photon-counting 
receivers are used to record the photo-event time statistics for 
symbol decisions; at the electrical processing module, we use a 
Maximum Likelihood (ML) detector to make symbol decisions 
based on the recorded photo-event time statistics. 

A. System Model 
We assume that the physical topology of an all-optical 

network has dense enough connections such that M  
independent lightpaths can always be found between source-
destination pair [14][15]. Physically, all the lightpaths must 
belong to different shared-risk groups to avoid correlated 
failures. Each lightpath is modeled as an additive-noise channel 
with UP and DOWN states [6], as shown in Fig. 1. In 
particular, the input-output relation is given by Y FX N= +  , 
where  X  and Y are the input signal and the output signal, F  
is the lightpath state indicator function which is a Bernoulli 
random variable with  ( )Pr 0F f= =  and ( )Pr 1 1F f= = − , 
and N  is the additive noise (zero if no optical amplifier is 
used). For a given source-destination pair, we define 

( )1 2, , , T
MF F F=F "  as the lightpath state vector, where 'siF  

are identically and independently distributed Bernoulli random 
variables.   

Binary Pulse-Position Modulation (BPPM) is used to 
simplify the receiver implementation by not having to 
adaptively set the decision threshold as in the case of On-Off-
Keying (OOK). The modulated signal is split into M  parts. 
Each part is sent through an independent lightpath to the 
receiver. Under the assumption of homogenous lightpaths, i.e., 
the lightpath state indicator functions and the noises are the 
same for all the lightpaths, a uniform power allocation 
algorithm is optimal [6]. At the destination node, the receiver 
combines optical signals received over M  disjoint lightpaths 
to make symbol-by-symbol decisions.  

With direct detection, the photo-event process obeys 
Poisson statistics [10] if the optical signal is generated by a 
single-mode laser, which is usually the case for high-speed 
optical networks. The photo-event rate λ  (the photo-event 
count per unit time) is determined by the received optical 
power (energy per bit). In our case, the received optical power 
is a random variable due to the random channel model. It 
follows that the photo-event process at the detector output can 
be modeled as a Doubly-Stochastic Point Process [7]. 

B. Receiver Architecture 
Because uniform power allocation is employed at the 

transmitter, the optical power transmitted over the thi  lightpath 
is either 

( ) ( )0   0 2
0          2

s
i

P M t T
P t

T t T
≤ ≤

=  ≤ ≤
   (1) 

for hypothesis 0H  (i.e., symbol “0”),  or 

( ) ( )1 0            0 2
   2i

s

t T
P t

P M T t T
≤ ≤

=  ≤ ≤  (2) 
for hypothesis 1H  (i.e., symbol “1”). In both cases, sP  is the 
average output power of the laser, and T  is the symbol time. 

The received optical signals can be corrupted by amplifier 
noises if optical amplifiers are used.  We assume that the noise 
process receives contributions from many spatial-temporal 
modes, and the probability of two successive noise-driven 
photo-events coming from the same spatial-temporal mode is 
close to zero. It follows that the Weak Photon-Coherence 
Assumption holds, and thus we can approximate the noise-
driven photo-event process with a Poisson Process with a 
deterministic rate of nλ  equal to its mean.  Consequently, 
considering the noise, the photo-event rate at the output of the 

thi  detector is either 

( ) ( )0 +    0 2
                 2

i s n
i

n

F M t T
t

T t T
λ λ

λ
λ

≤ ≤
=  ≤ ≤

   (3) 

for hypothesis 0H , or  

( ) ( )1                  0 2
+    2

n
i

i s n

t T
t

F M T t T
λ

λ
λ λ

≤ ≤
=  ≤ ≤

,  (4) 

for hypothesis 1H . In both cases, s sP hλ η ν= (η  is the photo 
efficiency, hν is the photon energy) is the rate of a photo-event 
process with an average power sP , and iF  is a Bernoulli 
random variable with parameter 1 f− . Note that, for a given 
hypothesis, the photo-event process is a Doubly-Stochastic 
Point Process due to its random rate.  

For the thi  channel, let ( )1 2,i ik k  be the photo-event counts 

during [ ]0, 2T  and [ ]2,T T , and ( ) ( 11 21 2, , , , ,
iki i t t t=t t "  

)1 1 1 21 2, ,
i i i ik k k kt t t+ + +" be the corresponding photo-event time 

statistics.  The conditional distribution density functions of 
time statistics at the thi lightpath, as derived in [7][13], are 
given by 

( )
l ( ) ( ) ( )

l( ) ( )
2 01

2 0

01 2

0 2

1

, |

  
Tsi i ni

i i

k F t dt Nks Mi j n n
j

p H

F t e
M

λλ λ λ
− −

=

   ∫= +    
∏

t t

 (5a) 

and 
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i
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in j k n
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where 

l ( ) ( )
( )

( )
1 2

| , 0                    0

| , , ,         1

j
i j t tj

i
j

i j t ti i

E F H N N
F t

E F H N k N k

  = =  = 
 = = ≥   t t

  (6) 

is the minimum mean squared error (MMSE) causal estimator 
of the thi  lightpath state for hypotheses ( )0,1jH j =  and tN  is 

photo-event count over [ ]0, t . As derived in Appendix A, these 
estimators are given by 

l ( ) ( )
( )

0 1   0,
21 exp 1

1
tNs

TF t t
f t

f M
λ −

 = ∈     + +Ω −  

, (7) 

where tN  is the photo-event count over [ ]0, t , and  

l ( ) ( )
( ) ( )2

1

2

1   ,
2

1 1
1

s
t T

Tt N NM

TF t t T
f e

f

λ  −  − − 

 = ∈   
+ +Ω
−

, (8) 

where tN  is the photo-event count over [ ]0, t , and 2TN  is the 

photo-event count over [ ]0, 2T  of the same realization of the 
photo-event process. The fact that both estimators described in 
(7) and (8) depend only causally on the recorded photo-event 
counts, suggests that the detector can be updated continuously 
in real time as the doubly stochastic point process is being 
observed. This property allows two important realizations of 
the optimal receiver. The first one is that real-time receiver 
processing can be used for delay sensitive traffic. The second 
one is that the sequential hypothesis testing reduces the error 
probability further by making symbol decisions based on the 
photo-event statistics over several consecutive previous data 
bits. 

Note that photo-event processes of different lightpaths are 
independent because each lightpath belongs to a different 
shared-risk group. It follows that the overall conditional 
distribution density function can be written as 

( ) ( )0 01 2 1 2
1

, | , |
M

i i
i

p H p H
=

=∏t t t t  (9a) 

and 

( ) ( )1 11 2 1 2
1

, | , |
M

i i
i

p H p H
=

=∏t t t t , (9b) 

where ( ) ( )1 2 11 21 1 12 22 2, , , , , , , ,M M=t t t t t t t t" "  is the overall 
photo-event time statistics. Using (9a) and (9b), the log 
likelihood-ratio can be written as 

{ } ( )
( )
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t t N N
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where s nMλ λΩ =  can be interpreted as the signal-to-noise 
ratio per lightpath. After some algebraic manipulations, we 
obtain the maximum likelihood detection rule as 

l ( ) ( )( ) l ( ) ( )
l

l

l ( ) ( )( ) l ( ) ( )
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 
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<  
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∑ ∑ ∫
. (11) 

Note that each received photon is weighed by the scaling factor 
of l ( )( )ln 1 jF t+ Ω  which depends on the lightpath state 

estimate at the photon arrival time. If the estimate of the 
lightpath state is large meaning that the possibility of the 
lightpath being UP is high, the scaling factor is large since it is 
more likely that the photon comes from the signal, not noise. 
On the contrary, we assign a small scaling factor to the photon 

Fig. 3.  Optimal receiver architecture.  
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if the lightpath state estimate is small. In particular, if we 
estimate that the lightpath is DOWN, the scaling factor is equal 
to zero since the photon must come from noise and thus could 
not be taken into consideration for detection. 

For a sanity check, assuming all the lightpaths are ON( i.e., 
l ( ) ( ) l ( ) ( )

0 1
1i iF t F t= = )during the symbol transmission, Decision 

rule (11) simplifies to be  
l

l

0

1

1 2
1 1

H H
M M

i i
i i

H H

k k
=

= =
=

≥
<

∑ ∑ .  (12) 

Detection rule (12) is identical to the detection rule for the case 
with invulnerable lightpaths [11]. Detection rule (11) indicates 
a fundamental decomposition of functions in the optimal 
receiver structure, which is generalized as the separation 
theorem of detection in [7]. In particular, the receiver consists 
of two separable operation modules, i.e., estimators for 
lightpath states and signal processing modules for hypothesis 
testing, as shown in Fig. 3. This separation property suggests 
that we can replace the complicated optimal lightpath state 
estimator with some simpler heuristic state estimators to reduce 
the receiver complexity without modifying the receiver 
structure. This idea often performs well in practice and yields 
near-optimal policies in dynamic programming [17]. Therefore, 
we expect that the error performance with sub-optimal 
lightpath state estimators is not degraded significantly, which 
indeed is true, as will be shown in next section. 

C. Error Performance 
In this subsection, we analyze the error performance of the 

optimal receiver. In particular, a lower bound and an upper 
bound are derived for the Chernoff Bound of the symbol error 
probability.  

As illustrated in [6], the symbol error probability of the 
genie-aided receiver is the Genie-aided limit of the proposed 
architecture within the class of structured receivers. For a sense 
of how best the optimal receiver could perform, we can use the 
Chernoff Bound of the genie-aided receiver as a lower bound 
for Chernoff Bound of the optimal receiver because the 
Chernoff Bound is exponentially tight [12]. This suggests that a 
natural lower bound for the Chernoff error bound of the 
optimal receiver,   

( ) ( ), ,1 s n
MN N M LB

opt optPB f f e PBψ− ≥ + −  � ,  (13) 

where ( ) ( )2, ,s n s n nN N M N M N Nψ = + − , 2s sN Tλ=  

is the average number of signal-driven photo-events per bit, 
2n nN Tλ=  is the average number of noise-driven photo-

events per half a bit, and optPB  is the error bound of the 
optimal receiver.  

On the other hand, the optimal receiver must perform better 
than any suboptimal receiver within the class of structured 
receivers [13]. It follows that we can use the Chernoff Bound 
of any suboptimal receiver as an upper error bound for the 
optimal receiver. In particular, we choose a suboptimal receiver 
that estimates UP/DOWN states of all the lightpaths at 
time t T= . An intuitive estimation rule is  
l ( ) i

l ( ) i
if  0.5     0

if  0.5     1

F T F

F T F

≤ =

> =
,  (14) 

where l ( )F T  is the MMSE causal estimate of the channel state 

at time t T=  and iF  is the estimated lightpath state. If i 0F = , 
the receiver estimates the lightpath to be DOWN and thus 
discards the received signal over that lightpath. Otherwise, the 
receiver estimates the lightpath to be UP and thus uses the 
received optical signal over that lightpath for optimal 
combining and symbol decisions.  

As derived in Appendix B, the upper bound for the Chernoff 
error bound of the optimal receiver, which is also the Chernoff 
error bound of the suboptimal receiver, is given by 

( ) ( ), ,1 s n
MN N M UP

opt optPB g g e PBψ− ≤ + −  � . (15) 

Here, the probability that the lightpath is estimated to be 

DOWN, l ( )( )Pr 1 2g F T= ≤ ,   is given by 

( ) ( )
0 0

1
! !
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n

k
sk NN N n Nn N M

k k

N NN Mg f e f e
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 − + −  

= =

 +  = + −∑ ∑ .  (16) 

where  

( )( )
( )

ln 1
ln 1

s
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s n

N M f f
N

N MN
+ −

=
+

 (17) 

Fig. 4.  The estimated lightpath failure probability g  is compared to the 
prior lightpath failure probability  f  under different SNRs per lightpath.  
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is the number of photons per bit beyond which the lightpath is 
estimated to be UP. In (17), sN M  is the average number of 

photons per lightpath per bit,  ( )ln 1f f −   is the additional 
number of photons needed to declare that the lightpath is UP, 
and both numbers must be adjusted by the term 
( )ln 1 s nN MN+ that is the scaling factor in (11) to obtain the 

actual number of photons. If 0 1 2f< < , then 

( )ln 1 0f f − <  . This means that the actual number of 
photons needed is reduced since the probability of the lightpath 
being UP is higher and fewer photons per lightpath are needed 
for the estimator to declare that the lightpath is UP. On the 
other hand, if 1 2 1f< < , then ( )ln 1 0f f − >  . This means 
that the actual number of photons needed is increased since the 
probability of the lightpath being DOWN is higher and more 
photons per lightpath are needed for the estimator to declare 
that the lightpath is UP.  

Note that the lower bound (13) and the upper bound (15) 
have the same form, except that the prior lightpath failure 
probability f  in (13) is replaced by the estimated lightpath 
failure probability g  in (16). This implies that the tightness of 
the lower bound and the upper bound highly depends on the 
difference between the estimated lightpath failure probability 
and the prior lightpath failure probability. To explore this, we 
compare the estimated lightpath failure probability g  with the 
prior failure probability f in Fig. 4. We find that the difference 
between these two probabilities is negligible when the SNR per 
lightpath is high enough. It follows that the lower bound and 
the upper bound are close to each other, and thus both are very 
tight. This is verified in Fig. 5 where the lower bound and the 
upper bound are plotted against the average number of photons 
per bit. Moreover, these tight bounds suggest that the optimal 

receiver exhibits the same error characteristics in different SNR 
regimes as the ‘genie-aided’ receiver, as shown in Fig. 5. In the 
super-high SNR regime, the error bound converges to an error 
floor Mf , the probability with which the source-destination 
pair is disconnected. This suggests that network topologies 
with small probability of disconnection [14][15] should be 
considered for ultra-high reliable optical networks. In the lower 
SNR regime, the error probability increases with more 
lightpaths. It indicates that lightpath diversity actually hurts in 
this regime and be of no engineering interest. In the medium-
to-high SNR regime, the error probability depends on both the 
number of lightpaths and the SNR per lightpath. These two 
factors, however, are competing with each other for a given 
amount of optical energy. Hence, we need to balance this trade-
off to achieve better energy efficiency. This, along with the fact 
that the optimal receiver performs close to the ‘genie-aided’ 
receiver limit, suggests that system parameters optimized for 
the genie-aided receiver, such as the optimum number of 
lightpaths derived for different objective functions [6], also 
apply for the optimal receiver in the medium-to-high SNR 
regime.  

IV. EQUAL-GAIN-COMBINING RECEIVER 
Although the optimal receiver has the lowest symbol error 

probability, it requires the most complicated processing by 
estimating the individual lightpath state throughout the symbol 
time. In this section, we develop one sub-optimal receiver, the 
equal-gain-combining receiver, which not only approaches the 
optimal receiver in the symbol error probability under some 
scenarios, but also has the advantage of a simpler architecture.  

Fig. 5. The lower bound and the upper bound for the Chernoff bound of 
the optimal receiver. The number of lightpaths is set as 2, 4,8M = , and 
lightpath failure probability is 0.01, the noise level per lightpath is 2.  
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A. Receiver Architecture 
In the equal-gain-combining receiver, rather than estimate 

lightpath states, we assume all the lightpaths to be UP and use 
the Maximum Likelihood decision rule to do symbol detection. 
Mathematically, the equal-gain-combining receiver employs 
the following decision rule  

l

l

0

1

1 2
1 1

H H
M M

i i
i i

H H

k k
=

= =
=

≥
<

∑ ∑  (18) 

to make symbol-to-symbol decision based only on the photo-
event counts. Decision rule (18) is much simpler than decision 
rule (11). This indicates that the equal-gain-combining receiver 
offer a significant reduction in the implementation complexity 
compared to the optimal receiver. However, the reduction in 
complexity is traded with a degraded error performance, as 
shown in the following subsection. 

B. Error Performance 
We start with the calculation of the error bound for the 

equal-gain-combining receiver. Given the lightpath state vector 
F , the conditional error probability is defined by 

( ) 0 1 2 0
1 1

1 1 2 1
1 1

1 2 0
1 1

Pr | Pr | ,

                Pr | ,

             Pr | ,

M M

i i
i i

M M

i i
i i

M M

i i
i i

p k k H

p k k H

k k H

ε
= =

= =

= =

 = ≤  
 + ≥  

 = ≤  

∑ ∑

∑ ∑

∑ ∑

F F

F

F

, (19) 

where  0 1,p p are probabilities of sending the “ZERO” or 
“ONE” bit, and the second equality is due to the symmetry of 
binary pulse-position modulation and 0 1 1 2p p= =  for equi-
probable digital source. 

Let  1 11

M
ii

K k
=

= ∑ be the total photo-event count recorded 

over [ ]0, 2T , and 2 21

M
ii

K k
=

= ∑ be the total photo-event count 

recorded over [ ]2,T T . Note that, given hypothesis 0H  and the 

lightpath state vector F , 1K  is a Poisson random variable with 

mean s nmN M MN+  where 
1

M
ii

m F
=

= ∑ is the number of UP 

lightpaths for a given lightpath state vector F , and 2K  is a 
Poisson random variable with mean nMN .  

Using the Chernoff Bound, the conditional error probability 
is bounded by 

( )
2

Pr | exp s
n n

N m MN MN
M

ε
   ≤ − + −      

F . (20)  

It can be verified that  m is a binominal random variable with a 

distribution function of { } ( )Pr 1 k M kM
m k f f

k
− 

= = − 
 

,  

0,1, ,k M= … .  Averaging (20) over all possible lightpath state 

vectors { }0,1 M∈F ,  we obtain the error bound for the equal-
gain-combining receiver as 

( ) ( ) ( )
2

0

!Pr 1
! !

s n n
kM N MN MN

k MM k

k

M f f e
k M k

ε
 
− + −  −  

=

≤ −
−∑ .  (21) 

Using (21), we compare the error bound of the equal-gain-
combining receiver with the ‘genie-aided’ receiver limit in Fig. 
6. In the low SNR regime, the error probability is inherently 
high and of no engineering interest. In the medium-to-high 
SNR regime, the gap between error bounds of the equal-gain-
combining receiver and the ‘genie-aided’ limit is larger than 
the gap between error bounds of the optimal receiver and the 
‘genie-aided’ limit. In the equal-gain-combining receiver, noise 
from DOWN lightpaths will degrade the average SNR per 
lightpath and thus increases the error probability since the error 
probability in the medium-to-high SNR regime is sensitive to 
the SNR per lightpath. However, in the high SNR regime, the 
equal-gain-combining receiver has an error bound close to the 
‘genie-aided’ receiver limit. This indicates that the equal-gain-
combining receiver is preferable to the optimal receiver in the 
high SNR regime due to its simplicity. In fact, the equal-gain-
combining receiver approaches asymptotically the optimal 
receiver when the noise is negligible, as we will show next. 

C. Power Penalty 
Since the error probability of the equal-gain-combining 

receiver is higher than that of the ‘genie-aided’ receiver, we 
need to transmit more optical energy in order for the equal-
gain-combining receiver to achieve the same target error 
probability as the ‘genie-aided’ receiver does in the medium-to-
high SNR regime. In this subsection, we analyze this amount of 
additional power for the equal-gain-combining receiver to 
achieve a target error probability bound compared to the genie-
aided receiver. For a target error probability bound of bP , the 
power penalty of the equal-gain-combining receiver over the 
‘genie-aided’ receiver is defined as  

( )
( )10

, , ;
10 log

, , ;
s b n

s b n

N P f N EGC
N P f N GA

δ
∗

∗

 
=    

, (22) 

where  ( ), , ;s b nN P f N GA∗  and ( ), , ;s b nN P f N EGC∗  are the 
minimum amounts of optical power (in terms of average 
number of signal photons per bit) for the genie-aided receiver  
and the equal-gain-combining receiver respectively to achieve 
a target error probability bP .  

Using numerical results by exhaustive searching, the 
optimal number of lightpaths and the minimum transmitted 
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optical energy are plotted in Fig. 7 (a) and (b). To achieve the 
same error probability bound, the equal-gain-combining 
receiver requires more lightpaths to be used and more optical 
energy to be transmitted. This shows that a more densely-
connected network topology is needed to provide enough 
independent lightpaths for the equal-gain-combining receiver. 
The power penalty is plotted in Fig. 7 (c) and (d). From plot 
(c), the power penalty is asymptotically invariant of the target 
error probability bounds. This is due to two reasons. First, the 
error bound of the equal-gain-combining receiver is close to 
that of the genie-aided receiver with optimized system 
parameters.  Second, the minimum transmitted power is linear 
with the error exponent (see (10) in [6]). It follows that, at the 
optimum operating points, both error bounds are parallel to 
each other in a log-log plot. The power penalty is 
approximately determined by the ratio between the slopes of 

the error exponents of the ‘genie-aided’ receiver and the equal-
gain-combining receiver at the respective optimum operating 
points. Therefore, the power penalty is invariant with respect to 
target error probabilities.  On the other hand, the power penalty 
increases with higher noise levels as shown in plot (d), and 
approaches zero when the noise level goes to zero. This 
demonstrates that the equal-gain-combining receiver is 
generally suboptimal and approaches the optimal receiver when 
the noise level decreases. In particular, if there is no noise, the 
equal-gain-combining receiver would be optimal under the 
maximum likelihood criterion because the receiver would not 
receive any noise from DOWN lightpaths to degrade the error 
performance. 

Fig. 7. (a)The optimal lightpath number to minimize the total optical energy is plotted against different target error probability bounds. (b)The minimum 
number of signal photons per bit is plotted against different target error probability bounds for the ‘genie-aided’ receiver and the equal-gain-combining 
receiver.  In plot (a) and (b), we set 0.1f = and 2nN = . GA: Genie-aided receiver; EGC: Equal-gain-combining receiver. (c)Power penalty of the equal-
gain-combining receiver is plotted under different target error probability bounds.  (d)Power penalty of the equal-gain-combining receiver is plotted under 
different noise levels.  
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V. CONCLUSION 
In this paper, we investigated a class of structured receivers 

for the multiple-lightpath transmission scheme in vulnerable 
optical networks. Using a Doubly-Stochastic Point Process 
model, we developed the architecture of the optimal receiver, 
and calculated its error performance with a lower bound (the 
genie-aided receiver) and an upper bound (the noncausal-state-
estimating receiver). The small gap between the lower bound 
and the upper bound indicates that the optimal receiver 
approaches the Genie-aided limit of structured receivers, and 
thus system parameters optimized for the genie-aided receiver 
apply to the optimal receiver. However, the optimal receiver 
needs to estimate lightpath states throughout the symbol time, 
which is complicated. To balance the trade-off between the 
error probability and the implementation complexity, we 
developed the simplest suboptimal receiver, i.e., the equal-
gain-combining receiver, and characterized its error 
performance. The performance comparison between the equal-
gain-combing receiver and the Genie-aided limit of structured 
receivers shows that the power penalty of the equal-gain-
combining receiver decreases with decreasing noise levels. 
These results suggest that the equal-gain-combing receiver is 
preferable to the optimal receiver in the low noise regime, and 
the optimal receiver is needed in the high noise regime at the 
expense of increased complexity. 

APPENDIXES 

A. MMSE Lightpath State Estimator for Optimum Receiver 
In designing the optimal receiver, we need to find the 

MMSE causal estimator of lightpath states.  We start by 
incorporating the following lemma in [7], which is crucial to 
the derivation of the MMSE causal lightpath state estimator. 

Lemma 1 (Estimation of random variables in Doubly 
Stochastic Point Processes): For a Doubly Stochastic Point-
Process ( ){ }0:N t t t≥ with a random arrival rate ( ),tλ x , 

where x  is a time-independent random vector, let ( )ta x  be a 
time-dependent vector-value function of the random vector x  
and such that ( )( )2

tE < ∞a x . Then, for a recorded time 

statistic ( ){ }1 2, , , nt t t=t … , the MMSE causal estimate of the 

function ( )ta x of x is the conditional mean ta� , given by 

( ) ( )
( ) ( ){ }

( ){ }1 2

exp
| , , ,

exp
t t

t t n
t

E
E t t t

E

  = = =     

a x A x
a a x t

A x
� … ,

 (A.1) 

where ( ) ( ) ( )
0 0

, ln ,
t t

t t t
d dNτλ τ τ λ τ= − +∫ ∫A x x x .            □ 

For simplicity, the subscript i  is suppressed in the 
following derivation. Due to the random channel model, the 
arrival rate of the photo-event process at the output of each 
detector, ( ) ( ), nt F F tλ λ λ= + , is a random variable. In 

particular, F  is a Bernoulli random variable with the 
probability density function ( ) ( ) ( ) ( )1 1Fp x f x f xδ δ= + − − .  

Using (C.1), the MMSE causal estimator of the channel 
state F  is given by 

l ( ) [ ]
( ){ }
( ){ }

exp
|

exp
t

t

E F A F
F t E F

E A F

  = =
  

t ,  (A.2) 

where ( ) ( ) ( )
0 0

, ln ,
t t

tA F F d F dNτλ τ τ λ τ= − +∫ ∫ . 

For hypothesis 0H , the photo-event rate is  

( ) ( )0 +    0 2
                  2

s n

n

F M t T
t

T t T
λ λ

λ
λ

≤ ≤
=  ≤ ≤

.   (A.3) 

Substituting (A.3) into (A.2), the MMSE causal estimator of 
the channel state F  turns out to be 

l ( ) ( )
( )

0 1   0,
21 exp 1

1
tNs

TF t t
f t

f M
λ −

 = ∈     + +Ω −  

. (A.4) 

where tN  is the number of photo-events over [ ]0, t .  

For hypothesis 1H , the photo-event rate is  

( ) ( )1                   0 2
+    2

n

s n

t T
t

F M T t T
λ

λ
λ λ

≤ ≤
=  ≤ ≤

.   (A.5) 

Substituting (A.5) into (A.2), the MMSE causal estimator of 
the channel state F  turns out to be  

l ( ) ( )
( ) ( )2

1

2

1   ,
2

1 1
1

s
t T

Tt N NM

TF t t T
f e

f

λ  −  − − 

 = ∈   
+ +Ω
−

.  (C.6) 

where tN  is the photo-event count over [ ]0, t , and 2TN  is the 

number photo-event count over [ ]0, 2T  of the same sample 
function of photo-event process.  

B. Chernoff Bound of the Symbol Error Probability for the 
Receiver with Non-causal Lightpath State Estimator  
The suboptimal receiver makes hard-decisions on estimated 

lightpath states from causal state estimators at time t T= . The 
hard-decision rule is given by 

l ( ) i

l ( ) i
when  0.5     0

when  0.5     1

F T F

F T F

≤ =

> =
, (B.1) 

where l ( )F T  is the MMSE causal estimate of the lightpath 

state at time t T= . If i 0F = , the receiver estimates the 
lightpath to be OFF and thus discards the received signal over 
that lightpath. Otherwise, the receiver estimates the lightpath to 
be UP and thus uses the received optical signal over that 
lightpath for optimal combining and symbol decisions.  

With hard-decision lightpath states, the symbol decision 
rule is given by  
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∑ ∑ , (B.2) 

where m is the number of lightpaths that are estimated to be 
UP during the symbol transmission. Note that m is a binomial 
random variable with a probability distribution function, 

( ) ( )Pr 1 m M mM
m g g

m
− 

= − 
 

, (B.3) 

where l ( )( )Pr 0.5g F T= ≤ is the probability with which the 

lightpath is estimated to be DOWN during the symbol 
transmission. For both hypotheses, the channel state estimator 
has the form,  

l ( )
1

1 exp 1
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NsNfF
f M

−
−  = + +Ω  −   
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The probability distribution function of the photon count is 
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Combining (B.4) and (B.5), the probability with which the 
lightpath is estimated to be DOWN is given by 

l( )
( ) ( )
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� . (B.6) 

To calculate the error bound, we start with the error 
probability conditioned on the number of lightpaths estimated 
to be UP during the symbol time. For given m , the conditional 
error probability is defined as  

( ) 0 1 2 0
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1 1 2 1
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1 2 0
1 1
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, (B.7) 

where the second equality is due to the symmetry of BPPM. 
Using the Chernoff Bound, the right hand side of (B.7) is 
bounded by  
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                                        exp , ,
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,

 (B.8) 

where ( ) ( )2, ,s n s n nN N M N M N Nψ = + − . 

Using (B.6) and (B.8), the error bound of the hard-decision 
receiver is obtained by averaging (B.8) over all possible m , 
that is,  

( ) ( ) ( )

( ) ( )

( ) ( )

0
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0
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Pr Pr | Pr
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M
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ε ε
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 
≤ − 
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∑

∑ . (B.9) 

Note that (B.9) is also an upper bound for the Chernoff error 
Bound of the optimal receiver. 
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