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Abstract—In this paper, we investigate energy-efficient job
dispatching algorithm for transcoding as a service (TaaS) in
a multimedia cloud. We aim to minimize the energy con-
sumption of service engines in the cloud while achieving low
delay for TaaS. We formulate the job dispatching problem as
a constrained optimization problem under the framework of
Lyapunov optimization. Using the drift-plus-penalty function, we
propose an online algorithm that dispatches the transcoding
jobs to service engines, with an objective to Reduce Energy
consumption while achieving the QUEue STability (REQUEST).
We first characterize the fundamental tradeoff between energy
consumption and queue delay for the REQUEST algorithm
numerically, and obtain its performance bound theoretically.
Second, we study the robustness of the REQUEST algorithm,
with numerical results indicating that the REQUEST algorithm
is robust to the inaccuracy of estimating the transcoding time.
Third, we compare the performance of the REQUEST algorithm
with the other two algorithms, i.e., Round Robin and Random
Rate algorithms. By simulation and real trace data, we show that
by appropriately choosing the control variable, the REQUEST
algorithm outperforms Round Robin and Random Rate algo-
rithms, with smaller time average energy consumption and time
average queue length. The proposed REQUEST algorithm can
be applied in cloud-assisted multimedia transcoding service.

Index Terms—Energy Efficiency, Transcoding as a Service, Job
Dispatching.

I. INTRODUCTION

W ITH the popularity of mobile devices, users have
an increasing demand of online video consumption

on devices. According to Cisco VNI report [1], the global
Internet video traffic will contribute 69 percent for all Internet
traffic in 2017, up from 57 percent in 2012. This trend of
video consumption, however, may be hampered by the limited
bandwidth and inherent nature of stochastic wireless channels
(e.g., multi-path fading and shadowing effects), which can
degrade user’s experience while watching videos.

Transcoding technology [2] is introduced to adapt the videos
according to the available bandwidth or different users’ re-
quirements. Basically, a content provider can transcode the
same video into multiple rates or multiple formats for users’
need. In addition, the resolution size of a video can be reduced
such that users can view the video smoothly over the network.
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However, such a transcoding process is computation-intensive
for the content provider. It is a challenge for the content
provider to maintain the low delay for transcoding when many
requests arrive. Therefore, a large-scale platform should be
designed to support the transcoding process.

Cloud computing [3], due to its elasticity of resource
allocation, offers a natural way to process a very large number
of transcoding jobs. A large number of servers in the cloud can
perform transcoding jobs on behalf of the content provider. In
this case, the content provider can benefit from the cloud for
video consumption from users. This has become an opportu-
nity to deliver transcoding as a service (TaaS) [4], [5].

A generic cloud-assisted transcoding system is illustrated
in Figure 1(a). Particularly, users request a content with
specific requirement (e.g., bit rate and resolution size), which
is determined by the physical capability of the devices and
the available bandwidth. If a particular content is available at
the content provider, the content can be rendered immediately.
Otherwise, the content provider will send a transcoding job to
the cloud in order to cater for the requirement of users. In the
cloud, there is a dispatcher at the front end and a large number
of service engines at the back end. The arriving transcoding
job is routed by the dispatcher and completed by one service
engine in the cloud.

In this paper, we consider how to dispatch transcoding jobs
to a set of available service engines in order to save the energy
consumption. To support the transcoding process, a significant
portion of energy will be consumed on service engines in the
cloud. Hence, we aim to minimize the energy consumption
while maintaining low delay for TaaS, by intelligently dis-
patching transcoding jobs to service engines in the cloud. The
dispatching algorithm should be aware of the CPU speed and
queue backlog of service engines. Intuitively, if the dispatcher
routes many transcoding jobs to the service engine with slow
CPU speed, it can reduce the energy consumption; however,
it would make the queue arbitrarily long and incur long delay.
Therefore, we consider the energy-delay tradeoff in designing
dispatching algorithm for TaaS.

We formulate the job dispatching as an optimization prob-
lem under the framework of Lyapunov optimization [6]. We
model the service engines as a set of parallel queues. Based
on drift-plus-penalty function, we propose an online algorithm
that dispatches the transcoding jobs to the service engines
in order to Reduce Energy consumption while achieving the
QUEue STability (REQUEST).

Our contributions in this research are multi-fold:
• Adopting the framework of Lyapunov optimization, we
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(a) System architecture. (b) System model.

Fig. 1. Overview of cloud-assisted multimedia transcoding platform. The
content provider can send transcoding jobs to the cloud. A dispatcher at the
front end of the cloud receives transcoding jobs and dispatches them to a set
of service engines at the back end for transcoding.

propose the control algorithm REQUEST to dispatch
transcoding jobs. We characterize the energy-delay trade-
off of the REQUEST algorithm numerically and derive
the performance bounds theoretically.

• We study the robustness of the REQUEST algorithm.
Numerical results show that, given the inaccuracy of
estimating the transcoding time, the error of the time
average energy consumption and queue backlog is small.
Therefore, the REQUEST algorithm is robust to inaccu-
racy of the transcoding time estimation.

• We compare the performance of the REQUEST algorithm
with Round Robin and Random Rate algorithms using
simulation and real trace data. The results show that
by appropriately choosing the control variable, the RE-
QUEST algorithm outperforms the other two algorithms,
with smaller time average energy consumption while
achieving queue stability.

The rest of this paper is organized as follows. In Section
II, the review of related work is presented. In Section III, we
present the models of distributed transcoding in the cloud.
In Section IV, we formulate the optimization problem by
Lyapunov optimization and propose an online algorithm, with
the performance and robustness analysis. Numerical character-
ization is given in Section V. In Section VI, we compare the
performance of REQUEST algorithm with Round Robin and
Random Rate algorithms. Section VII summarizes this paper
and provides future directions.

II. RELATED WORK

Prior works [7], [8] have investigated transcoding in dis-
tributed systems. [7] scheduled tasks for a cluster-based web
server to process, in order to minimize the total processing
time by predicting the processing time per individual task.
[8] estimated the transcoding time and imported an estimation
model for load distribution among distributed servers. Those
two works did not investigate the robustness of the scheduling
algorithms for the case that the estimation model is not
accurate. In this paper, our proposed algorithm is robust to
the inaccuracy of the estimated time.

Another line of research [4], [5], [9], [10], [11], [12], [13],
[14], [15] leverages cloud computing to enhance the perfor-
mance of transcoding. [4], [9] utilized a Hadoop-based cloud
for transcoding media content, which can greatly improve en-
coding times. [5] proposed Cloud Transcoder to bridge the gap
between videos and mobile devices, reducing the transcoding
burden on mobile devices. [10] provided a simulation for cloud

transcoding system with cache capability, and explored the
proper cache sizes and the number of computers to operate
effectively in the cloud. [11] provided load sharing algorithm
in a transcoding cluster. [12] presented a scalable distributed
media transcoding system that can reduce the transcoding time.
[13] used queue waiting time of transcoding servers to make
an admission control for video streams and job dispatching
for video transcoding to prevent jitters. [14] considered the
cost-efficient virtual machine provision for video transcoding.
[15] provided mechanisms for allocation and deallocation of
virtual machines to video transcoding servers.

In addition, [16], [17] attempted to minimize the transmis-
sion energy on the mobile devices. However, neither of them
considered the energy consumption of servers for transcoding.
This paper aims to minimize the energy consumption in the
cloud for TaaS while maintaining the queue stability. The
tradeoff between energy consumption and queue stability is
characterized under the framework of Lyapunov optimization.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. Arrival Model

We consider a discrete time slot model. The length of a
time slot is τ . We assume that τ is small such that there is at
most one transcoding job arriving to the dispatcher for each
time slot. We denote p as the probability of one arrival to the
dispatcher for each time slot and 1−p if there are no arrivals.

We assume the transcoding time needed for an arriving job
at each time slot is associated with the CPU speed of the
service engine. Suppose that we have N service engines for
transcoding. Each service engine can operate in different CPU
speed si, where i = 1, 2, ..., N . Without loss of generality, we
assume s1 ≤ s2 ≤ ... ≤ sN . The service engine in faster
CPU speed can have less completion time for transcoding.
We denote A(t) as the transcoding time needed for the arrival
at time slot t by a baseline server, which has a CPU speed
S. We assume that by statistical learning, the dispatcher can
estimate the transcoding time of each job, A(t). Then, if the
transcoding job is dispatched to the ith service engine, the
transcoding time at the ith service engine is Ai(t) = SA(t)

si
.

The transcoding time of the same arrival can be different for
service engines, and thus the dispatcher needs to decide which
service engine should process the arriving job.

We denote u(t) as the decision variable. Intuitively, if there
are no arrivals, the dispatcher does not need to make the
decision. Otherwise, the dispatcher decides the routing of the
arriving job. The decision variable is chosen from the set
Φ = {0, 1, 2, ..., N}, given by,

u(t) =

{
0, if no arrival occurs

i, if dispatched to service engine i,
(1)

where i = 1, 2, ..., N .

B. Queueing Model

We model the service engines as a set of queues, as shown
in Figure 1(b). To characterize the dynamics of these queues,
we define queue length Q(t) as the unfinished transcoding
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time of jobs in each service engine at time slot t, i.e., Q(t) =
{Q1(t), Q2(t), ..., QN (t)}. The queue of the ith service engine
evolves according to

Qi(t+ 1) = max[Qi(t)− τ, 0] +Ai(t)1{u(t)=i}, (2)

where Ai(t) is the transcoding time of an arrival at time slot
t for the ith service engine, and 1 is an indicator function
that is 1 if u(t) = i and 0 otherwise. If u(t) = i, the arrival
is dispatched to the ith service engine and the queue length
is increased by Ai(t); otherwise, no arrival occurs to the ith
service engine. We can observe the queue length of service
engines for each time slot by Eq. (2).

To guarantee the delay of transcoding jobs, we require all
the queues to be stable1, defined as

Q = lim
T→∞

sup
1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} <∞, (3)

where Q is the long term time average queue length and the
expectation is taken over the randomness of A(t). To address
the responsiveness of real-time transcoding, we will show that
the short time delay is achieved by the increase of energy
consumption on the service engines.

C. Energy Consumption Model

We consider each service engine as a physical machine2.
Particularly, we only consider the computation energy con-
sumption in the service engine, which is a dominant term
for the energy consumption in the distributed servers [18].
As such, we ignore other sources of energy consumption in
the service engine, e.g., memory and network.

We assume that each service engine operates in a constant
CPU speed when processing transcoding jobs. Its resulted
energy consumption is assumed to be a function of CPU speed.
If the dispatcher dispatches the transcoding job to the ith
service engine at time slot t, the energy consumption on the
ith service engine is Ai(t)κsαi , where Ai(t) is the transcoding
time for the ith service engine and κsαi is the power that is a
convex function of CPU speed [19], [20]. Normally, α is set to
be 3 [19]. Also, without loss of generality, we set the constant
parameter κ = 1. If the job is dispatched to the service engine
with fast CPU speed, it will result in high energy consumption.
If the service engine has no transcoding jobs to process, the
service engine can be set to sleep mode, resulting in very small
energy consumption that can be negligible.

In addition, we ignore the resulted energy and time due to
a transition from sleep mode to running mode of a service
engine. For the computation-intensive transcoding jobs, the
computation energy and time are the first order component for
the total energy and time, while the energy and time due to
the transition overhead from the sleep mode to running mode

1According to Little’s theorem, the average queue length is proportional to
average delay. In this paper, we aim to satisfy the queue stability.

2For the virtual machine, its energy consumption model can be more
complicated. One can adjust the energy consumption model and then adopt
our mathematical framework. It is our future work to consider virtualized
services enabled by virtual machine.

are the second order component. In other words, the compu-
tation energy and time are the dominant terms. Although the
overhead is also critical, its effect could be ignored for the
decision of job dispatching. Thus, the energy consumption for
completing the job is

Ei(t) = Ai(t)κs
α
i 1{u(t)=i}, (4)

where 1{u(t)=i} is the indicator function that denotes 1 if
u(t) = i and 0 otherwise. In this paper, we consider the long
term time average energy consumption, given by

E = lim
T→∞

sup
1

T

T−1∑
t=0

N∑
i=1

E{Ei(t)}, (5)

where the expectation is taken over the randomness of A(t).

D. Problem Formulation

Intuitively, if the dispatcher routes the transcoding job to the
service engine with the least queue backlog, it can reduce the
delay for the transcoding job; however, it would incur large
energy consumption if many transcoding jobs are dispatched to
service engines with fast CPU speed. If the dispatcher routes
many transcoding jobs to the service engine with the slow
CPU speed, it can reduce the energy consumption; however,
it would make the queue arbitrarily long and incur long
delay. Therefore, we consider the tradeoff between energy
consumption and time delay.

In this paper, we aim to minimize the long term time average
energy consumption subject to the constraint that time average
queue length should not go to infinity. Mathematically, the
constrained optimization problem is written as

min
{u(t)}

E, (6)

s.t. Q <∞, (7)
u(t) ∈ Φ, (8)

where u(t) is the decision variable, Eq. (7) denotes the queue
stability and Eq. (8) denotes the feasibility constraint.

IV. ONLINE DISPATCHING ALGORITHM

In this section, we adopt the Lyapunov optimization frame-
work to solve the optimization problem (6) and design an
online dispatching algorithm.

A. Algorithm Design under i.i.d. Transcoding Time Model

We first assume transcoding time of an arriving job by the
baseline server A(t) is i.i.d. for every time slot. Then, Ai(t)
is also i.i.d. for the ith service engine. We will discuss how
the obtained results can be extended to the non-i.i.d. model in
Section IV-D.

We define the quadratic Lyapunov function

L(Q(t)) =
1

2

N∑
i=1

Qi(t)
2. (9)
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Then, we define the one-slot Lyapunov drift as ∆(Q(t)) =
E{L(Q(t+ 1))− L(Q(t))|Q(t)}. Specifically,

L(Q(t+ 1))− L(Q(t))

=
1

2

N∑
i=1

Qi(t+ 1)2 − 1

2

N∑
i=1

Qi(t)
2

=
1

2

N∑
i=1

{max[Qi(t)− τ, 0] +Ai(t)1{u(t)=i}}2

− 1

2

N∑
i=1

Qi(t)
2.

Suppose all Ai(t) are upper bounded by Amax for all i and
t. Then using the fact (max[x− y, 0] + z)2 ≤ x2 + y2 + z2 +
2x(z − y) for ∀x, y, z ≥ 0, we have

L(Q(t+ 1))− L(Q(t))

≤ 1

2
[A2
max +Nτ2] +

N∑
i=1

Qi(t)Ai(t)1{u(t)=i}

− τ
N∑
i=1

Qi(t).

Hence,

∆(Q(t)) ≤ B − E{
N∑
i=1

τQi(t)|Q(t)} (10)

+E{
N∑
i=1

Qi(t)Ai(t)1{u(t)=i}|Q(t)},

where B is a finite constant satisfying B = 1
2 (A2

max +Nτ2).
The minimization of the right hand side of Eq. (10) will
guarantee the queue stability [6].

However, achieving the queue stability does not necessarily
lead to the minimum energy consumption on service engines.
Thus, we consider the drift-plus-penalty function for the
dispatching algorithm, which is a weighted sum of drift and
penalty, i.e., ∆(Q(t)) + V E{E(t)|Q(t)}, where V ≥ 0 and
E(t) =

∑N
i=1Ei(t). We can have the bound of the drift-plus-

penalty function ∆(Q(t)) + V E{E(t)|Q(t)}

≤ B − E{
N∑
i=1

τQi(t)|Q(t)} (11)

+E{
N∑
i=1

Qi(t)Ai(t)1{u(t)=i}|Q(t)}

+V E{
N∑
i=1

Ai(t)κs
α
i 1{u(t)=i}|Q(t)}.

We define F (Q(t)) as the bound of the drift-plus-penalty
function and design the algorithm as in Algorithm 1 by
minimizing F (Q(t)). Note that if V = 0, only drift function
is considered and we choose the queue with the minimum
Qi(t)Ai(t) = Qi(t)

A(t)S
si

. Since A(t) and S are unrelated to
the ith service engine, the minimum Qi(t)

si
determines the job

dispatching. Thus, the algorithm is reduced to the policy of
shorter queue and faster server.

Algorithm 1 REQUEST Algorithm
Input: Q(t)
Output: u(t)

1: At the beginning of each time slot t, observe the queue
length Q(t).

2: Determine u(t) that minimizes the bound of drift-plus-
penalty function
N∑
i=1

Qi(t)Ai(t)1{u(t)=i}+V

N∑
i=1

Ai(t)κs
α
i 1{u(t)=i} (12)

i.e.,
u(t) = arg min

i
{Ai(t)(Qi(t) + V κsαi )}. (13)

3: Update the queue Q(t) according to (2).

B. Performance Analysis

Theorem 1: We assume that the arrival of transcoding jobs
is strictly within the capacity region. Capacity region3 is
defined as the set Λ of all non-negative ai(t) = Ai(t)1{u(t)=i},
for which

E{ai(t)} < τ, ∀i. (14)

We also assume that E{L(Q(0))} <∞. Then for any control
variable V > 0, the online algorithm can stabilize the system,
with a resulted time average energy consumption and queue
backlog satisfying the following inequalities:

E ≤ E∗ +
B

V
, (15)

Q ≤ B + V E∗

ε
, (16)

where ε is a constant and E∗ is a theoretical lower bound on
the time average energy consumption.

Proof: See Appendix A.
Theorem 1 shows that by choosing the control variable

V , one can achieve a time average energy consumption E
arbitrarily close to E∗. But this achievement is at the cost of
a long delay as the queue length grows linearly with V . Such
a tradeoff is important for the cloud operator.

C. Robustness Analysis

In the previous subsections, we assume that we can observe
the queue length accurately at the beginning of each time
slot before making the decision of dispatching transcoding
jobs. However, this observation may not be accurate. In
this subsection, we study the robustness of the REQUEST
algorithm under the inaccurate queue length information.

Theorem 2: Suppose the estimated queue length Q̂i(t) sat-
isfies |Q̂i(t)−Qi(t)| ≤ qe, where qe ≥ 0. And we use Q̂i(t)
in place of Qi(t) for the dispatching algorithm. Consider the
bound of the drift-plus-penalty function F . Let F+ be optimal

3This means that the expected transcoding time experienced by a service
engine for one time slot should be less than the length of one slot. This can
also be interpreted as the incoming expected workload to each service engine
should not exceed the workload that service engine can process, if we multiply
si on both sides of Eq. (14).
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if we use Q̂i(t) and F ∗ be optimal if we use Qi(t). Then, by
use of Q̂i(t) we can have a C-additive approximation with
some finite constant C as follows,

F+ ≤ F ∗ + C, (17)

Q ≤ B + V E∗ + C

ε
, (18)

E ≤ E∗ +
B + C

V
. (19)

Proof: See Appendix B.
Theorem 2 shows that we can still minimize the energy

consumption and provide queue stability with the inaccurate
queue length information by choosing a large V .

D. Extension to non-i.i.d. Arrival

Theorem 1 and 2 are derived under the assumption that A(t)
is i.i.d. We can extend those results to the case when A(t)
is Markovian. The REQUEST algorithm can still achieve the
[O(1/V ), O(V )] energy-delay tradeoff,

E ≤ E∗ +O(
1

V
), (20)

Q ≤ O(V ), (21)

where E∗ is a theoretical lower bound on the time average
energy consumption.

This can be proved by using multi-slot drift analysis. More
details can be found in [6].

V. NUMERICAL CHARACTERIZATION OF REQUEST
ALGORITHM

In this section, we first build a statistical model to estimate
the transcoding time. Following that, we characterize the trade-
off between the energy consumption and the queue backlog for
the REQUEST algorithm. Then, we study the robustness of
the REQUEST algorithm given that the estimated transcoding
time is not accurate.

A. Statistical Model of Transcoding Time

We can model the transcoding time as a function of file size
of a video, given by Eq. (22),

A = LX, (22)

where L is the file size and X is a random variable that denotes
transcoding time for a unit of file size. Specifically, X reflects
the complexity of the transcoding process, which is determined
by the conversion of resolution size, bit rate and frame rate,
etc. In this paper, we only consider the conversion of resolution
size; other transcoding parameters remain our future work.

To model the transcoding time, we measure the elapsed time
of the video transcoding that converts a set of video files
into different resolution cases. We consider the application
scenario of transcoding flv files into mp4 files in six commonly
used resolution cases for the output4, i.e., 320x240, 427x240,

4Our model is not restricted to these six resolution cases, but can be
extended for any resolution cases.

TABLE I
PARAMETER SETTINGS

Arrival probability p = 0.8
Number of service engines N = 10
Normalized CPU speed of a baseline server S = 3.2
Normalized CPU speed of service engines {si} = 2.0 : 0.1 : 2.9
Parameters of energy model κ = 1, α = 3

480x360, 640x360, 640x480 and 854x480. The original flv
files are in 1920x1080, with equal duration time but different
file size (ranging from 0.1 to 5MB, with the mean 1.87MB).
We find that the random variable X can be modeled by a
Gamma distribution, with the probability density function as

pX(x) =
1

bΓ(a)
(
x

b
)a−1e−

x
b , for x > 0, (23)

depending on two parameters (the shape a and the scale b).
The CDF fitting by Gamma distribution are shown in Figure
2. It indicates that the transcoding time can be well modeled
with a Gamma distribution.

B. Settings for Numerical Characterization

Table I summarizes the parameter settings. We set p = 0.8.
The CPU speed of a baseline server is S = 3.2GHz. We
assume there are 10 service engines, the CPU speeds of which
are ranging from 2.0GHz to 2.9GHz incremented by 0.1GHz.
We also set κ = 1 and α = 3 for the energy model. Each
service engine is assumed to have an empty queue at the first
time slot.

C. Energy-Delay Tradeoff of REQUEST Algorithm

We first characterize the energy-delay tradeoff of the RE-
QUEST algorithm for the scenario in which the requirement
of transcoding jobs is fixed to a specific resolution size for
a period of time. In this case, the transcoding time can be
assumed to be i.i.d.. We plot the tradeoff between energy
consumption and queue length for each video in Figure 3. For
each resolution case, with the increase of V , the time average
energy consumption decreases and converges to the optimal
value. However, with the increase of V , the time average
queue length grows linearly. Hence, the variable V controls
the energy-delay tradeoff of the REQUEST algorithm. These
results in Figure 3 are consistent with Theorem 1.

We then characterize the energy-delay tradeoff of the RE-
QUEST algorithm for the scenario in which the requirement
of transcoding jobs is changed among the resolution cases.
Particularly, we assume we have the knowledge of each
resolution case being requested. The requested resolution size
is determined by the screen size of end devices and the
available bandwidth [21]. Each resolution size is assumed to be
requested by users with the probability given in Table II. More
realistic models can be adopted and our proposed algorithm is
still valid. We plot the tradeoff between energy consumption
and queue length for this scenario in Figure 4. It is shown
that we can have similar energy-delay tradeoff analysis (i.e.,
O(1/V ) and O(V )): the time average energy consumption is
reduced by the expense of increasing the time average queue
length for the non-i.i.d. transcoding time.
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(a) 320x240: a = 5.209, b = 0.088
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(c) 480x360: a = 5.093, b = 0.103
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Fig. 2. Gamma distribution CDF fitting for transcoding time in six resolution cases.
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Fig. 3. Time average energy consumption and queue length under different V values for various resolution cases (i.i.d. transcoding time). V = [1 : 1 : 20].
T = 100000. τ = 0.5s.
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TABLE II
PROBABILITY OF REQUESTS FOR DIFFERENT RESOLUTION CASES

resolution case probability
320x240 p1 = 0.1
427x240 p2 = 0.1
480x360 p3 = 0.15
640x360 p4 = 0.15
640x480 p5 = 0.25
854x480 p6 = 0.25
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Fig. 4. Time average energy consumption and time average queue length
under different V values for non-i.i.d. transcoding time. V = [1 : 1 : 20].
T = 100000. τ = 0.5s.

D. Robustness of REQUEST Algorithm

Although we can estimate the time of transcoding jobs, this
estimation may not be accurate and the observation of the
queue length is thus also inaccurate. Therefore, it is necessary
to study the robustness of the algorithm under the inaccurate
queue length information.

To study the robustness of the REQUEST algorithm, we
add a random estimation error that is uniformly distributed,
with the range of ±50% for the transcoding time. We consider
the relative error between the value of time average energy
consumption (or time average queue length) using inaccurate
queue length and the value using accurate queue length. The
relative error of time average energy consumption (or time
average queue length) is defined as the ratio between the
difference due to the inaccuracy and the value using accurate
queue length. We plot the errors of time average energy
consumption and queue length in Figure 5 for varying V . It
shows that both the errors are small. Therefore, the REQUEST
algorithm is robust to the transcoding time estimation.
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Fig. 5. Error of time average energy consumption and queue length under
different V values. V = [1 : 1 : 20]. T = 100000. τ = 0.5s.
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Fig. 6. Energy-delay tradeoff for dispatching algorithms. T = 100000.
V = [0, 0.07, 0.14, 0.3, 0.5, 0.75, 1 : 1 : 20].

VI. PERFORMANCE COMPARISON OF DISPATCHING
ALGORITHMS

In this section, we compare the performance of dispatching
algorithms, including Round Robin, Random Rate and RE-
QUEST, under simulated traffic and real trace data.

The Round Robin and Random Rate algorithms are illus-
trated as follows:
• Round Robin: transcoding jobs are scheduled in a cyclical

fashion among N service engines.
• Random Rate: transcoding jobs are dispatched to the
ith service engine with the probability si∑N

i=1 si
, which

is proportional to the CPU speed of service engines.
Round Robin and Random Rate algorithms are similar, in the
sense that they attempt to make load balance among the service
engines. However, these two algorithms are static and unaware
of the arrivals, which limits their performance for achieving
small energy consumption.

A. Simulated Traffic

In this subsection, we compare the performance of dispatch-
ing algorithms under simulated traffic.

We first plot the fundamental tradeoff between time average
energy consumption and time average queue length for these
three dispatching algorithms in Figure 6. In our simulation,
we set τ = 0.5s to model the light traffic and τ = 0.2s to
model the heavy traffic. In Figure 6(a), under the light traffic,
the tradeoff of Round Robin and Random Rate algorithms are
close with the boundary of the REQUEST algorithm. Note that
the axes are plot with logarithmic scale. In Figure 6(b), under
the heavy traffic, the tradeoff of Round Robin and Random
Rate algorithms are out of the boundary of the REQUEST
algorithm; the REQUEST algorithm is more effective to min-
imize the time average energy consumption and the queue
length. It is also shown that by choosing different control
variable V , the REQUEST algorithm is adaptive to balance
the tradeoff between time average energy consumption and
time average queue length.

We then compare these three algorithms under the light
traffic (τ = 0.5s). We plot the time average energy consump-
tion, time average queue length and the file size in each time
slot that reflects the traffic in Figure 7 from top to bottom,
respectively. Particularly, for the REQUEST algorithm, we set
V = 0, 1, 5, respectively. It is shown that the REQUEST
algorithm (V = 0) has close time average queue length
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Fig. 7. Performance comparison under light traffic. τ = 0.5s.
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Fig. 8. Performance comparison under heavy traffic. τ = 0.2s.

with Round Robin and Random Rate algorithms but has the
highest time average energy consumption. For the REQUEST
algorithm (V = 1) and the REQUEST algorithm (V = 5),
they can have small time average energy consumption, which
is about 30% smaller than Round Robin and Random Rate
algorithms. Although the REQUEST algorithm (V = 1) has
a slightly larger time average queue length than Round Robin
and Random Rate algorithms, it can still maintain the queue
length within a margin.

We also compare these three algorithms under the heavy
traffic (τ = 0.2s). We plot the time average energy con-
sumption, time average queue length and the file size in each
time slot in Figure 8 from top to bottom, respectively. It
is shown that the REQUEST algorithm (V = 0) has the
highest time average energy consumption. The REQUEST
algorithm (V = 5) can have the smallest time average energy
consumption, but its time average queue length is high due
to the heavy traffic in this setting. The REQUEST algorithm
(V = 1) has a slightly larger time average energy consumption
than the REQUEST algorithm (V = 5) but achieves a
much smaller time average queue length. The Round Robin
algorithm and Random Rate algorithm perform similarly due
to the proportional dispatching strategy.
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Fig. 9. Performance comparison under real trace (12:00AM-5:00AM).
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Fig. 10. Performance comparison under real trace (7:00PM-12:00AM).

B. Real Trace Data

In this subsection, we evaluate and compare the performance
of the dispatching algorithms by using a real trace data.

The trace data captures the video requests to a CDN node
in China. We consider two periods of time, i.e., 7:00PM-
12:00AM and 12:00AM-5:00AM in a day. The data traffic of
12:00AM-5:00AM is lighter than that of 7:00PM-12:00AM, as
shown in the bottom subfigures of Figure 9 and 10. For every
30 minutes, we plot the time average energy consumption
and time average queue length for these two periods in
Figure 9 and 10, respectively. For the period of 7:00PM-
12:00AM, since its traffic is heavier, it results in larger time
average energy consumption and time average queue length
for all dispatching algorithms. For the period of 12:00AM-
5:00AM, when there are small amount of video requests (e.g.,
from 3:00AM to 4:00AM), both the time average energy
consumption and time average queue length decrease for all
dispatching algorithms.

Using this trace data, we compare the performance of
dispatching algorithms with the analysis as follows. The
REQUEST algorithm (V = 0) can achieve short time average
queue length at the high cost of time average energy con-
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sumption. The REQUEST algorithm (V > 0) is more energy-
efficient than Round Robin and Random Rate algorithms. It
can also manage the tradeoff between energy consumption
and queue length in dispatching transcoding jobs. Therefore,
combined with the previous simulation results, we can have the
insight that the cloud operator can tune the control variable V
of the REQUEST algorithm such that it can outperform Round
Robin and Random Rate algorithms.

VII. CONCLUSION

We investigated dispatching algorithms on how to route
transcoding jobs in the multimedia cloud. To minimize the
energy consumption by cloud service engines, we formulated
the job dispatching policy as an optimization problem under
the framework of Lyapunov optimization. We characterized
the energy-delay tradeoff and the robustness of the REQUEST
algorithm. The simulation results showed that the REQUEST
algorithm is more energy-efficient than Round Robin and
Random Rate algorithms. The insight is that the cloud operator
can dynamically tune the control variable of the REQUEST
algorithm in order to reduce the energy consumption while
maintaining the queue stability.

In the future, we will build up a more general transcoding
time model by considering the bit rate adaptation. In addition,
we will take virtual machine into consideration for virtualized
services. Finally, we will evaluate the performance of the
proposed algorithm in the real multimedia platform.

APPENDIX A
PROOF OF THEOREM 1

Proof: Since we assume that the arrival process is within
the capacity region, there exists at least one stationary ran-
domized control policy that can stabilize the queue [22],
with E{E(t)} = E∗ and τ ≥ E{ai(t)} + ε, ∀i, where
ε > 0. Since A(t) is i.i.d., so is Ai(t). In addition, since
Ai(t) is independent of the current queue backlog Q(t), we
have E{Ai(t)|Q(t)} = E{Ai(t)}. Thus, the drift-plus-penalty
function satisfies

∆(Q(t)) + V E{E(t)|Q(t)}

≤ B − E{
N∑
i=1

τQi(t)|Q(t)}

+ E{
N∑
i=1

Qi(t)Ai(t)1{u(t)=i}|Q(t)}+ V E∗

≤ B −
N∑
i=1

Qi(t)ε+ V E∗.

Taking a conditional expectation over Q(t) for this drift-
plus-penalty function and using iterative expectation law, we
can have

E{L(Q(t+ 1))− L(Q(t))}+ V E{E(t)}

≤ B −
N∑
i=1

εE{Qi(t)}+ V E∗.

Then, summing over all time slots t ∈ {0, 1, ..., T − 1}, and
dividing by T , we obtain

E{L(Q(T ))− L(Q(0))}
T

+
V

T

T−1∑
t=0

E{E(t)}

≤ B − 1

T

T−1∑
t=0

N∑
i=1

εE{Qi(t)}+ V E∗.

In this case, we have

1

T

T−1∑
t=0

N∑
i=1

εE{Qi(t)} ≤ B + V E∗ +
E{L(Q(0))}

T
. (24)

Then,

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤
B + V E∗ + E{L(Q(0))}

T

ε
. (25)

Taking a lim sup as T →∞, we have

Q ≤ B + V E∗

ε
. (26)

Similarly, taking the same rationale, we have

E ≤ E∗ +
B

V
. (27)

APPENDIX B
PROOF OF THEOREM 2

Proof: Using Q̂i(t), we still try to minimize the bound of
the drift-plus-penalty function,

F (Q̂i(t)) = B − E{
N∑
i=1

τQ̂i(t)|Q(t)} (28)

+E{
N∑
i=1

Q̂i(t)Ai(t)1{u(t)=i}|Q(t)}

+V E{
N∑
i=1

κAi(t)s
α
i 1{u(t)=i}|Q(t)}.

Denote qi(t) = Q̂i(t) − Qi(t). Plugging Q̂i(t) into Eq. (28),
we have

F (Q̂i(t)) = B − E{
N∑
i=1

τQi(t)|Q(t)} (29)

+E{
N∑
i=1

Qi(t)Ai(t)1{u(t)=i}|Q(t)}

+V E{
N∑
i=1

κAi(t)s
α
i 1{u(t)=i}|Q(t)}

−E{
N∑
i=1

τqi(t)|Q(t)}

+E{
N∑
i=1

qi(t)Ai(t)1{u(t)=i}|Q(t)}.
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We denote the minimum value of F (Q̂i(t)) as F+, and the
minimum value of F (Qi(t)) as F ∗. Then we have

F+ ≤ F ∗ − E{
N∑
i=1

τqi(t)|Q(t)} (30)

+E{
N∑
i=1

qi(t)Ai(t)1{u(t)=i}|Q(t)}

Since |qi(t)| ≤ qe and |Ai(t)1{u(t)=i}| ≤ Amax, we have
F+ ≤ F ∗ + qe(Nτ +Amax). Let C = qe(Nτ +Amax), then
we obtain Eq. (17). This indicates that Eq. (11) still holds if
Q(t) is replaced by Q̂(t) and B is replaced by B̂ = B + C.

Then, we prove Eq. (18) and (19) as follows. Using the
approach in Appendix A, we have

E{L(Q(T ))− L(Q(0))}
T

+
V

T

T−1∑
t=0

E{E(t)}

≤ B + C − 1

T

T−1∑
t=0

N∑
i=1

εE{Qi(t)}+ V E∗.

Therefore,

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤
B + C + V E∗ + E{L(Q(0))}

T

ε
.

Taking a lim sup as T → ∞, we have Eq. (18). Similarly,
taking the same rationale, we have Eq. (19).
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