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Abstract—In this paper, we propose using spatial diversity
via multiple node-disjointed lightpaths at the optical layer to
achieve ultra-reliable communication with low delay between any
source-destination pair in all-optical networks. Using a doubly
stochastic point process model and a “genie-aided” receiver,
we obtain an exponentially tight error probability bound for
the lightpath diversity scheme under an independent lightpath
failure model. Error probability of the proposed scheme can be
designed to be significantly lower than that of a system without
lightpath diversity, and system parameters (e.g., the number of
lightpaths) can be optimized to achieve efficient utilization of a
limited amount of transmitted optical energy. In particular, at the
optimum operating point, each lightpath is allocated an optimum
average number of signal photons per bit and is biased to have
an effective error probability 2 if the decision is based on that
path alone, where is the lightpath failure probability. We also
investigate the tradeoff between the error probability and the
implementation complexity within the class of all “structured”
receivers. We derive receiver architectures for both the optimal
receiver, which has the best error performance but complicated
receiver architecture, and the equal-gain-combining (EGC) re-
ceiver, which has suboptimum error performance but simpler
receiver architecture. Closed-form error bounds for both receivers
are obtained and compared with the “genie-aided” limit of the
lightpath diversity scheme. Performance comparison shows that
the simpler equal-gain-combing receiver provides similar perfor-
mance as the optimal receiver in the regime of high signal-to-noise
photon rate ratio (
 = , where is the signal
photon rate per path, is the noise photon rate per path), and
performs slightly worse than the optimal receiver in the low and
medium signal-to-noise photon rate ratio regimes. It indicates
that the simpler EGC receiver is preferred over the complicated
optimum receiver in practical receiver design.

Index Terms—All-optical networks, doubly stochastic poisson
process, lightpath diversity, network reliability.

I. INTRODUCTION

WHEN DEPLOYED, all-optical networks will trigger an
architectural revolution for future broadband networks

by eliminating all optical-to-electrical conversions along a
lightpath [1], [2]. Originally proposed to exploit the huge
bandwidth within the low attenuation transmission window of
optical fibers to meet the exponential growth of traffic demand,
optical networks have been evolved to provide other highly
desirable features including wavelength switching, dynamic
reconfigurability and improved reliability. These enhanced
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features can support highly reliable services that can transport,
for instance, aircraft control signals between the cockpit and
control surfaces over lightweight all-optical networks.

However, similar to other networks, all-optical networks are
also vulnerable to different categories of failures. One kind of
failure is physical component failure, for example, fiber cut and
node hardware failure. Even if all network components are reli-
able individually, the communication between a source-destina-
tion pair can be interrupted by soft failures due to network prob-
lems, such as congestion, buffer overflow, and routing algorithm
oscillations. In this paper, we focus on the problem of achieving
ultrahigh reliability in all-optical networks for some special ap-
plications that may have to support services with super-high data
rates and/or critical time deadlines.

To support ultra-reliable communication in all-optical net-
works, two mechanisms can be used to counteract the afore-
mentioned failures: protection-switching and simultaneous
lightpath-diversity. Currently, the prevailing approach is the
protection-switching scheme, as implemented commercially
in Synchronous Optical Network (SONET)-based networks.
In this scheme, if a source-destination communication session
is interrupted by a failure, a detection algorithm first identifies
the failure, and then communication is switched to another
dedicated or shared backup connection. However, this pro-
tection-switching mechanism can induce a rather long delay
( ms restoration time, a SONET standard [3]). Thus, this
scheme is inappropriate for some unique applications. For
example, considering the service with super-high data rate
( Gb/s), a short-time interruption can result in a large amount
of data loss. In other critical applications (e.g., when the network
is used for transporting control signals between the cockpit and
control surfaces in an aircraft), the time-deadline of control-mes-
sage delivery needs to be shorter than 1 ms and probably ten times
faster in failure detection. This is faster than the speed at which
most optical components can switch and protection-switching
protocol can be executed. For such applications, instead of in-
creasing the speed of failure detection and lightpath switching
to meet increasing data rates and critical time deadlines, mul-
tiple-path diversity is a better alternative that can be implemented
with current technologies. Chan and Parikh have explored this
mechanism in [4] and [5]. In that work, they looked at a joint data
link control layer and transport layer reliable message delivery
scheme and have found significant merit for using path diversity
efficiently via error correction coding techniques. In this paper,
we extend their work to a physical-layer lightpath diversity
mechanism, using an optimum signaling and detection scheme
to optimize system performance and provide reliable end-to-end
data delivery in the presence of failures (e.g., fiber cuts and node
hardware failures).
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The advantages of the proposed reliable transmission
scheme, which is based on spatial diversity via multiple disjoint
lightpaths belonging to different shared-risk groups, are at least
twofold. First, because the entire mechanism is implemented
at the physical layer, it provides a much faster response to
failures than protocols that provide end-to-end reliability at
higher layers, such as the transmission control protocol (TCP)
at the transport layer. Second, as will be shown in this paper,
the symbol error probability of multiple-lightpath transmission
is significantly lower than that of single-lightpath transmis-
sion in medium and high signal-to-noise photon rate ratio
regimes. In particular, for a source-destination pair connected
by lightpaths, the symbol error probability in the high
signal-to-noise photon rate ratio regime is asymptotically equal
to ( is the failure probability of the th lightpath.)
This is the asymptotic reliability limit of the multiple-lightpath
transmission scheme. By choosing the number of lightpaths
used, this limit can be made arbitrarily small compared with
the asymptotic symbol error probability of using only a single
lightpath between a source-destination pair.

Compared with the single lightpath transmission, one major
disadvantage of the lightpath diversity scheme is that the
same message is sent repeatedly through a group of disjointed
lightpaths and, thus, degrades the throughput per channel use
by a factor of for an -connected source-destination pair.
However, in order to achieve ultra-reliable communication
with low delay, for example, in an aircraft control network, we
choose to sacrifice some bandwidth efficiency for reliability in
a bandwidth-rich environment. In fact, multiple connections
between any source-destination pair are necessary for reliable
networks [6], and both parallel signaling and sequential sig-
naling over multiple connections can realize high reliability.
The lightpath diversity scheme satisfies this necessary condition
by splitting each channel symbol and sending the fragments
simultaneously through disjointed lightpaths. Another po-
tential disadvantage of a lightpath diversity scheme is that more
energy may have to be used than a single lightpath scheme.
However, the error probability of any single lightpath scheme
is bounded from below by the lightpath failure probability .
In order to achieve an error probability below , it is necessary
to use more than one lightpath to lower the asymptotic error
limit. In this work, using optimum signaling and detection, we
choose the number of lightpaths to optimize energy efficiency
and reduce the amount of additional necessary optical energy
to the minimum.

We investigate the proposed ultra-reliable transmission
mechanism from both a theoretical and an engineering per-
spective. From the theoretical perspective, we characterize
and optimize the error performance of the lightpath diversity
system. From the engineering perspective, we develop a class of
structured receivers and evaluate their error performance. The
remainder of the paper is organized as follows. In Section II, we
formulate the detection problem and introduce the structured
receiver architecture. We characterize the error probability
of the lightpath-diversity system via an idealized receiver in
Section III. This benchmark result is called the “genie-aided”
receiver limit which is a lower bound for practical receivers.
In Section IV, the system is optimized via: 1) minimizing
the error probability for a given amount of optical energy

Fig. 1. Network model for an M -connected source-destination pair in a
densely connected all-optical network.

Fig. 2. Discrete channel model of an individual lightpath.X is the input, Y is
the output, F is a Bernoulli random variable indicating the lightpath state, and
N is the noise.

and 2) minimizing the total optical energy for a target error
probability. In Section V, we illustrate the tradeoff between im-
plementation complexity and error performance in the receiver
design. Also, in this section, the architecture of the optimal
receiver is derived, and its error probability bound is obtained
and compared with the “genie-aided” receiver limit. One sub-
optimal receiver, the equal-gain-combining (EGC) receiver, is
developed in Section VII. Its error probability bound is also
calculated and compared with the “genie-aided” receiver limit.

II. PROBLEM FORMULATION

A. Network Model

We assume that the physical topology of the optical network
has dense enough connections such that node-disjointed
lightpaths can always be found between some source-destina-
tion pair, as shown in Fig. 1 [6], [7]. All the lightpaths must
belong to different shared-risk groups to justify the following
independent failure model. Each lightpath can be modeled as a
discrete additive-noise channel with UP and DOWN states. In
particular, for the th lightpath, the DOWN state corresponds
to a disconnected lightpath and occurs with probability , and
the UP state occurs with probability and corresponds to
a viable lightpath. Mathematically, the input–output relation of
the channel can be expressed as , as shown
in Fig. 2, where and are the input and output, is the
lightpath state indicator function which is a Bernoulli random
variable with and ,
and is the additive noise (zero if no optical amplifier is
used). For a given source-destination pair, we define a lightpath
state vector , where each compo-
nent is an independent Bernoulli random variable. The
source-destination pair is also characterized by a delay vector

, where each component is the delay of
the th lightpath, an attenuation vector ,
where each component is the attenuation of the th lightpath,
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Fig. 3. Structured receiver architecture. It is divided into three cascaded
modules: an optical signal processing module, an optical detection module, and
an electrical signal processing module.

and a noise vector , where each
component is the noise of the th lightpath.

In this paper, binary pulse-position modulation (BPPM) is
used to simplify the receiver implementation by not having to
adaptively set the decision threshold as in the case of on–off-
keying (OOK) modulation. The modulated signal is split into

parts. Each part is sent over an independent lightpath to
the receiver. At the destination node, the received optical sig-
nals are either combined optically before detection, or individ-
ually detected and electrically combined for symbol-by-symbol
decisions.

With a photon-counting receiver, the photo-event count at the
receiver’s output obeys Poisson statistics [8] if the optical signal
is generated by a single-mode laser. The expected photo-event
arrival rate (the mean number of photo-event per unit time) is
determined by the received optical power (i.e., energy per bit,
given the bit rate). In our work, the received optical power is a
random variable due to the random channel model as illustrated
in Fig. 2. Thus, the photo-event process at the detector output
can be modeled by a doubly stochastic point process [9].

B. Structured Receiver Architecture

We can design an optical receiver using two different ap-
proaches. Due to the quantum nature of weak optical signals,
one approach is to use a full quantum description of the re-
ceiver, and optimize it over the class of physically realizable
measurements [10]. Quantum receivers are optimum in energy
efficiency. However, they are complicated and hard to realize
with current electrical and optical components. In this paper,
we take a “structured” or “semi-classical” approach [11]. Al-
though structured receivers suffer a 3-dB loss of energy effi-
ciency over optimum receivers for binary signaling, they are
much simpler and easier to implement with current technolo-
gies. The architecture of all possible structured receivers can be
divided into three cascaded processing modules, as illustrated in
Fig. 3: an optical signal processing module, an optical detection
module, and an electrical signal processing module. The three
modules must be jointly optimized to achieve a globally op-
timum performance. Causal feedbacks among these blocks are
also permissible, which can make structured receivers achieve
the quantum limit for binary signaling [15]. However, due to
their complexity, we will not consider them here.

III. SYSTEM CHARACTERIZATIONS

In this section, we characterize the symbol error probability of
the lightpath-diversity scheme with an exponentially tight upper
bound. We assume that, at the destination node, an idealized re-
ceiver obtains the lightpath state vector from a “genie” (i.e.,
the receiver has information of the channel states.) At the optical
signal processing module, optical delay lines are used to com-
pensate for delay variations among different lightpaths (fiber de-
lays can also be replaced by time delays in the electrical signal
processing stage if parallel detectors are used.) At the op-
tical detection module, the photo-events at the output of the
detectors are recorded for symbol decisions. At the electrical
processing module, we apply the maximal-likelihood (ML) de-
cision rule to the vector output of the detectors to make optimal
symbol-by-symbol decisions.

Under the general network model given in Section II-A,
the optimum receiver is complex. The analysis and results
would not provide much insight into the signaling and detec-
tion schemes due to the heterogeneity of individual lightpath.
Here, we make the simplifying assumption of homogeneous
lightpaths, resulting in a simpler derivation and the results will
provide much better insight into the proposed transmission
scheme.

1) All lightpaths are assumed to be homogeneous and inde-
pendent; i.e., and

. Although some generality is lost due to this as-
sumption, results based on this assumption will provide
better insight for the optimization of the proposed trans-
mission scheme. Under this assumption, a uniform energy
(per bit) allocation algorithm at the transmitter is optimal
(see Appendix A). Otherwise, the optimal energy (per bit)
allocation algorithm can be obtained by solving a compli-
cated convex optimization problem.

2) All attenuation parameters are assumed to be equal and
normalized to one. Note that this result can be generalized
to the unequal attenuation case by solving a complicated
convex optimization problem.

A. Photo-Event Counting Process

With the BPPM signaling and the uniform energy (per bit) al-
location, the optical signal power over the th lightpath is either

(1a)

for hypothesis (i.e., symbol “0”), or

(1b)

for hypothesis (i.e., symbol “1”). In both cases, is the
average output power of the laser, and is the symbol time.

The received optical signals can be corrupted by amplifier
noises if optical amplifiers are used. We assume that the noise
process receives contributions from many spatial-temporal
modes, and the probability of two successive noise-driven
photo-events coming from the same spatial-temporal mode
is close to zero. It follows that the Weak Photon-Coherence
Assumption holds, and we can approximate the noise-driven
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Fig. 4. Detected photo-event rates for two hypotheses with BPPM signaling.
(a) When the lightpath is UP, the detected rate is the sum of the signal rate and
the noise rate. (b) When the lightpath is DOWN, the detected rate is only the
noise rate.

photo-event process with a point process of a constant rate
equal to its mean [16]. This approximation is accurate within
about 1 dB for a single channel. With channels and many
amplifiers in cascade, we expect the approximation to be even
better. Consequently, taking into account of the noise, the
photo-event rate at the output of the th detector is either

(2a)

for hypothesis , or

(2b)

for hypothesis . In both cases, ( is the
quantum efficiency of the detector, is the photon energy)
is the rate of the signal photo-event process with an average
signal power of , and is a Bernoulli random variable with
parameter . Fig. 4 shows the rates of the photo-event
counting process for a) and b) . For a given
hypothesis, the photo-event process is a doubly stochastic point
process due to its random rate parameter.

B. Optimum Decision Rule

If lightpaths are UP during the symbol duration,
we can re-index them from 1 to for a “genie-aided” receiver.
Under this scenario, the optimal decision rule is the same as the
detection rule for the scenario with perfectly reliable light-
paths [12], i.e.,

(3)

where and are photo-event counts during [0, ] and
[ , ] over the th lightpath, respectively.

C. Error Probability Upper Bound

In this section, we derive an exponentially tight upper bound
for the error probability of the “genie-aided” receiver via a two-
step procedure: 1) the Chernoff bound of the error probability
conditioning on the number of UP lightpaths is calculated and
2) the overall error probability upper bound is calculated by av-
eraging the conditional error probability bound over the distri-
bution of the number of UP lightpaths.

Given that lightpaths are UP during the transmission, the
conditional error probability is defined as

(4)

where , are probabilities of sending the “ZERO” or “ONE”
bit, and the second equality is due to the symmetry of binary
pulse-position modulation and for equiprobable
digital source. Since the closed form solution of is
involved with summation of infinite numbers of terms, we focus
on the exponentially tight Chernoff upper bound [12]

(5)

where is the average data-driven photo-event
count of duration with binary pulse-position modulation
and is the average noise-driven photo-event count
per 1/2 bit. Since the inequality is valid for any value of ,
the bound can be tightened by minimizing the right-hand side
of (5)

(6)

where the minimum is achieved when .
The overall error probability is then obtained by averaging

the conditional error probability (6) over the distribution of the
number of UP lightpaths

(7)
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The number of UP lightpaths can be written as .
It can be verified that has a binomial distribution of

(8)

Substituting (6) and (8) into (7), we obtain

(9)

where . Note
that the right-hand side of (9) has the form of the charac-
teristic function of the random variable . Using the fact
that the characteristic function of a binomial random variable

is [13], we obtain the
upper bound of the overall error probability as

(10)

For a sanity check, if , (10) turns out to be

(11)

which is the error probability bound for the source-destination
pair connected by reliable lightpaths. Note that is the prob-
ability of the lightpath being DOWN, where the error proba-
bility is equal to 1, and is the probability of the light-
path being UP, where the error probability is bounded by the
term , which is the Chernoff bound for the error
probability of a single lightpath with signal photons per
bit and noise photons per 1/2 bit. It follows that the term

is the Chernoff bound of
the expected error probability for a single lightpath with failure
probability . The overall error probability bound is obtained by
reducing this expected error probability of a single lightpath to
its th power, which can be defined as the lightpath diversity
gain.

The error probability upper bound (10) is plotted in Fig. 5,
where the error curves exhibit different characteristics in three
different signal-to-noise photon rate ratio regimes.

In the low signal-to-noise photon rate ratio regime, the light-
path-diversity mechanism has an inherently poor error perfor-
mance and, thus, is of no engineering interest. In particular, if
we let and , the error probability
bound is reduced to

(12)

The error exponent decreases if we use more lightpaths, which
suggests that it actually hurts to use lightpath diversity in the
low signal-to-noise photon rate ratio regime.

In the high signal-to-noise photon rate ratio regime, the error
probability curves converge to error floors because the effect of
lightpath failures dominates that of the amplification and detec-
tion noises. In fact, if we let and
for a fixed , we obtain

(13)

Fig. 5. Error probability bounds for the idealized receiver with different
number of lightpaths. f = 0:01 and N = 2.

This verifies that the error floor phenomenon corresponds to the
event in which the source-destination pair is disconnected from
each other, with probability of . This result suggests that
topologies with a small probability of disconnection are prefer-
able for reliable networks [6], [7]. Moreover, due to this sat-
uration property, we cannot improve the error performance by
simply increasing the signal-to-noise photon rate ratio. Thus,
it is inefficient in energy utilization to work in the super-high
signal-to-noise photon rate ratio regime.

In the medium-to-high signal-to-noise photon rate ratio
regime, the error performance depends on the number of light-
paths ( , the lightpath diversity gain) and the signal-to-noise
photon rate ratio. After some algebraic manipulations, (10) can
be written as

(14)
where the signal-to-noise photon rate ratio is given by

. As shown in (14), in order to achieve a lower error
probability, we want to increase the number of lightpaths and
the signal-to-noise photon rate ratio simultaneously. However,
for a given amount of optical energy per bit (signal photons per
bit, ), we have

(15)

This indicates that the number of lightpaths and the signal-to-
noise photon rate ratio are two factors competing for a limited
amount of optical energy. Therefore, we need to balance this
tradeoff to optimize the system performance and improve the
energy efficiency, which will be addressed in the next section.

IV. SYSTEM OPTIMIZATIONS

The output energy (per bit) of the transmitter is limited by
physical constraints such as laser construction. We need to uti-
lize this limited amount of optical energy efficiently. As indi-
cated in last section, the energy efficiency can be improved over
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Fig. 6. Optimal number of lightpaths M is plotted against the average
number of signal photons per bit N . As a comparison, we also plot the results
from the exhaustive search algorithm.

the choice of the number of lightpaths for different objective
functions.

A. Minimizing the Error Probability Bound ( ) for a
Limited Amount of Optical Energy ( )

Given a limited amount of optical energy, the number of light-
paths can be chosen to minimize the error probability. Equiva-
lently, we can minimize the error probability bound since
this bound is exponentially tight. We formulate it as the fol-
lowing nonlinear programming problem:

the set of positive integers (16)

Instead of finding the exact solution, we relax the integer con-
straint, and assume is a positive real number to solve the ap-
proximate problem without the integer constraint. Note that the
minimum of without the integer constraint is a lower
bound of the minimum of with the integer constraint. If

(we are interested in this region since practical
networks seldom have ), the optimum lightpath number

(see Appendix B) is approximated by

(17)

where . For
comparison, we have also found the optimal integer by
using an exhaustive search algorithm. In Fig. 6, the results from
both the exhaustive search algorithm (bullets) and the analytical
solution (lines) are plotted against different signal energy levels,
i.e., the average number of signal photons per bit . The ana-
lytical results match the numerical results well.

According to (17) and Fig. 6, the optimum lightpath number
decreases with higher noise energy per slot since we want

to maintain a certain level of signal-to-noise photon rate ratio,
and also decreases with more reliable lightpaths since we have
no incentive of using lightpath diversity if the lightpath is re-
liable. Moreover, the optimum lightpath number increases

linearly with the transmitted energy per bit. This suggests
that each lightpath requires a fixed optimal average number of
signal photons

(18)

per bit, which is fully determined by the parameters of the light-
path, i.e., the lightpath failure probability and the noise level

. When the lightpath is very reliable (i.e., ), this
number is asymptotically equal to .
This asymptotic result suggests that the optimal average number
of photons per lightpath increases with higher noises and more
reliable lightpaths. This is because, under these two scenarios,
we need more optical energy per lightpath to bias the lightpath
at the optimum operating point, which will be addressed next.

Substituting (17) into (10), the minimum error probability
bound is approximated by

(19)

This indicates that, at the optimum operating point where the
number of lightpaths are optimally chosen to minimize the error
probability bound for a given amount of optical energy (per
bit), each lightpath is biased to have an effective error proba-
bility of , which is close to the saturation error probability
of for an individual lightpath. This result implies that the
optimum operating point lies in the medium-to-high signal-to-
noise photon rate ratio regime but near the high signal-to-noise
photon rate ratio regime. This also justifies why each lightpath
requires more photons when the lightpath is more reliable. In
fact, when the lightpath failure probability decreases, we need
to increase the signal-to-noise photon rate ratio to sustain an ef-
fective error probability of .

Furthermore, if , the minimum error probability bound
is approximated by

(20)

The error exponent decreases linearly with the optical energy
(per bit). This again suggests that the optimum strategy works
at the medium-to-high signal-to-noise photon rate ratio regime
and near the high signal-to-noise photon rate ratio regime; oth-
erwise, the error exponent would depend quadratically on the
total signal energy transmitted in low signal-to-noise photon
rate ratio regime [9]. This is verified in Fig. 5, where the points
marked by stars near the high signal-to-noise photon rate ratio
regime correspond to optimum operating points for different op-
tical energy per bit indicated in the horizontal axis. Also, shown
in (20), the noise-to-failure ratio of determines the
minimum error probability bound for a limited amount of op-
tical energy (per bit) . This says that both the noise and the
lightpath failure probability exponent contribute equally in de-
termining the optimum operating point. Finally, the asymptotic
minimum error probability bound (20) approaches zero when
we increase the optical energy (per bit). This implies that we can
eliminate the saturation effect in the super-high signal-to-noise
photon rate ratio regime if we choose the number of lightpaths
optimally.
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(a) (b)

Fig. 7. Number of lightpaths is chosen optimally to minimize the total energy per bit for target error probability bounds. (a) Shows the optimum number of
lightpaths for various target error probability bounds. (b) Shows that the minimum optical energy per bit for various target error probability bounds. The lines are
for analytical solutions, and the bullets for numerical solutions. We choose N = 1 for all the cases.

B. Minimizing the Total Optical Energy (Per Bit) for a
Target Error Probability Bound ( )

In this section, we minimize the total transmitted optical en-
ergy (per bit) for a target error probability. Since the Chernoff
bound (10) is exponentially tight, we can minimize the trans-
mitted optical energy (per bit) for an equivalent target error
probability bound. This is actually the dual of the problem in-
vestigated in Section IV-A.

For a given amount of optical energy (per bit) , if we plug
(17) into (19), we obtain the minimum error probability bound
approximated by

(21)

where . Using (21), we
obtain the required minimum optical energy (per bit) for a target
error probability bound , given by

(22)

Substituting (22) into (17), the optimal number of lightpaths
to minimize the transmitted energy (per bit) is obtained as

(23)

In Fig. 7, we plot the optimum lightpath number and the

minimum optical energy (per bit) versus different target
error probability bounds according to the analytical solutions
(22) and (23). As a comparison, the numerical results from an
exhaustive search algorithm are also labeled as bullets points.
Also, in Fig. 7, the case of is plotted for reference. If the
lightpath is perfectly reliable (i.e., ), lightpath diversity
is not used since using more lightpaths only increases the total
noise and degrades the error performance as suggested by (12).

As shown in Fig. 7, both the optimal number of lightpaths
and the minimum optical energy (per bit) increase with lower
target error probabilities, because each lightpath is biased at the
optimum operating point to have error probability of by re-
quiring an optimum average number of photons (per bit). We
also note from Fig. 7 that more lightpaths are needed to achieve
a target error probability bound when the reliability of individual
lightpath deteriorates.

In (23), we cannot directly observe the effect of noise in de-
termining the optimum lightpath number . As implied by
(19), at the optimum operating point, each lightpath is biased
to have error probability of , which is independent of the
noise . At the same time, in order to work at the optimum
operating point, each lightpath requires an optimum average
number of signal photons (per bit) given by (18). Therefore,
when the noise increases, instead of requiring more lightpaths,
we increase the total optical energy (per bit) to maintain the
signal-to-noise photon rate ratio and, thus, bias each lightpath
to have an effective error probability of . In fact, if we let

, the required minimum optical energy (per bit) is ap-
proximated by

(24)

This says that, if we increase , the required minimum optical
energy (per bit) increases to bias each lightpath to have an effec-
tive error probability of and, thus, the target error probability
bound is achieved without requiring more lightpaths.

V. OPTIMUM REALIZABLE RECEIVERS

Pragmatic engineering design is basically a tradeoff between
implementation complexity and symbol error probability. In
general, in order to achieve a lower error probability, the re-
ceiver needs to estimate states of all the lightpaths for symbol
decisions. This joint estimation and detection approach can
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result in a complicated receiver structure. On the other hand,
a simpler receiver uses simpler lightpath state estimators or
does not estimate the lightpath states at all and, thus, usually
has a higher error probability. To highlight this tradeoff, we
explore two extreme cases for the complexity-error tradeoff in
this paper.

1) Optimal receiver: It has the lowest symbol error proba-
bility, but has the most complicated receiver architecture.
This will be investigated in this section.

2) EGC receiver: The receiver architecture is much simpler.
However, the error performance is suboptimum since it
does not exploit all the available information at the re-
ceiver. This will be investigated in the next section.

Between the two extreme cases are other reasonably good
suboptimal receivers. Their error performance is usually better
than that of the EGC receiver, and worse than that of the op-
timal receiver. On the other hand, their complexity falls between
the most complicated optimal receiver and the simplest EGC
receiver. One of our objectives in this research is to see how
these receivers perform in different signal-to-noise photon rate
ratio regimes and generalize rules of thumb to balance the com-
plexity-error tradeoff in practical optical receiver design.

In this section, we first find the optimal counting receiver
under the following framework. At the optical signal processing
module, optical delay lines are used to compensate for delay
variations among different lightpaths (fiber delays can also be
replaced by time delays in the electrical processing stage since
we will use parallel detectors); at the detection module,
photon-counting receivers are used to record the photo-event
times for symbol decisions; at the electrical processing module,
to minimize the symbol decision error probability, we use a
ML detector to make symbol decisions based on the recorded
photo-event time statistic.

A. Optimum Receiver Architecture

We start with the calculation of the likelihood func-
tions for both hypotheses. For the th channel, let ( ,

) be photo-event counts during the first half bit interval
[0, ] and the second half bit interval [ , ], and

be
the corresponding photo-event time statistic. The conditional
distribution density functions of the time statistic at the th
lightpath output, as derived in [9], are given by

(25a)

and

(25b)

where the minimum mean-squared error (MMSE) causal esti-
mate of the th lightpath state for hypotheses ( , 1) is
given by

(26)
and is the number of photo-events over [0, ]. As derived in
Appendix C, these estimators are given by

(27a)
where is the number of photo-events over [0, ], and

(27b)

where is the photon count over [0, ], and is the photon
count over [0, ] of the same realization of the photo-event
process.

Note that the photo-event time statistics of the lightpaths are
independent because the lightpaths belong to different shared-
risk groups. It follows that the overall conditional distribution
density functions can be written as

(28a)

and

(28b)

where is the
overall photo-event time statistics. Using (28a) and (28b), the
log-likelihood ratio can be written as

(29)

where is the signal-to-noise photon
rate ratio. After some algebraic manipulations, we obtain the
ML detection rule as

(30)
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Fig. 8. Optimal receiver architecture. 	 t ; F (t) = ln 1+F (t )
 � F (t)dt, where t are photo-event time statistics and F (t) are

channel state estimators under H . 	 t ; F (t) = ln 1+F t 
 � F (t) dt, where t are photo-event time statistics and F (t) are

channel state estimators under H .

For a sanity check, assume all the lightpaths are UP, i.e.,
, during the symbol transmission, the

decision rule (30) turns out to be

(31)

Note that the detection rule (31) is identical to the detection rule
for the case with invulnerable lightpaths [12].

Note that each received photon is weighed by the scaling
factor which depends on the lightpath state
estimate at the photon arrival time. If the estimate of the light-
path state is large meaning that the possibility of the lightpath
being UP is high, the scaling factor is large since it is more likely
that the photon comes from the signal, not the noise. On the con-
trary, we assign a small scaling factor to the photon if the light-
path state estimate is small. In particular, if we estimate that the
lightpath is DOWN, the scaling factor is equal to zero since the
photon must come from noise and, thus, should not be taken into
consideration for detection.

Moreover, detection rule (30) indicates a fundamental decom-
position of functions in the optimal receiver structure, which is
generalized as the separation theorem of detection in [9]. In par-
ticular, the receiver consists of two separable operation mod-
ules, i.e., estimators for lightpath states and signal processing
modules for hypothesis testing, as shown in Fig. 8. This sep-

aration property suggests that we may be able to replace the
complicated optimal lightpath state estimator with some sim-
pler heuristic state estimators to reduce the receiver complexity
without modifying the receiver structure. This idea often per-
forms well in practice and yields near-optimal policies in dy-
namic programming [18]. Therefore, we expect that the error
performance with suboptimal lightpath state estimators is not
degraded significantly, which indeed is true, as will be shown in
next section.

B. Error Performance

In this section, we analyze the error performance of the op-
timal receiver. In particular, a lower bound and an upper bound
are derived for the exponentially tight Chernoff bound of the
symbol error probability.

As illustrated in Section III, the symbol error probability of
the “genie-aided” receiver is the “genie-aided” limit of the pro-
posed architecture within the class of structured receivers. For a
sense of how well the optimal receiver performs, we can use the
Chernoff bound of the “genie-aided” receiver as a lower bound
for Chernoff bound of the optimal receiver because the Cher-
noff bound is exponentially tight [12]. This suggests that the
following lower bound for the Chernoff error bound of the op-
timal receiver

(32)
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where ,

is the average number of signal-driven photo-events per
bit, is the average number of noise-driven photo-
events per 1/2 bit, and is the error bound of the optimal
receiver.

On the other hand, the optimal receiver must perform better
than any suboptimal receiver within the class of structured re-
ceivers [11]. It follows that we can use the Chernoff bound of
any suboptimal receiver as an upper bound for the performance
of the optimal receiver. In particular, we choose a suboptimal
receiver that uses the following noncausal estimator

(33)

where is the MMSE causal estimate of the channel state
at time and is the estimated lightpath state. If ,
the receiver estimates the lightpath to be DOWN and, thus, dis-
cards the received signal over that lightpath. Otherwise, the re-
ceiver estimates the lightpath to be UP and, thus, uses the re-
ceived optical signal over that lightpath for optimal combining
and symbol decisions.

As derived in Appendix D, the upper bound for the Chernoff
error bound of the optimal receiver, which is also the Chernoff
error bound of the suboptimal receiver, is given by

(34)

Here, the probability that the lightpath is estimated to be
DOWN, , is given by

(35)

where

(36)

is the number of photons per bit beyond which the lightpath is
estimated to be UP. In (36), is the average number of
photons per lightpath per bit, is the additional
number of photons needed to declare that the lightpath is UP, and
both numbers must be adjusted by the term ,
which is the scaling factor in (30), to obtain the actual number
of photons. If , then . This
means that the actual number of photons needed is reduced since
the probability of the lightpath being UP is higher and fewer
photons per lightpath are needed for the estimator to declare
that the lightpath is UP. On the other hand, if ,
then . This means that the actual number of
photons needed is increased since the probability of the light-
path being DOWN is higher and more photons per lightpath are
needed for the estimator to declare that the lightpath is UP.

Fig. 9. Estimated lightpath failure probability g is compared with the prior
lightpath failure probability f under different signal-to-noise photon rate ratios.

Fig. 10. Lower bound and the upper bound for the Chernoff bound of the
optimal receiver. (f = 0:01 and N = 2 ).

Note that the lower bound (32) and the upper bound (34)
have the same form, except that the prior lightpath failure
probability in (32) is replaced by the estimated lightpath
failure probability in (34). This implies that the tightness
of the lower bound and the upper bound highly depends on
the difference between the estimated lightpath failure prob-
ability and the prior lightpath failure probability. To explore
this, we compare the estimated lightpath failure probability
with the prior failure probability in Fig. 9. We find that the
difference between these two probabilities is negligible when
the signal-to-noise photon rate ratio is high enough. It follows
that the lower bound and the upper bound are close to each
other and, thus, both are very tight. This is verified in Fig. 10,
where the lower bound and the upper bound are plotted against
the average number of signal photons per bit. Moreover, these
tight bounds suggest that the optimal receiver exhibits the



1582 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 8, AUGUST 2005

same error characteristics in different signal-to-noise photon
rate ratio regimes as the “genie-aided” receiver, as shown in
Fig. 10. In the super-high signal-to-noise photon rate ratio
regime, the error bound converges to an error floor , the
probability with which the source-destination pair is discon-
nected. This suggests that network topologies with small
probability of disconnection [6], [7] should be considered for
ultrahigh reliable optical networks. In the lower signal-to-noise
photon rate ratio regime, the error probability increases with
more lightpaths. It indicates that lightpath diversity actually
hurts in this regime and be of no engineering interest. In the
medium-to-high signal-to-noise photon rate ratio regime, the
error probability depends on both the number of lightpaths
and the signal-to-noise photon rate ratio. These two factors,
however, are competing with each other for a given amount
of optical energy. Hence, we need to balance this tradeoff
to achieve better energy efficiency. This, along with the fact
that the optimal receiver performs close to the “genie-aided”
receiver limit, suggests that system parameters optimized for
the “genie-aided” receiver, such as the optimum number of
lightpaths derived for different objective functions, also apply
for the optimal receiver in the medium-to-high signal-to-noise
photon rate ratio regime.

VI. EQUAL-GAIN-COMBINING (EGC) RECEIVER

Although the optimal receiver has the lowest symbol error
probability, it involves complicated processing by estimating the
individual lightpath state throughout the symbol duration. In this
section, we develop one suboptimal receiver, the EGC receiver,
which not only approaches the optimal receiver in the symbol
error probability under most scenarios, but also has the advan-
tage of a simpler architecture.

A. Receiver Architecture

In the EGC receiver, rather than estimating lightpath states,
we assume all the lightpaths to be UP and use the ML decision
rule to do symbol detection. Mathematically, the EGC receiver
employs the following decision rule:

(37)

to make symbol-to-symbol decision based only on the photo-
event counts. Decision rule (37) is much simpler than decision
rule (30) in that only one photon-counting receiver is needed.
This indicates that the EGC receiver offer a significant reduction
in implementation complexity compared with the optimal re-
ceiver, at the expense of a degraded error performance, as shown
in the following section.

B. Error Performance

We start with the calculation of the error bound for the EGC
receiver. Given the lightpath state vector , the conditional error
probability is defined by

(38)

where , are probabilities of sending the “ZERO” or “ONE”
bit, and the second equality is due to the symmetry of binary
pulse-position modulation and for equiprobable
digital source.

Let be the total photo-event count recorded
over [0, ], and be the total photo-event
count recorded over [ , ]. Note that, given hypothesis
and the lightpath state vector , is a Poisson random vari-
able with mean , where is the
number of UP lightpaths for a given lightpath state vector ,
and is a Poisson random variable with mean .

Using the Chernoff bound, the conditional error probability
is bounded by

(39)

It can be verified that is a binominal random vari-
able with a distribution function of

, . Averaging (20)

over all possible lightpath state vectors , we obtain
the error bound for the EGC receiver, as shown in (40) at the
bottom of the page.

Using (40), we compare the error bound of the EGC re-
ceiver with the “genie-aided” receiver limit in Fig. 11. In the
low signal-to-noise photon rate ratio regime, the error prob-
ability is inherently high and of no engineering interest. In
the medium-to-high signal-to-noise photon rate ratio regime,
the gap between error bounds of the EGC receiver and the
“genie-aided” limit is larger than the gap between error bounds
of the optimal receiver and the “genie-aided” limit. With the
EGC receiver, noise from DOWN lightpaths will degrade
the average signal-to-noise photon rate ratio and, thus, in-
creases the error probability since the error probability in the
medium-to-high signal-to-noise photon rate ratio regime is

(40)
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Fig. 11. Error bounds of the EGC receiver are compared with the
“genie-aided” receiver limit under different lightpath numbers. (f = 0:01 and
N = 2).

sensitive to the signal-to-noise photon rate ratio. However, in
the high signal-to-noise photon rate ratio regime, the EGC
receiver has an error bound close to the “genie-aided” receiver
limit. This indicates that the EGC receiver is preferable to
the optimal receiver in the high signal-to-noise photon rate
ratio regime due to its simplicity. In fact, the EGC receiver
approaches asymptotically the optimal receiver when the noise
is negligible, as we will show next.

C. Power Penalty

Since the error probability of the EGC receiver is higher than
that of the “genie-aided” receiver, we need to transmit more op-
tical energy in order for the EGC receiver to achieve the same
target error probability as the “genie-aided” receiver does in the
medium-to-high signal-to-noise photon rate ratio regime. In this
section, we analyze this amount of additional power for the EGC
receiver to achieve a target error probability bound compared
with the “genie-aided” receiver. For a target error probability
bound of , the power penalty of the EGC receiver over the
“genie-aided” receiver is defined as

(41)

where and are the
minimum amounts of optical power (in terms of average number
of signal photons per bit) for the “genie-aided” receiver and the
EGC receiver, respectively, to achieve a target error probability

.
Using numerical results by exhaustive searching, the optimal

number of lightpaths and the minimum transmitted optical en-
ergy are plotted in Fig. 12(a) and (b). To achieve the same error
probability bound, the EGC receiver requires more lightpaths
and more optical energy. This suggests that a more densely
connected network topology is needed to provide enough inde-
pendent lightpaths for the EGC receiver. The power penalty is
plotted in Fig. 12(c) and (d). From Fig. 12(c), the power penalty

is asymptotically independent of the target error probability.
This is due to two reasons. First, the error bound of the EGC
receiver is close to that of the “genie-aided” receiver with
optimized system parameters. Second, the minimum trans-
mitted power is linear with the error exponent given by (22) in
Section IV-B. It follows that, at the optimum operating points,
both error bounds are parallel to each other in a log-log plot.
The power penalty is approximately determined by the ratio
between the slopes of the error exponents of the “genie-aided”
receiver and the EGC receiver at the respective optimum oper-
ating points. Therefore, the power penalty is independent of the
target error probability bounds. On the other hand, the power
penalty increases with higher noise levels as shown in plot (d),
and approaches zero when the noise level goes to zero. This
demonstrates that the EGC receiver is generally suboptimal and
approaches the optimal receiver when the noise level decreases.
In particular, if there is no noise, the EGC receiver would be
optimal because the receiver would not receive any noise from
DOWN lightpaths to degrade the error performance. Moreover,
for the practically interesting parameters, the power penalty is
around 1-dB. In practical system design, if this 1-dB penalty is
acceptable, the equal-gain-combing receiver is preferable over
the optimum receiver due to its simplicity.

VII. CONCLUSION

In this paper, we proposed the use of lightpath-diversity to
achieve ultra-reliable end-to-end communication with low delay
requirements in all-optical networks. For a network with dense
connections, arbitrary reliability can be achieved if enough inde-
pendent lightpaths are used. Since this approach is implemented
entirely at the Physical Layer without the use of higher layer
protocols such as ARQs, the response is fast enough for appli-
cations with super-high date rates and/or critical time deadlines.

From a theoretical perspective, we have characterized the pro-
posed lightpath-diversity system with a Doubly Stochastic Point
Process model. The limit on the error probability of the scheme
has been obtained via a “genie-aided” receiver. This “genie-
aided” receiver limit serves as a benchmark for practical receiver
architectures. Under typical operating scenarios, we have opti-
mized the system performance by choosing an optimal number
of lightpaths to utilize the limited optical power efficiently. An-
alytical proof showed that each lightpath requires an optimum
number of signal photons to bias itself at the effective error
probability of . This optimum average number of photons
per lightpath is fully determined by the lightpath parameters,
including the lightpath failure probability and the noise level.

From an engineering perspective, we have investigated the
class of structured receivers for the multiple-lightpath transmis-
sion architecture. Using the Doubly Stochastic Point Process
model, we have developed the architecture of the optimal re-
ceiver, and have bounded its error performance with a lower
bound (the “genie-aided” receiver) and an upper bound (non-
causal estimator). The tightness of the lower bound and the
upper bound indicates that the optimal receiver approaches the
“genie-aided” limit of structured receivers and, thus, system pa-
rameters optimized for the “genie-aided” receiver apply to the
optimal receiver in the medium-to-high signal-to-noise photon
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Fig. 12. (a) Optimal lightpath number to minimize the total optical energy is plotted against different target error probability bounds. (b) The minimum number
of signal photons per bit is plotted against different target error probability bounds for the “genie-aided” receiver and the EGC receiver. In (a) and (b), we set
f = 0:1 and N = 2. GA: genie-aided receiver; EGC: equal-gain-combining receiver. (c) Power penalty of the EGC receiver is plotted under different target
error probability bounds. (d) Power penalty of the EGC receiver is plotted under different noise levels.

photon rate ratio regime. However, the optimal receiver needs to
estimate lightpath states throughout the symbol time, which is
complicated. To balance error probability performance and im-
plementation complexity, we have developed a suboptimal EGC
receiver with lower complexity, and have characterized its error
performance. Performance comparison between the equal-gain-
combing receiver and the “genie-aided” receiver limit of struc-
tured receiver showed that the power penalty of the EGC re-
ceiver decreases with decreasing noise level. These results sug-
gest that the equal-gain-combing receiver is preferable to the
optimal receiver in the high signal-to-noise photon rate ratio
regime, and the optimal receiver is needed for good performance
in the low signal-to-noise photon rate ratio regime at the expense
of increased complexity. For practical system design, if the mar-
ginal 1-dB penalty is acceptable, the equal-gain-combing re-
ceiver is always the preferable due to its simplicity.

APPENDIX A
OPTIMUM POWER ALLOCATION ALGORITHM FOR

HOMOGENOUS LIGHTPATHS

For a -connected source-destination pair, the power al-
location vector is , and the
state vector is with a probability

distribution . For the
“genie-aided” receiver, the overall error probability upper
bound is given by

(A.1)

where is the noise power vector and
is the -dimensional vector space over the {0,1} field.

To minimize the error probability, we solve the following
nonlinear programming problem

(A.2)

where .
From the fact that, for each

, the function
is a convex function defined over a compact convex set

, we conclude

that the objective function is convex over the compact
convex set. It follows that the minimization problem (A.2) has a
uniquesolutiondue to theconvexproperty.

From the Karush–Kuhn–Tuck conditions [14], we have

(A.3)

where , and is a Lagrange
multiplier. It can be verified that the following power allocation
vector

(A.4)

satisfies the necessary condition of (A.3). It follows that (A.4)
must be the unique minimizer of the objective function. This
result indicates that the uniform power allocation algorithm is
optimal under the assumption of homogenous lightpaths.
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APPENDIX B
OPTIMUM NUMBER OF LIGHTPATHS USED FOR A LIMITED

AMOUNT OF TRANSMITTED OPTICAL ENERGY

In this section, we solve the nonlinear programming problem
given by

(B.1)
From the implicit function theorem [14], there exists a func-

tion such that is minimized over
the convex set . We find an approximation of
the function as follows.

Let and .
Note that and . To a
first-order approximation, in the medium signal-to-noise photon
rate ratio regime, the optimum number of lightpaths can be
approximated by the value of , where the curve and the
curve meet, i.e.,

(B.2)

If , (B.2) has a unique solution given by

(B.3)

This approximation is found to be very accurate when compared
with a numerical search for .

Intuitively, this derivation can be understood as follows. For
each individual lightpath channel, there are two detrimental
factors that degrade the error performance. One is the noise,
the other is the lightpath failure. If the lightpath works in high
signal-to-noise photon rate ratio regime, the error due to the
noise is dominated by the error due to the lightpath failure such
that the error probability is floored by the failure probability

. The energy efficiency in this regime is very low but error
probability is also low. On the other hand, if the lightpath works
in low signal-to-noise photon rate ratio regime, the error due
to the noise dominates the error due to the lightpath failure
such that the error probability is on the order of one. In this
regime, the energy efficiency is high but the error probability
is also high. As a tradeoff between the energy efficiency and
the error probability, the optimal operation point should be the
point where both noise and failure contribute equally to the
error probability, i.e., .
The optimal number of signal photons per lightpath follows
from this observation.

APPENDIX C
MMSE LIGHTPATH STATE ESTIMATOR FOR OPTIMUM RECEIVER

In designing the optimal receiver, we need to find the MMSE
causal estimator of lightpath states. We start by incorporating
the following lemma in [9], which is crucial to the derivation of
the MMSE causal lightpath state estimator.

Lemma 1 (Estimation of Random Variables in Doubly Sto-
chastic Point Processes): For a doubly stochastic point-process

with a random arrival rate , where

is a time-independent random vector, let be a time-de-
pendent vector-value function of the random vector and such
that . Then, for a recorded time statistic

, the MMSE causal estimate of the func-
tion of is the conditional mean , given by

(C.1)
where .

For simplicity, the subscript is suppressed in the following
derivation. Due to the random channel model, the arrival rate of
the photo-event process at the output of each detector

is a random variable. In particular, is a Bernoulli
random variable with the probability density function

.
Using (C.1), the MMSE causal estimator of the channel state
is given by

(C.2)

where .
For hypothesis , the photo-event rate is

(C.3)

Substituting (C.3) into (C.2), the MMSE causal estimator of the
channel state turns out to be

(C.4)
where is the number of photo-events over [0, ].

For hypothesis , the photo-event rate is

(C.5)

Substituting (C.5) into (C.2), the MMSE causal estimator of the
channel state turns out to be

(C.6)

where is the photo-event count over [0, ], and is the
number photo-event count over [0, ] of the same sample
function of photo-event process.

APPENDIX D
CHERNOFF BOUND OF THE SYMBOL ERROR PROBABILITY

FOR THE RECEIVER WITH NONCAUSAL

LIGHTPATH STATE ESTIMATOR

The suboptimal receiver makes hard-decisions on estimated
lightpath states from causal state estimators at time .
The noncausal hard-decision rule is given by

(D.1)
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where is the MMSE causal estimate of the lightpath state
at time . If , the receiver estimates the lightpath
to be DOWN and, thus, discards the received signal over that
lightpath. Otherwise, the receiver estimates the lightpath to be
UP and, thus, uses the received optical signal over that lightpath
for optimal combining and symbol decisions.

With hard-decision lightpath states, the symbol decision rule
is given by

(D.2)

where is the number of lightpaths that are estimated to be
UP during the symbol transmission. Note that is a binomial
random variable with a probability distribution function

(D.3)

where is the probability with which the
lightpath is estimated to be DOWN during the symbol transmis-
sion. For both hypotheses, the channel state estimator has the
form

(D.4)

The probability distribution function of the photon count is

(D.5)

Combining (D.4) and (D.5), the probability with which the
lightpath is estimated to be DOWN is given by

(D.6)

To calculate the error bound, we start with the error proba-
bility conditioned on the number of lightpaths estimated to be
UP during the symbol time. For given , the conditional error
probability is defined as

(D.7)

where the second equality is due to the symmetry of BPPM.
Using the Chernoff bound, the right-hand side of (D.7) is
bounded by

(D.8)

where .
Using (D.6) and (D.8), the error bound of the hard-decision

receiver is obtained by averaging (D.8) over all possible , that
is

(D.9)

Note that (D.9) is also an upper bound for the optimal receiver.
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