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Abstract—In this paper, we investigate the problem of how to
cache a set of media files with optimal streaming rates, under
HTTP adaptive bit rate streaming over wireless networks. The
design objective is to achieve the optimal expected QoE under a
limited storage budget, which is measured by the logarithmic re-

lation between the required bit rate and the actual streaming bit
rate. We formulate the content cache management of streaming
files as a constrained optimization problem. Lagrange multiplier
method is employed, and we obtain the numerical solution of
the optimal streaming files. Particularly, we characterize the
properties of the solution, and find there is a fundamental phase
change in the optimal solution as the number of cached files
grows. Moreover, the simulation results indicate that with the
increase of cache size, more copies of different bit rate should be
cached for a better QoE. Our comprehensive investigation reveals
insightful guidelines to provide HTTP ABR streaming services
over wireless networks.

Keywords-QoE; Adaptive Bit Rate streaming; content cache
management; optimization.

I. INTRODUCTION

Mobile video consumption, owing to the rapid adoption

of smartphones, is fueling a dramatic growth of mobile data

traffic lately. Cisco VNI report [1] predicted that the mobile

data traffic will increase 26 times between 2010 and 2015,

among which the leading contributor is the video traffic gen-

erated by the mobile users worldwide. This growth of mobile

video experience, however, is in tandem with a huge concern

of the user experience, resulted from the inherent nature of

stochastic warless channels (e.g., multi-path and shadowing

fading effects). As a result, it has become a technical challenge

to provide a high Quality of Experience (QoE) for the rising

demand of video streaming over wireless network.

Recently HTTP adaptive bit rate (ABR) streaming [2], [3],

[4] is emerging as a prominent solution to improve the user

experience and the network resource utilization in mobile

video. In practical systems (e.g., Cisco’s CDS-IS [5]), the

streaming engine switches, in a real-time manner, among a set

of video files (for the same content) with different playback

rates, in response to the channel condition and the device

model [6]. However, such a practical solution is stressed

by the huge growth of user-generated contents. It has been

observed in Cisco’s deployment that transcoding a large set of

video contents into files with different playback rates on the

streaming engine can have the storage to be filled up rapidly.

This research aims to address the technical challenge of con-

tent cache management for HTTP ABR streaming. Previous

studies on HTTP ABR streaming mainly focus on mechanisms

to adjust the streaming bit rate for varying network conditions.

In [3], [4], [6], [7], [8], various solutions were proposed to im-

prove the performance of the HTTP ABR streaming services,

with an objective to optimize the Quality of Service (QoS)

(e.g., the reduction of end-to-end delay, better buffer manage-

ment, bandwidth savings, or higher resource utilization). On a

different track, research efforts [9], [10], [11], [12] have been

devoted to investigating QoE-aware adaptation schemes. These

solutions aim to maximize content provisioning and network

resources under the QoE requirement, or maximize the QoE

under the bandwidth constraints. Neither approach considers

the storage aspect of HTTP ABR streaming. In this research,

we extend the research scope of HTTP ABR streaming with

QoE-driven content cache management.

In this paper, we aim to develop an optimal scheme for QoE-

driven content cache management in HTTP ABR streaming.

Our design objective is to provide the best possible QoE for

the mobile users, while avoiding the content storage to be filled

up rapidly. Specifically, the content provided by the original

server is transformed into HTTP streaming formats on the

streaming engine in advance. When a client consumes some

content with a required streaming rate, the streaming engine

will reply a content file with the closest bit rate to requested,

hoping that the distortion is acceptable by the client. In this

case, the research problem is how to choose a set of video files

with different playback rates, for a given storage budget, so

as to maximize the expected QoE for a pool of mobile users.

Our contributions are multi-fold. First, we formulate the

content cache management for HTTP ABR streaming into

a convex optimization problem, thus giving this engineering

problem an analytical framework. Second, we apply the La-

grange multiplier method to solve the optimization problem

and provide engineering guidelines for how to cache a set of

media files with different playback rates. Third, we character-

ize the optimal solution analytically and show that the optimal

solution would go through a phase change as the number of

cached files for one content grows. Finally, combining exper-

imental results, we verify our analytical framework in a great



Fig. 1. A schematic diagram for HTTP ABR streaming system over the
wireless network: contents acquired from original servers are transcoded into
a set of HTTP ABR files with different playback rates, and cached in the
streaming engine.

accuracy. Our comprehensive investigation reveals insightful

guidelines to provide HTTP ABR streaming services over

commercially-available platforms, e.g., CDS-IS from Cisco.

The rest of the paper is organized as follows. Section

II presents the system model and problem formulation. In

section III, a mathematical solution is given for the optimal

content cache management of the adaptive bit rate streaming.

Numerical simulations are provided in section IV. Finally,

section V concludes the paper and suggests future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe a generic architecture for

HTTP ABR streaming system, modeled after a real system

deployment. Following that, we present the models for the

HTTP ABR streaming system, including a user-request model,

a QoE model and a content caching model. Using these

models, we formulate the content cache management as a

constrained optimization model.

A. System Architecture
A generic HTTP ABR streaming system, adapted from

the real deployment, is illustrated in Figure 1. It consists

of three parts, including a content origin server, a media

cache engine and a pool of mobile media outlets. The content

origin server stores media files in their original format and

transfers them to the intermediate media cache engine. In any

media cache engine, the original content file is transformed

into HTTP streaming format (e.g., SmoothHD, Adobe Zeri,

MoveNet, etc) for adaptive-bit-rate streaming. Specifically, a

few files of the same content are created locally and stored

at the content cache. Each file corresponds to a different

streaming rate. Moreover, the format of each file includes

two parts: i) a manifest file for meta data, and ii) a set of

media content files each of which contains video content of

a fixed playback duration (e.g., 2 seconds). When the user

requests some content, the streaming engine replies with a

required streaming rate, which is determined by the physical

capability of the media outlet and the network status. Based

on the required streaming rate, the content engine will stream

the content from a chosen file among all available copies

cached locally. If a particular playback rate is not immediately

available, the most logic approach is to stream the content with

the closest rate from below.

B. System Models
1) User Request Model: User request from a mobile media

outlet is characterized by a required playback rate, denoted as

r. The required playback rate depends on both the physical

capability of the media outlet (e.g., screen size) and the net-

work channel condition (e.g., available bandwidth). Normally,

r is modeled as a random variable with a specific probability

density function of fR(r) for r ∈ [r0, rn], where r0 and rn are

the lower and upper bounds of r, respectively. In this paper,

we assume the user request follows a uniform distribution,

with the following probability density function,

fR(r) =
1

rn − r0
, r ∈ [r0, rn] . (1)

The assumption simplifies our analytical derivation and the

obtained closed-form solutions can be adapted to provide

operational guidelines for practical HTTP ABR systems.2) QoE Model: QoE is a subjective measurement of a

media consumer’s experience with a video. In this paper, we

assume a QoE model, in which the user’s experience depends

on two system parameters, including the required playback rate

of r and the actual playback rate of ri. Practically, ri ≤ r.

In [13], user experience follows the logarithmic laws, and

QoE function can be modeled in the logarithmic form for

applications of file downloading and web browsing. As such,

in this paper, we adopt the QoE model as the logarithmic

function between ri and r in the HTTP ABR scheme, which

is specified as

Q(ri, r) = a1ln
a2ri

r
, (2)

where the constant parameters a1 and a2 are both positive,

and they can be different for videos of different features.3) Content Caching Model: In the HTTP ABR streaming

system, the cache engine transcodes the received media file

into the HTTP ABR format. Specifically, the received content

file is transformed into a set of content files, each of which

represents one playback rate.

We assume that n files with different playback rates are

created in the cache, and each file has a streaming rate of

ri > 0, i = 0, 1, · · · , n − 1. Without loss of generality, we

assume that r0 < r1 < · · · < rn−1. Moreover, the file size is

assumed to be an affine function, i.e.,

g(ri) = ari + b, (3)

where ari represents the size of the media content stored on

the server and b represents the meta data. Then, the total

storage capacity required at the content cache engine is

Ctot =

n−1
∑

i=0

g(ri). (4)



Fig. 2. Illustration of playback rates for cached media files and request
playback rates.

C. Problem Formulation
The research problem is how to maximize the expected

QoE metrics by optimally caching HTTP ABR content files.

Obviously, it is beneficial to cache streaming files in different

bit rates as many as possible for a higher QoE. However, in

a real system deployment, the storage space in the content

cache can be filled up rapidly, in order to meet all the QoE

requirement. It does not allow numerous files to be cached

for streaming. As such, one also aims to control the storage

budget, by optimally choosing a subset of playback rates, for

which a copy of the media content is cached.

Figure 2 shows the scenario of the cached playback rates

and the requested playback rates. There are n copies to be

cached, i.e., r0, r1, ..., rn−1. If the requested bit rate r falls

within the region Ri+1 (i.e., r ∈ [ri, ri+1)), we will assign

ri as the replied bit rate. As such, the problem is to find

r1, r2, ..., rn−1 between the given minimal rate r0 and the

maximal rate rn to maximize the average QoE metrics, while

respecting a given storage budget constraint. Mathematically,

the problem can be formulated as the following constrained

optimization problem,

max
n,~ri

E[Q], (5)

s.t. Ctot ≤ C, (6)

where ~ri = (r1, r2, · · · , rn−1). The expectation is taken over

the distribution of user request (i.e., fR(r)). Therefore, the
optimization problem can re-written as

max
~ri

F =

n−1
∑

i=0

∫ ri+1

ri

Q(ri, r)fR(r)dr, (7)

s.t.

n−1
∑

i=0

(ari + b) ≤ C, (8)

ri − ri+1 < 0(i = 0, 1, ..., n− 1). (9)

Replacing the QoE function with its reverse, we transfer

the maximization problem into the following minimization

problem,

min
~ri

D = −

n−1
∑

i=0

∫ ri+1

ri

Q(ri, r)fR(r)dr, (10)

s.t.

n−1
∑

i=0

(ari + b) ≤ C, (11)

ri − ri+1 < 0(i = 0, 1, ..., n− 1). (12)

III. OPTIMAL QOE-DRIVEN CACHE MANAGEMENT FOR

HTTP ABR STREAMING

In this section, we first use the Lagrange multiplier method

to solve the constrained optimization problem, and then char-

acterize the optimal solution for content cache management.

Our investigation reveals a fundamental phase in exploring the

available storage budget to maximize the offered QoE metrics.

A. Derivation of Optimal Solution
The Lagrangian function of the optimization problem (10)

is given by

L(ri, λ, µi) = D + λ[
n−1
∑

i=0

(ari + b)− C] (13)

+

n−1
∑

i=0

µi+1(ri − ri+1),

where

D = −
n−1
∑

i=0

∫ ri+1

ri

a1ln
a2ri

r

1

rn − r0
dr.

First, it can be shown that it is a convex optimization

problem, because the constrained set is convex and the hessian

matrix (H) of the objective function is positive definite. The

latter is verified by the fact that the determinant of all the

principal minors of H are greater than zero, i.e.,

|Hk| =
a1

(rn − r0)
∏k

i=1 ri

[

1 + rk+1

k
∑

i=1

1

ri

]

> 0. (14)

Second, the KKT conditions are necessary and sufficient for

a global minimum of D, subject to the inequality constraints,

because it is a convex optimization problem. To solve the

optimization problem, we introduce a set of slack variables

z and di as follows,

L(ri, λ, z, µi, di) = D + λ[
n−1
∑

i=0

(ari + b) + z2 − C] (15)

+

n−1
∑

i=0

µi+1(ri − ri+1 + d2i+1).

Using the KKT conditions, we have the following equations,

∂L

∂ri
= −

a1

rn − r0
[ln

ri−1

ri
+

ri+1

ri
− 1] + λa+ (µi+1 − µi)

= 0, (16)

∂L

∂λ
=

n−1
∑

i=0

(ari + b) + z2 − C = 0, (17)

∂L

∂z
= 2λz = 0, (18)

∂L

∂µi

= ri−1 − ri + d2i = 0, (19)

∂L

∂di
= 2µidi = 0, (20)



λ ≥ 0, (21)

µi ≥ 0. (22)

Since di 6= 0, the variables µi must be zero. As a result,

organizing these equations together, we obtain














































































r2
r1

− ln r1
r0

− 1− λa(rn−r0)
a1

= 0
r3
r2

− ln r2
r1

− 1− λa(rn−r0)
a1

= 0

......
rn

rn−1
− ln

rn−1

rn−2
− 1− λa(rn−r0)

a1
= 0

∑n−1
i=0 (ari + b) + z2 − C = 0

2λz = 0

r0 − r1 + d21 = 0

r1 − r2 + d22 = 0

......

rn−1 − rn + d2n = 0.

(23)

Therefore, to solve the optimization problem (10), it is equiv-

alent to find the solution of the system of nonlinear equations

(23), in which there are 2n+1 equations and 2n+1 unknowns.

Finally, to solve this system of nonlinear equations, we can

minimize s, where s is defined as the sum of the square of

functions on the left hand sides of Eq. (23), as follows:

min s =

n−1
∑

i=1

(
∂L

∂ri
)2 + (

∂L

∂λ
)2 + (

∂L

∂z
)2 +

n
∑

i=1

(
∂L

∂µi

)2. (24)

Notice that this is an unconstrained optimization. It can be

solved by the method of trust-region-dogleg [14]. In this paper,

we adopt the solver (i.e., fsolve) provided by Matlab, which

implements the trust-region-dogleg algorithm. More details

about the numerical solutions will be given in Section IV-B.

B. Characterization of Optimal Solution
In this section, we characterize the optimal solution for

QoE-driven content cache management. It can be shown that

a fundamental phase change exists in the optimal solution.

Considering 2λz = 0 in (23), we can have two possibilities,
each of which corresponds to a phase in the optimal solution.1) Phase I (λ = 0, z 6= 0): This is the case when

the available storage budget is not fully utilized, with the

remainder of z2. For the first n − 1 equations in (23), there

can be at most one solution for ri (i = 1, 2, ..., n − 1);
this can be proved by contradiction. It suggests that once we

find the solution of ri, it must be optimal and unique cache

management for the streaming files.

Plugging the optimal condition of (23) into the objective

function Eq. (7), we obtain

F ∗ = a1(lna2 + 1) +
a1

rn − r0
[r∗1 + rn(ln

r∗n−1

rn
− 1)], (25)

where r∗1 and r∗n−1 are their optimal values.Proposition 3.1: For Phase I, the optimal solution exists the
following properties, including

(a) for a specific n, the increase of cache size will still

produce the same values of ri and QoE, since C is

irrelevant to the first n− 1 equations in (23);

(b) F ∗ is an increasing function of n, i.e., the optimal

QoE increases with n.

First, Proposition 3.1(a) suggests that when there are more

cache storage available, we should increase the value of n,

i.e., to cache more copies of bit rate streaming files in order

to improve the QoE.

Second, Proposition 3.1(b) can be explained as fol-

lows. Consider two cache managements: k copies of files,

~ri = (r1, r2, · · · , rk), and k + 1 copies of files, ~r′i =
(r′1, r

′

2, · · · , r
′

k+1). The streaming rates follow that r′i < ri
(i = 1, 2, ..., k), and r′k+1 > rk (this can be proved by

contradiction). Then plugging the optimal condition of (23)

into F ∗(k) and F ∗(k + 1) respectively, we can evaluate

the difference between these two terms, and finally obtain

F ∗(k) < F ∗(k + 1).
Moreover, since

∑

i ri is increasing with n, the remainder

z2 will decrease with the increase of n, approaching to be zero

eventually, which is Phase II as below.2) Phase II (λ > 0, z = 0): This is the case when the

available storage budget is fully utilized. For the first n − 1
equations in (23), there can be at most one solution for ri
(i = 1, 2, ..., n−1) and λ; this can be proved by contradiction.

It suggests that once we find the solution of ri, it must be

optimal and unique cache management for the streaming files.

Plugging the optimal condition of (23) into the objective

function Eq. (7), we obtain

F ∗ = a1(lna2+1)+
a1

rn − r0
[r∗1+rn(ln

r∗n−1

rn
−1)]+λ∗a

n−1
∑

i=1

r∗i ,

where r∗i (i = 1, 2, ..., n− 1) and λ∗ are their optimal values.

Based on the analysis of Phase I and Phase II, we can find
that there is a fundamental property in the optimal solution.

As n increases, the optimal solution will experience a phase

change, going from Phase I to Phase II. That is, when the

number of cached files is small, optimal solution is obtained

by partially using the storage budget; when the number of

cached files increases, the optimal solution will be obtained

by fully using the storage budget.

IV. NUMERICAL ANALYSIS AND RESULTS

In this section, we provide the numerical results of the

optimal content cache management for HTTP ABR streaming.

First, we identify the QoE functions by approximation for

three types of videos. Then, the optimal content streaming

cache managements are given accordingly.

A. Verification of QoE Model
QoE can be measured by the Mean opinion score (MOS)

scaling from 1 to 5, where 5 represents the service is excellent

and 1 represents bad. We have conducted an experimental

QoE study for Scalable Video Coding by evaluating the

scores for the adapted SVC bitstreams. The SVC bitstreams



TABLE I
RATE (KBPS) AND MOS

City Crew Soccer

rate MOS rate MOS rate MOS

5332.2 5.0 6520.8 5.0 5870 5.0
4212.2 5.0 4584.5 5.0 4528.9 5.0
2069.7 5.0 2428.8 4.0 2467.4 5.0
896.7 4.0 1275 3.5 1188.4 4.0
437.9 3.5 622.3 3.0 600.4 3.0
388.1 3.0 466.6 3.0 463 3.0
335.5 3.0 315.7 2.4 318.8 2.6
137.7 2.0 178.3 2.0 154 2.0
44.6 1.5 72.2 1.4 63.4 2.0
38.4 1.0 48.2 1.0 39.1 1.4

TABLE II
PARAMETERS FOR THE QOE FUNCTIONS

(a1,a2) (r0,rn) ‖MOS −Q‖2
2

City (0.9511, 157.9) (38.4, 2069.7) 0.2421
Crew (0.8205, 311.9) (48.2, 4584.5) 0.2103
Soccer (0.7955, 286.9) (39.1, 2467.4) 0.8187

were adapted for different bit rate and subjective tests were

conducted accordingly. The videos were compressed by JSVM

[15] and the rate adaptation was performed by the Bitstream

Extractor in JSVM. In the subjective tests, 22 non-expert

viewers with normal or corrected-to-normal vision acuity

participated in the single-stimulus test for evaluation based

on the Adjectival Categorical Judgment Methods in [16]. The

viewing conditions, facility setup and data screening followed

the ITU recommendations [16], [17]. Table I provides the rate-

MOS results for the selected videos (i.e., city, crew, soccer).

We adopt these results directly to verify the QoE function (2).

In order to find the values of a1 and a2 in the QoE function,

we minimize ‖MOS−Q‖22 =
∑

i(MOSi−Q(ri, r))
2 by the

least-squares method, using curve fitting over ln ri
r

and Q.

Table II lists the values of a1, a2, r0, rn and ‖MOS −Q‖22
for three types of videos. Figure 3 indicates that the fitting

functions of QoE approximate well with ri for all the videos.

B. Optimal Content Cache Management
As an example, we consider the case of the city video with

the cache size C = 3000 KB. We set the parameters in the
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Fig. 3. Approximation of QoE function in logarithmic relation

content caching model (3) as a = 1 and b = 0.5. Given an n,

we can find the optimal ri for a video. The optimal results of

the content cache management are given in Table III. It can

be shown that, when n < 5, the constraint of the cache size is
inactive, which is the case of Phase I; and when n ≥ 5, the
storage budget is fully utilized, which is the case of Phase II.
The optimal QoE is achieved at n = 8. Therefore, it follows
that a phase change occurs and the optimal QoE is in PhaseII, which agrees with the analysis in Section III-B.

We also plot QoE as a function of cache size (C) and

number of copies (n) for the three videos in Figures 4 and

5. Several observations can be drawn from these two figures.

First, for a specific n, the curves for different cache size in

Figure 4 overlap if n is small (i.e., in Phase I), and the shapes
of the curves in Figure 5 appear to be a line when C increases.

As a result, the increase of cache size may not result in higher

QoE, which agrees with Proposition 3.1.

Second, in order to enhance the QoE, n should be increased.

This can be explained by Figure 5 in which the curve of QoE

with larger n is basically above the one with smaller n.

In addition, the optimal QoE is not a monotonically increas-

ing function of n. In Figure 4, for all of the three videos, the

optimal QoE increases initially, but there is a slight drop when

n is relatively large (i.e., in Phase II). This is because, as n

increases, rn−1 should decrease to satisfy the constraint of

the limited cache, which largely brings down the QoE for the

request bit rate in the region Rn. More details are omitted

here due to the limited page length. Finally, this observation

suggests that when we find a k such that F ∗(k) > F ∗(k+1),
k will be the optimal number of copies for the maximum QoE.

V. CONCLUSION

In this paper, we investigated the problem of how to cache

a set of media files with optimal streaming rates, under

HTTP adaptive bit rate streaming over wireless networks. We

provided the mathematical solutions to this problem. We also

characterized the properties of the solution, and found that

there is a phase change in the optimal solution. Moreover, with

more cache size provided, more streaming files with different

bit rates should be cached for a better QoE. As future work, we

will consider on how to find the optimal number of streaming

files (n) that can maximize the QoE.
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TABLE III
OPTIMAL CONTENT CACHE MANAGEMENT OF ri FOR CITY VIDEO (C = 3000 KB)

Phase I Phase II
n 2 3 4 5 6 7 8 9 10

z 48.98 40.93 30.24 -3.3632e-44 0 0 0 0 0
λ -1.9e-35 -2.0e-35 5.5e-28 1.3e-5 4.1e-5 6.6e-5 7.8e-5 8.3e-5 8.5e-5
r0 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4
r1 561.9155 313.3511 220.5182 183.3648 115.1226 79.7274 59.4591 47.0031 38.9422
r2 - 971.1587 605.9671 464.8214 251.6908 149.2230 95.3222 64.8498 46.5990
... - - 1218.5062 883.9555 470.7999 263.8175 156.1283 97.2356 63.4723
... - - - 1426.9583 807.2227 451.3724 259.0700 153.8850 94.6768
... - - - - 1313.7640 757.4690 433.2547 251.8490 149.8223
... - - - - - 1256.4907 727.9343 420.6284 245.9452
... - - - - - - 1226.4315 711.0542 412.7589
... - - - - - - - 1210.5949 701.8355
rn−1 - - - - - - - - 1202.5478
s 6.5e-26 1.3e-26 3.0e-26 2.3e-25 2.2e-25 6.9e-27 2.0e-26 2.2e-25 2.4e-25
QoE 3.7961 4.2099 4.3863 4.4825 4.5323 4.5456 4.5470 4.5446 4.5413
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Fig. 4. QoE is plot as a function of cache size (C) and number of copies (n) for three types of videos.
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