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Abstract—In this paper, we propose to leverage cloud comput-
ing to tame resource-poor mobile devices. Specifically, mobile ap-
plications can be executed in the mobile device (known as mobile
execution) or offloaded to the cloud clone for execution (known as
cloud execution), with an objective to conserve energy for mobile
device. The energy-optimal execution policy is obtained by solving
two constrained optimization problems, i.e., how to optimally
configure the clock frequency to complete CPU cycles for mobile
execution, and how to optimally schedule the data transmission
for cloud execution in order to achieve the minimal energy within
time delay. Closed-form solutions are obtained for both cases and

applied to decide the optimal condition under whether the local
execution or the remote execution is more energy-efficient for
the mobile device. Moreover, numerical results illustrate that a
significant amount of energy (e.g., up to 13 times for a typical
mobile application profile) can be saved by optimally offloading
the mobile application to the cloud clone.Index Terms—cloud computing, mobile applications, applica-
tion offloading, dynamic voltage scaling.

I. INTRODUCTION

Nowadays, resource-hungry applications (e.g., multimedia

processing) are finding their way into ubiquitous smartphones.

However, due to the limited physical size, the mobile device

is inherently resource-constrained [12] in computation, energy,

bandwidth and information. In particular, the energy supply

from the limited battery capacity [10] has been one of the

most challenging design issues with mobile device. Therefore,

design decisions for mobile applications have to take consid-

eration of the resource limitation in the mobile device.

The emerging cloud-computing technology[1] offers an

opportunity to extend the capabilities of mobile device for

energy-hungry salient applications. Various cloud-assisted mo-

bile platforms have been proposed, such as cloudlet [14],

cloud clone [4], and etc. In particular, each mobile device is

associated with a system-level clone in a cloud infrastructure.

The mobile clone, which runs on a virtual machine (VM), can

execute mobile applications on behalf of the mobile device.

This architecture requires both a mechanism to implement task

offloading and a policy to decide when to offload applications.

Existing research [14], [2], [13], [4], [5], [17] has proposed

a variety of application-offloading mechanisms. However, the

research on optimal policies for application offloading to cloud

execution is limited in that they mostly consider a fixed

computation scheduling in the mobile device and a fixed

bandwidth model for the wireless channel [6], [10].

In this paper, we focus on the problem of energy-optimal

application execution in the cloud-assisted mobile platform.

The objective is to minimize the total energy consumed by

the mobile device. When the applications are executed in the

mobile device, the computation energy can be minimized by

optimally scheduling the clock frequency of the mobile device.

When the applications are executed in the cloud clone, the

transmission energy can be minimized by optimally scheduling

the transmission data rate via a stochastic wireless channel.

We formulate both scheduling strategies as constrained op-

timization problems, with a constraint that the application

should be completed within a time deadline. The closed-

form solutions for the optimal scheduler and the minimum

energy consumed by the mobile device are derived, from

which we can decide the optimal condition for energy-efficient

application execution. Our numerical results indicate that the

optimal policy depends on the application profile (i.e., the

input data size and the delay deadline) and the wireless-

transmission model. Moreover, the cloud execution can result

in significant amount of energy saving for the mobile device.

The rest of this paper is organized as follows. In Section

II, we present a model for energy consumption in the mobile

execution and the cloud execution. In Section III and IV, we

solve the optimization problems for the optimal CPU clock-

frequency scheduling in the mobile execution and the optimal

transmission scheduling in the cloud execution. In Section V,

analytical results from previous two sections are applied for the

decisions of optimal execution for mobile applications. Section

VI summarizes this paper and provides future directions.

II. SYSTEM MODELING AND PROBLEM FORMULATION

In this section, we present a mathematical model for ap-

plication execution on the cloud-assisted mobile application

platform. First, we define a mobile application profile. Then,



Fig. 1. Mobile application executed in two alternative modes: the mobile
execution (lower) and the cloud execution (upper).

we introduce energy consumption models for application exe-

cution, including a computation energy model for mobile ex-

ecution and a transmission energy model for cloud execution.

A. Mobile Application Model
We consider an application-level task execution, as illus-

trated in Figure 1. On the cloud-assisted mobile application

platform, a mobile application can be executed either on

the mobile device (known as mobile execution) or on the

cloud clone (known as cloud execution). The objective is to

develop an optimal application-execution policy, minimizing

the energy consumed by the mobile device.

We denote an application profile as A(L, T ), where L and

T are the two parameters for the application given as follows:

• Input data size L: the number of data bits as the input to
the application;

• Application completion deadline T : the delay deadline

before which the application should be completed.

B. Mobile Execution Energy Model
When the application is executed by the mobile device,

the energy consumption is determined by CPU workload. The

workload is measured by the number of CPU cycles required

by the application, denoted as W , which depends on the input

data size and the algorithm in the application.

For the mobile execution, its computation energy can be

minimized by optimally configuring the clock frequency of

the chip, via the dynamic voltage scaling (DVS) technology

[11]. In CMOS circuits [3], the energy per operation Eop is

proportional to V 2, where V is the supply voltage to the chip.

Moreover, it has been observed that the clock frequency of the

chip, f , is approximately linearly proportional to the voltage

supply of V [3]. Therefore, the energy per operation can be

expressed as Eop = κf2, where κ is the energy coefficient

depending on the chip architecture. The optimization problem

can then be formulated as,

E∗

m = min
ψ∈Ψ

E{Em(L, T, ψ)}, (1)

where ψ is any clock-frequency vector that meets the delay

deadline, Ψ is the set of all feasible clock-frequency vectors,

Em(L, T, ψ) is the energy consumed by the mobile device.

This optimization problem will be solved in Section III.

C. Cloud Execution Energy Model
When the application is executed by the cloud clone, the

energy consumed by the mobile device depends on the amount

of data transmitted from the mobile device to the cloud clone

and the wireless channel model. For any mobile application

A(L, T ), L bits of data needs to be transmitted to the cloud

clone. Note that the binary exe file for the application has been

replicated on the cloud clone initially. As such, it does not

incur additional energy cost. We assume a Markovian fading

model for the wireless channel between the mobile device

and the cloud clone. A specific model (i.e., the Gilbert-Elliott

model) for the channel gain will be presented in Section IV-A.

In this research, we adopt an empirical transmission energy

model as in [7], [8] [18], [19]. Specifically, for a wireless

fading channel with a gain of g, the energy consumed to

transfer s bits of data over the channel within a time slot

is governed by a convex monomial function, i.e.,

Et(s, g, n) = λ
sn

g
, (2)

where n denotes the monomial order, and λ denotes the

energy coefficient. It has been shown that some practical

modulation scheme exhibits an energy-bit relation that can be

well approximated by a monomial. It is normally assumed that

2 ≤ n ≤ 5.
In the cloud execution, it is possible to minimize the total

transmission energy consumption by optimally varying the

data rate (the number of transmitted bits in a given time slot),

in response to a stochastic channel. Under an optimal trans-

mission scheduling, the minimum amount of energy consumed

by the mobile device for the cloud execution is given by

E∗

c = min
φ∈Φ

E{Ec(L, T, φ)}, (3)

where φ denotes a data transmission schedule that meets the

delay deadline, Φ is the set of all feasible data schedules, and

Ec(L, T, φ) denotes the transmission energy. This optimization
problem will be solved in Section IV.

D. Optimal Application Execution Policy
The decision for optimal application execution is to choose

where to execute the application, with an objective to minimize

the total energy consumed by the mobile device. Specifically,

the optimal policy is determined by the following rule,
{

Mobile Execution if E∗

m ≤ E∗

c

Cloud Execution if E∗

m > E∗

c .
(4)

To decide an optimal application execution strategy, we will

first solve the two optimization problems, as specified in Eq.

(1) and Eq. (3).

III. OPTIMAL COMPUTATION ENERGY FOR MOBILE

EXECUTION

In this section, we investigate the problem of minimizing

the computation energy for mobile execution, by optimally

setting the clock frequency of the chip.



A. Probabilistic Task Execution in Mobile Device
Let W indicate the number of CPU cycles needed for

an application. For a given input data size, L, it can be

expressed as W = LX [10], where X has been shown to

be a random variable with an empirical distribution[9]. The

estimation of this distribution, which depends on the nature

of the application, has been treated in [15], [16], and thus

is beyond the scope of this paper. In this paper, we assume

that the probability distribution function (PDF) of X is P (x),
and its cumulative distribution function (CDF) is defined as

FX(x) = Pr[X ≤ x], and its complementary cumulative

distribution function (CCDF), denoted as F cX(w), is defined
as F cX(x) = 1− FX(x). Therefore, the CDF of the workload

W is given by FW (w) = FX(w/L), and its CCDF is given

by F cW (w) = F cX(w/L).
As shown in [9], [15], [16], the number of CPU cycles per

bit can be modeled by a Gamma distribution. The PDF of the

Gamma distribution is given by

pX(x) =
1

βΓ(α)
(
x

β
)α−1e−

x
β , for x > 0, (5)

which depends on 2 parameters(the shape α and the scale β).
In this paper, we adopt a probabilistic performance require-

ment. Specifically, each application should meet its deadline

with a probably of ρ by allocating Wρ CPU cycles. The

parameter ρ is called the application completion probability

(ACP). The probability that each job requires no more than

the allocated Wρ cycles is at least ρ, i.e.,

FW (Wρ) = Pr[w ≤Wρ] ≥ ρ. (6)

Thus, we can obtain the number of CPU cycles, for a given

ρ, as
Wρ = F−1

W (ρ) = LF−1
X (ρ), (7)

which is the ρth quantile for the distribution of W .

B. Energy-Efficient Clock-Frequency Configuration
We assume that f(w) be a clock-frequency schedule vector,

where w is the number of CPU cycles it has completed

previously. Therefore, the energy consumption is given by

Em = κ

Wρ
∑

w=1

F cW (w)[f(w)]2, (8)

where κ is the energy efficiency parameter and F cW (w) is the
probability in which the application has not completed after

w CPU cycles. The optimization problem in Eq. (1) can be

rewritten as,

min
f(w)

κ

Wρ
∑

w=1

F cW (w)[f(w)]2 , (9)

s.t.

Wρ
∑

w=1

1

f(w)
≤ T, f(w) > 0 (10)

where Eq. (10) corresponds to the delay constraint.

Fig. 2. Channel models: the Gilbert-Elliott (GE) channel model.

For the optimal CPU scheduling problem in Eq. (9), the

optimal clock scheduling policy is

f∗(w) =
θ

T [F cW (w)]1/3
, (11)

where θ =
∑Wρ

i=1 [F
c
W (i)]1/3. The optimal computation energy

is

E∗

m =
κ

T 2
{

Wρ
∑

w=1

[F cW (w)]1/3}3. (12)

It can also be shown that, as the input data size increases,

the minimum computation energy scales cubically with the

number of input data bits, i.e., E∗

m ∼ L3.

IV. OPTIMAL TRANSMISSION ENERGY FOR CLOUD

EXECUTION

In this section, we consider the problem of scheduling data

transmission to wireless (fading) channel variations, under

a deadline constraint. As such, we first briefly describe the

channel model. Next, we derive the minimum expected energy

expenditure for transmission.

A. Wireless Channel Model
We consider the scheduling of L bits data with a deadline

in T discrete time slots. The channel state at time slot t is
denoted as gt. We assume that only causal knowledge of the

channel state are available.

We adopt the Gilbert-Elliott (GE) channel model [18], [19]

in which there are two channel states {gt}: “good” and “bad”
channel conditions. If the measured channel gain is above

some value, the channel is labeled as good. Otherwise, the

channel is labeled as bad. Let the (average) channel gains of

the good and bad states be gG and gB, respectively.
In this model, as illustrated in Figure 2, the state transition

matrix is completely determined by the values pGG (for the

probability that the next state is the good state, given that

the current state is also the good state) and pBB (for the

probability that the next state is the bad state, given that

the current state is also the bad state). Accordingly, we have

pGB = 1 − pGG, pBG = 1 − pBB , where pGB denotes the

probability in which channel will transit from the good state

to the bad state in the next time slot and pBG denotes the

probability in which channel will transit from the bad state to

the good state in the next time slot. The state sojourn time

is geometrically distributed. As such, the mean state sojourn

time (duration of being in a state), measured in number of

steps in this state, is given by TG = 1
1−pGG

, TB = 1
1−pBB

.



B. Optimal Data Transmission Scheduling
We consider a discrete time model as in [7], [8]. We denote

t as discrete time index in descending order (from t = T to

t = 1). In time slot t, if the number of bits transmitted is st,
the transmission energy cost is Et(st, gt) = λ

snt
gt
. Therefore,

the optimization problem in Eq. (3) for the optimal data-

transmission schedule can be rewritten as,

min
st

: E

[

T
∑

t=1

Et(st, gt)

]

(13)

s.t.:

T
∑

t=1

st = L, st ≥ 0, ∀t.

For the GE channel model, the minimum expected energy

depends on the channel state at t = T + 1. If, at t = T + 1,
the channel is in the good state, the optimal number of data

bits transmitted in each time slot is given by

s∗t (lt, gt) =











lt

(

(gt)
1

n−1

(gt)
1

n−1 +( 1
ζt−1,G

)
1

n−1

)

, t ≥ 2;

l1, t = 1,

(14)

where lt is the number of unfinished bits at time slot t, and

ζt;G =











































pGG





(

1

(gG)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1




+pGB





(

1

(gB)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1


 , t ≥ 2;

pGG

[

1
gG

]

+ pGB

[

1
gB

]

, t = 1.

(15)

With this optimal scheduling, the minimum expected energy

is given by:

Et(L;G) = λLnζt;G. (16)

If, at t = T +1, the channel is in the bad state, the optimal
number of data bits transmitted in each time slot is given by

s∗t (lt, gt) =











lt

(

(gt)
1

n−1

(gt)
1

n−1 +( 1
ζt−1,B

)
1

n−1

)

, t ≥ 2;

l1, t = 1,

(17)

where

ζt;B =











































pBB





(

1

(gB)
1

n−1 +( 1
ζt−1;B

)
1

n−1

)n−1




+pBG





(

1

(gG)
1

n−1 +( 1
ζt−1;B

)
1

n−1

)n−1


 , t ≥ 2;

pBB

[

1
gB

]

+ pBG

[

1
gG

]

, t = 1.

(18)

With this optimal scheduling, the minimum expected energy

is given by:

Et(L;B) = λLnζt;B . (19)
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Fig. 3. The minimum energy, E∗, is plotted as a function of the application
delay deadline. The task load is modeled as Gamma distribution, with α = 4,
β = 200, and L = 800bits. The wireless channel is assumed as the Gilbert-
Elliott model with pGG = 0.995 , pBB = 0.96, gG = 1 and gB = 0.1.

These results can be proved by induction, which is given in

[20]. Given that, at steady state, the probability that a channel

is in good or bad state is TG

TG+TB
and TB

TG+TB
, respectively, the

minimum expected transmission energy E∗

c is:

E∗

c (L, T ) =
TG

TG + TB
Et(L;G) (20)

+
TB

TG + TB
Et(L;B).

It can also be shown that, as the application completion

deadline of T increases, the minimum transmission energy

decreases monotonically and scales with a factor of T−(n−1),

where n is the monomial order in Eq. (2).

V. OPTIMAL APPLICATION EXECUTION POLICY

In this section, we develop the optimal application execution

policy, based on the analytical results in Section III and

Section IV. In particular, for a given application profile of

A(L, T ), we compare the minimum computation energy for

the mobile execution and the minimum transmission energy

for the cloud execution. The optimal application execution

policy is to choose whichever consumes less energy by the

mobile device, in order to extend the battery life.

As shown In Figure 3, the optimal policy depends on

the monomial order of n. On one hand, when n is smaller

than 3, the cloud execution is more energy-efficient when the

delay deadline is below a threshold. This is because, when

n < 3, the scaling factor for the cloud execution is slower

than T−2, the scaling factor for the mobile execution. On the

other hand, when n is larger than 3, the cloud execution is

more energy-efficient when the delay deadline is beyond a

threshold. This is because, the scaling factor for the cloud

execution is faster than T−2, the scaling factor for the mobile

execution. Moreover, by optimally deciding where to execute

the application, a significant amount of energy can be saved on

the mobile devices. For example, for an application profile of

A(800bits, 400ms), the mobile execution consumes 13 times
energy more than the cloud execution for n = 5.
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with pGG = 0.995 , pBB = 0.96, gG = 1 and gB = 0.1.

As shown in Figure 4, the optimal policy depends on the

monomial order of n. On one hand, when n is smaller than 3,

the cloud execution is more energy-efficient when the data size

is beyond a threshold. This is because, when n < 3, the scaling
factor for the cloud execution is slower than L3, the scaling

factor for the mobile execution. On the other hand, when n
is larger than 3, the cloud execution is more energy-efficient

when the input data size is below a threshold. This is because,

when n > 3, the scaling factor for the cloud execution is faster
than L3, the scaling factor for the mobile execution.

VI. SUMMARY AND FUTURE RESEARCH

In this paper we investigated the problem of how to con-

serve energy for the resource-constrained mobile device, by

optimally executing mobile applications in either the mobile

device or the cloud clone. We proposed an optimization frame-

work for energy-optimal application execution in the cloud-

assisted mobile application platform. For the mobile execution,

we aim to minimize the computation energy by dynamically

configuring the clock frequency of the chip, according to

the workload distribution. For the cloud execution, we aim

to minimize the transmission energy by optimally scheduling

data transmit across a stochastic wireless channel (i.e., the

Gilbert-Elliott model). Closed-form solutions were obtained

for both scheduling problems and are applied to decide the

optimal application-execution condition under which either

the mobile execution or the cloud execution is more energy-

efficient for the mobile device. Numerical results indicate that

the optimal execution policy depends on the application profile

and the wireless transmission model. This paper focuses only

on the energy issue on the mobile device. For future work,

the energy consumption in the cloud side will be taken into

consideration.
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