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Abstract—This paper provides a theoretical framework of
energy-optimal mobile cloud computing under stochastic wireless
channel. Our objective is to conserve energy for the mobile
device, by optimally executing mobile applications in the mobile
device (i.e., mobile execution) or offloading to the cloud (i.e., cloud
execution). One can, in the former case sequentially reconfigure
the CPU frequency; or in the latter case dynamically vary the
data transmission rate to the cloud, in response to the stochas-
tic channel condition. We formulate both scheduling problems
as constrained optimization problems, and obtain closed-form
solutions for optimal scheduling policies. Furthermore, for the
energy-optimal execution strategy of applications with small
output data (e.g., CloudAV), we derive a threshold policy, which
states that the data consumption rate, defined as the ratio be-
tween the data size (L) and the delay constraint (T ), is compared
to a threshold which depends on both the energy consumption
model and the wireless channel model. Finally, numerical results
suggest that a significant amount of energy can be saved for the
mobile device by optimally offloading mobile applications to the
cloud in some cases. Our theoretical framework and numerical
investigations will shed lights on system implementation of mobile
cloud computing under stochastic wireless channel.

Index Terms—Energy-optimal execution, mobile application,
cloud computing, lagrangian multiplier method, stochastic wire-
less channel.

I. INTRODUCTION

THE tension between resource-hungry applications and
resource-poor mobile devices is considered as one of

the driving forces for the evolution of mobile platforms. Due
to the limited physical size, mobile devices are inherently
resource-constrained [1], equipped with a limited supply of
resources in computation, energy, bandwidth and storage. In
particular, the energy supply from the limited battery capacity
[2] has been one of the most challenging design issues for
mobile devices. The limited battery life has been found by
market research as the biggest complaint for smart phones [3].
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Therefore, resource limitations in the mobile devices should
be considered for the design of the mobile applications.

Emerging cloud-computing technology [4], owing to its
elastic resource allocation from a shared pool, offers an oppor-
tunity to extend the capabilities of mobile devices for energy-
hungry applications. Various cloud-assisted mobile platforms
have been proposed, such as Cloudlet [5], Clone Cloud [6] and
Weblet [7]. In these proposed platforms, each mobile device is
associated with a system-level clone called cloud clone in the
cloud infrastructure. The cloud clone, which runs on a virtual
machine (VM), can execute mobile applications on behalf of
the mobile device - commonly referred as application offload-
ing. This architecture requires both a mechanism to implement
application offloading and a policy to decide when to offload
applications. For the former, existing research [5], [6], [8],
[7] has proposed various architectures and mechanisms for
offloading applications to the cloud. For the latter, the research
on optimal energy policies for application offloading to cloud
execution is rather inadequate, in that a fixed data rate model
for wireless transmission is normally assumed [2], [3].

We illustrate an architecture of the cloud-assisted mobile
application platform in Figure 1. Each mobile device is repli-
cated by a system-level clone that runs on a virtual machine
(VM). The VM is located in a nearby cloud infrastructure and
can migrate in response to the user’s location. Moreover, the
cloud clone regularly synchronizes its state with the physical
mobile device. The cloud clone not only provides computing
and storage in its local VM environment, but also harnesses
computing and storage resources from a remote cloud.

On this platform, a mobile application can be executed
either on the mobile device (i.e., mobile execution) or on the
cloud clone (i.e., cloud execution). The design objective is to
develop an optimal application-execution policy, minimizing
the energy consumed by the mobile device. When the ap-
plication is executed in the mobile device, the computation
energy can be minimized by optimally scheduling the CPU
clock frequency of the mobile device via the Dynamic Voltage
Scaling (DVS) [9]. When the application is executed in the
cloud clone, the transmission energy can be minimized by
optimally scheduling the data transmission rate in a stochastic
wireless channel. For both scheduling problems, we formulate
them as convex optimization problems, with a constraint that
the application should be completed within a time deadline.
We solve both optimization problems analytically and obtain
closed-form solutions for the optimal scheduler and the mini-
mum energy consumed by the mobile device, respectively. Our
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Fig. 1. A cloud-assisted mobile application platform: the mobile device is
cloned by a system-level virtual machine, which extends the capabilities of the
mobile devices via different functionalities, including application offloading,
task delegation and data storage.

theoretical framework leads to optimal scheduling policies for
energy-efficient application execution.

Compared to our previous work [10], this paper has several
contributions. First, we provide asymptotical analysis of the
optimal scheduling policy for both mobile execution and cloud
execution. Second, we identify the optimal operational region
under which the mobile execution or the cloud execution is
more energy-efficient. Finally, we derive a threshold energy-
efficient execution policy for applications with small output
data (e.g., CloudAV [11]).

The rest of this paper is organized as follows. In Section
II, the review of related work is presented. In Section III,
we present a model for energy consumption in the mobile
execution and the cloud execution. In Section IV and V,
we solve the optimization problems for the optimal CPU
clock-frequency scheduling in the mobile execution and the
optimal transmission data-rate scheduling in the cloud execu-
tion, respectively. Closed-form solutions are derived for both
optimization problems. In Section VI, analytical results from
previous two sections are applied to develop optimal execution
strategies for mobile applications. Section VII summarizes this
paper and provides future directions.

II. RELATED WORK

Previous work in [12], [13], [14], [15], [16], [17], [18] has
investigated the scheme of computation offloading to extend
battery life of mobile devices. Rudenko et al., in [12], [13]
show by experiments that significant power can be saved
through remote processing for several realistic tasks (up to
50% of battery life). Othman et al. in [14] offer a decision-
making algorithm that learns and adapts its decision based on
previous CPU time measurements. Xian et al., in [16] find the
optimal timeout for local execution and propose an adaptive
approach for computation offloading to save energy on battery-
powered systems. Rong et al., in [17] formulate a linear
optimization problem to minimize the power consumption
of the mobile device by remote processing. Huang et al.,
in [18] present a dynamic offloading algorithm based on
Lyapunov optimization to save energy on the mobile device
while meeting the application execution time.

Moreover, some literatures have studied the energy issues
of cloud computing. [3] presents an energy model to an-
alyze whether to offload applications to the cloud, mainly
considering computation energy in the mobile device and

Fig. 2. Mobile application executed in two alternative modes: the mobile
execution and the cloud execution.

the communication energy for offloading. [2] demonstrates
that workload, data communication patterns and technologies
used (i.e., WLAN and 3G) are the main factors that highly
affect the energy consumption of mobile applications in cloud
computing. But its analysis is roughly based on statistical mea-
surements and investigations. Also, [2], [3] mostly consider a
fixed computation scheduling in the mobile device and a fixed
data rate model for the wireless channel. Realistic models are
needed to understand the trade-off between computation and
communication in the cloud-assisted mobile platform.

Compared to these previous efforts, this paper has sev-
eral differences. First, for the cloud execution, we employ
the Gilbert-Elliott model and consider a stochastic wireless
channel rather than the deterministic channel, coupled with a
realistic computing model in the mobile execution. Second,
we provide the theoretical framework of mobile execution
and cloud execution in order to conserve energy consumption
while meeting an execution deadline. Finally, we provide the
closed-form solution and derive a threshold policy for the
energy-optimal application execution.

III. SYSTEM MODELING AND PROBLEM FORMULATION

In this section, we present a mathematical model for ap-
plication execution on the cloud-assisted mobile application
platform. First, we define a mobile application profile. Fol-
lowing that, we introduce an energy consumption model for
application execution, including a computation energy model
for the mobile execution and a transmission energy model for
the cloud execution.

A. Mobile Application Model

A model that completely depicts all the aspects of a mobile
application is complex. Many details could have to be taken
into consideration. However, such a high level of details could
render the problem intractable mathematically, without offer-
ing meaningful insights for engineering practice. In this paper,
we adopt a canonical model that captures the essentials of a
typical mobile application. Specifically, a mobile application
is abstracted into a profile with two parameters, including:

• Input data size L: the number of data bits as the input to
the application;

• Application completion deadline T : the delay deadline
before which the application should be completed.

Notice that both the input data size L and the application com-
pletion deadline T have the impact on the energy consumption
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of mobile applications. Normally, with more data input and
(or) shorter completion deadline, the energy consumption can
be higher. As such, we use these two parameters to capture the
features of the mobile applications, and denote the application
profile as A(L, T ). More details can be included later when we
have a good understanding of the optimal operational principle
(cf. Section VI-B).

B. Mobile Execution Energy Model

When the application is executed on the mobile device, the
energy consumption is determined by the CPU workload. The
workload is measured by the number of CPU cycles required
by the application, denoted as W , which depends on the
input data size and the complexity of the algorithm in the
application. Typically, W is modeled as a random variable,
which we elaborate in Section IV.

As stated in [19], the CPU power consists of the dynamic
power, the short circuit power and leakage power, in which the
dynamic power dominates. As a result, we only consider the
dynamic power for the mobile execution. In CMOS circuits
[20], the energy per operation Ew is proportional to V 2, where
V is the supply voltage to the chip. Moreover, it has been
observed that, when operating at low voltage limits, the clock
frequency of the chip, f , is approximately linear proportional
to the voltage supply, V [20]. As a result, the energy per
operation can be expressed as,

Ew(f) = κf2, (1)

where κ is the effective switched capacitance depending on
the chip architecture. We set κ = 10−11 so that energy
consumption is consistent with the measurements in [2].
The total computation energy for the mobile execution is∑W

w=1 Ew(fw).
For the mobile execution, its total energy consumption can

be minimized by optimally configuring the clock frequency
of the chip via DVS [9]. Note that a CPU can reduce its
energy consumption substantially by running the application
slowly. However, the application has to meet a delay deadline
of T , which suggests that the clock frequency cannot remain
low. As such, one would like to configure the clock frequency
to minimize the total energy consumption, while meeting the
application delay deadline. Under the optimal CPU frequency
scheduling, the minimum amount of energy consumption for
the mobile execution is given by,

E∗
m = min

ψ∈Ψ
{Em(L, T, ψ)}, (2)

where ψ = {f1, f2, ...fW } is any clock-frequency vector
that meets the delay deadline, Ψ is the set of all feasible
clock-frequency vectors, and Em(L, T, ψ) is the total energy
consumed by the mobile device. This optimization problem
will be solved in Section IV.

C. Cloud Execution Energy Model

In this research, we make some assumptions for the cloud
execution. First, we assume the binary executable file for the
application has been replicated on the cloud clone initially.
As such, it does not incur additional energy cost. Second,

we assume a stochastic fading model for the wireless channel
between the mobile device and the cloud clone. As illustrated
in Figure 2, it is characterized by a channel gain of g and
a noise power of N . A specific model for the channel gain
(Gilbert-Elliott model) will be presented in Section V-A.
Third, the receiving power is a constant [2]. As such, we do not
consider the scheduling of the output results from the cloud,
but the optimal scheduling of input data transmission in order
to achieve the minimum energy consumption on the mobile
device. In addition, we have not considered any security issue
on the cloud-assisted platform, thus the extra energy caused
by additional operations concerning security, e.g., encryption
and trust checking, is not taken into account.

[21] indicates that since there is no closed-form expression
between time delay and the power in the wireless networks,
approximating models should be built for the practical system
design. In this paper, we adopt an empirical transmission
energy model as in [22], [23]. Specifically, for a wireless
fading channel with a gain of g, the energy consumed to
transfer s bits of data over the channel within a time slot
is governed by a convex monomial function, i.e.,

Et(s, g, n) = λ
sn

g
, (3)

where n denotes the monomial order, and λ denotes the
energy coefficient. This monomial function has been widely
used. It is shown by [23], [24] that the energy-bit relation
can be well approximated by the monomial function. The
monomial function can be fairly close to the capacity-based
power model by choosing an appropriate coefficient λ and
order n. Such a monomial function can produce the analytical
solution for the optimization problem of the cloud execution.
In Eq. (3), it is normally assumed that 2 ≤ n ≤ 5, depending
on the modulation scheme. We set λ = 1.5 so that the energy
consumption is consistent with the measurements in [2].

When the application is executed by the cloud clone, the
energy consumed by the mobile device depends on the amount
of data to be transmitted from the mobile device to the cloud
clone and the wireless channel model. For a mobile application
A(L, T ), L bits of data needs to be transmitted to the cloud
clone within T . The total energy consumption on the mobile
device for cloud execution is

∑T
t=1 Et(st, gt, n), where st and

gt are the number of bits transmitted and channel state in time
slot t, respectively.

For the cloud execution, its total energy consumption can
be minimized by optimally varying the data rate (the number
of transmitted bits in a given time slot), in response to a
stochastic channel. Since the energy cost per time slot is a
convex function of bits transmitted, it is ideal to transmit as
few bits as possible [25]. However, reducing the number of
bits transmitted per time slot increases the total delay for the
application. Therefore, there exists an optimal transmission
data-rate schedule to minimize the total transmission energy,
while satisfying the delay requirement. Under the optimal
transmission scheduling, the minimum amount of transmission
energy for the cloud execution is given by

E∗
c = min

φ∈Φ
E{Ec(L, T, φ)}, (4)
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where φ = {s1, s2, ...sT } denotes a data transmission schedule
that meets the delay deadline (T time slots), Φ is the set of all
feasible data scheduling vectors, and Ec(L, T, φ) denotes the
transmission energy. It should be noted that the expectation of
energy consumption is taken for different channel states. This
optimization problem will be solved in Section V.

D. Optimal Application Execution Policy

The decision for energy-optimal application execution, is
to choose where to execute the application, with an objective
to minimize the total energy consumed on the mobile device.
Specifically, the optimal policy is determined by the following
decision rule,{

Mobile Execution if E∗
m ≤ E∗

c

Cloud Execution if E∗
m > E∗

c .
(5)

As shown in Eq. (1) and Eq. (3), E∗
m is proportional to κ

and E∗
c is proportional to λ. Hence, the absolute values of κ

and λ are not critical, but the ratio between these two constant
energy coefficients, κ/λ, could affect the determination of the
optimal execution policy.

IV. OPTIMAL COMPUTATION ENERGY UNDER MOBILE

EXECUTION

In this section, we investigate the problem of minimizing
the energy consumption for executing an application in the
mobile device. Since the energy consumed by CPU is much
larger than the energy consumed by memory and screen,
we only consider the computation energy of executing the
application on mobile device. As such, the problem is to
optimally set the clock frequency of the chip for the minimal
energy. First, we build a probabilistic framework for mobile
execution. Then, we formulate the problem as how to schedule
the clock frequency in each CPU cycle for the application.
Finally, we derive the clock-frequency configuration for the
minimum energy consumption on the mobile device.

A. Probabilistic Application Execution in Mobile Device

Let W indicate the number of CPU cycles needed for an
application. For a given input data size, L, it can be derived
from [2], [26] as

W = LX, (6)

where X has been shown to be a random variable with an
empirical distribution [26]. The estimation of this distribution,
depending on the nature of the application, e.g., the complexity
of the algorithm, has been treated in [27], [19], [28], and is
thus beyond the scope of this paper. In this paper, we assume
that the probability distribution function (PDF) of X is P (x),
and its cumulative distribution function (CDF) is defined as

FX(x) = Pr[X ≤ x], (7)

and its complementary cumulative distribution function
(CCDF), denoted as F cX(w), is defined as

F cX(x) = 1− FX(x). (8)

Therefore, the CDF of the workload W is given by FW (w) =
FX(w/L), and its CCDF is given by F cW (w) = F cX(w/L).

As shown in [26], [27], [19], the number of CPU cycles per
bit can be modeled by a Gamma distribution. The PDF of the
Gamma distribution is given by

pX(x) =
1

βΓ(α)
(
x

β
)α−1e−

x
β , for x > 0, (9)

depending on two parameters (the shape α and the scale β).
In this paper, we adopt a probabilistic performance re-

quirement. We assume that the jobs should satisfy the soft
real-time requirement. This soft real-time requirements is rea-
sonable for multimedia applications. Under this assumption,
each application will meet its deadline with a probability
of ρ by allocating Wρ CPU cycles. The parameter ρ is
called the application completion probability (ACP). When the
application execution fails to meet its deadline, it will continue
to execute at the maximum clock frequency for completion.
The additional computation energy is negligible when the
application completion probability is very close to 1. As a
result, the application completion probability is assumed to
be very close to 1.

The probability that each job requires no more than the
allocated Wρ cycles is at least ρ, i.e.,

FW (Wρ) = Pr[W ≤Wρ] ≥ ρ. (10)

Using Eq. (7), we can obtain the number of CPU cycles, for
a given ρ, as

Wρ = F−1
W (ρ) = LF−1

X (ρ), (11)

which is the ρth quantile for the distribution of W .

B. Energy-Efficient Clock-Frequency Configuration

We aim to minimize the expected energy consumption of the
application execution, by optimally setting the clock frequency
of the mobile device. Denote f(w) the clock-frequency, which
is scheduled in the next CPU cycle after completing w CPU
cycles; for this CPU cycle, its execution time is 1

f(w) , and
the energy consumption is κF cW (w)[f(w)]2, where F cW (w) is
the probability that the application has not completed after w
CPU cycles. Therefore, the total energy consumption is the
summation of the energy consumed during all of these CPU
cycles, which is given by

Em = κ

Wρ∑
w=1

F cW (w)[f(w)]2. (12)

The optimization problem in Eq. (2) can be rewritten as,

min
{f(w)}

κ

Wρ∑
w=1

F cW (w)[f(w)]2 , (13)

s.t.
Wρ∑
w=1

1

f(w)
≤ T, (14)

f(w) > 0, (15)

where Eq. (14) corresponds to the delay constraint.
The optimization problem, denoted in Eq. (13) can be

solved analytically. The results are summarized in Theorem
4.1.
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Fig. 3. In (a), the optimal clock frequency, f∗(w), is plot as a function of the
number of CPU cycles w completed. In (b), the minimum computation energy,
E∗
m, is plotted as a function of the application completion probability ρ. In

this graph, the application workload is modeled as the Gamma distribution,
with α = 4, β = 200 and T = 50ms.

Theorem 4.1: For the optimal CPU scheduling problem in
Eq. (13), the optimal clock scheduling vector is given by

f∗(w) =
θ

T [F cW (w)]1/3
, 1 ≤ w ≤Wρ, (16)

where θ =
∑Wρ

w=1 [F
c
W (w)]1/3. The optimal energy is

E∗
m =

κ

T 2
{
Wρ∑
w=1

[F cW (w)]1/3}3. (17)

Proof: See Appendix A.
The analytical results in Eq. (16) and Eq. (17) reveal

engineering insights on the optimal clock frequency config-
uration and the minimum computation energy for the mobile
execution, as elaborated in the following propositions.

Proposition 4.1: The optimal clock frequency increases
monotonically as the number of CPU cycles completed in-
creases. That is, as w becomes larger, the corresponding clock
frequency f(w) is larger.

We show that θ is a constant in Appendix B. In addition,
F cW (w) will decrease as more CPU cycles have completed.
By Eq. (16), f∗(w) is hence an increasing function of w.

In Figure 3(a), we plot the optimal clock frequency as a
function of the number of CPU cycles completed. It increases
monotonically as the number of CPU cycles completed in-
creases. Also, as it gets closer to the deadline, the scheduler
will accelerate the CPU clock to meet the application deadline.
In practice, if the chip has a maximum clock frequency, it
simply runs at its maximum if the required clock frequency
is beyond the limit. Moreover, if the ACP, ρ, becomes larger,
the optimal clock frequency can be higher.

Proposition 4.2: For an application workload with an
exponentially-tailed CCDF (i.e., F c(w) ∼ μe−νw as w → ∞
for some constant μ > 0 and ν > 0), the minimum energy
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Fig. 4. The minimum computation energy, E∗
m, is plotted as a function of

the input data size L. In this graph, the application workload is modeled as
the Gamma distribution, with α = 4, β = 200 and T = 50ms.

consumption converges monotonically to a finite value, as the
application completion probability increases to 1.

Proof: See Appendix B.
In Figure 3(b), we plot the minimum computation energy,

E∗
m, as a function of the application completion probability,
ρ. We set the input data size L as 800 bits (100 bytes), a
reasonable value for typical applications, and use this same
input data size for the cloud execution in the remaining
sections. Notice that the Gamma distribution is exponentially
tailed. As a result, as the application completion probability
of ρ increases, the minimum computation energy increases
monotonically and converges to a finite value.

Proposition 4.3: For the optimal CPU scheduling in Eq.
(17), the minimum computation energy is proportional to the
negative quadratic of the delay deadline. That is, E∗

m ∼ T−2.
Proposition 4.4: For the optimal CPU scheduling problem

in Eq. (17), the minimum computation energy is proportional
to cube of the data size. That is, E∗

m ∼ L3.
Proof: See Appendix C.

In Figure 4, we plot the minimum computation energy as a
function of the input data size, and compare it with a scaling
law of L3. It shows that E∗

m scales at L3.
Furthermore, from Proposition 4.3 and 4.4, the optimal

energy consumption of mobile execution can be expressed as

E∗
m =

ML3

T 2
, (18)

where M is a constant, depending on parameters κ and ρ.

V. OPTIMAL TRANSMISSION ENERGY UNDER CLOUD

EXECUTION

In this section, we consider the problem of data scheduling
to minimize the transmission energy under cloud execution,
with a deadline constraint. We choose to simplify the for-
mulation by not considering the power of receiving data on
mobile device, since it is constant and often smaller compared
to the transmitting power [2]. We can ignore the time delay
of receiving output data if the data is small1. In addition, we

1If the output data is large, we can approximate the delay deadline of the
data transmission as the total deadline subtracted by the constant term of
output receiving time.
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assume the display and network interface of the mobile device
can be turned off when it is idle during the cloud execution.
Hence, we only consider the optimal scheduling of input data
transmission for the cloud execution.

A. Wireless Channel Model

As shown in Fig. 2, we consider the scheduling of L bits of
input data with a deadline in T discrete time slots. The channel
state at time slot t is denoted as gt, which is determined by a
discrete state space Markov model.

We adopt Gilbert-Elliott channel model as a stochastic
model for the practical circumstances in the cloud execution.
This model has been widely used by a number of researchers
on wireless networks [23], [29]. In the Gilbert-Elliott (GE)
channel model, there are two states: “good” and “bad” channel
conditions, denoted as G and B, respectively. The two states
correspond to a two-level quantization of the channel gain. If
the measured channel gain is above some value, the channel
is labeled as good. Otherwise, the channel is labeled as bad.
Let the (average) channel gains of the good and bad states be
gG and gB , respectively.

In this model, the state transition matrix is completely
determined by the values of pGG (for the probability that
the next state is the good state, given that the current state
is also the good state) and pBB (for the probability that the
next state is the bad state, given that the current state is also
the bad state). Accordingly, we have pGB = 1 − pGG and
pBG = 1− pBB, where pGB denotes the probability in which
channel will transit from the good state to the bad state in
the next time slot and pBG denotes the probability in which
channel will transit from the bad state to the good state in the
next time slot. The state sojourn time (duration of being in
a state) is geometrically distributed. As such, the mean state
sojourn time, measured in number of time slots in the good
or bad state, is given by TG = 1

1−pGG
and TB = 1

1−pBB
.

B. Optimal Data Transmission Scheduling

We denote t as discrete time index in descending order
(from T to 1). In time slot t, if the number of bits transmitted
is st, the transmission energy cost is Et(st, gt) = λ

snt
gt

.
Therefore, the optimization problem in Eq. (4) for the optimal
data-transmission schedule can be rewritten as2,

min
st

: E

[
T∑
t=1

Et(st, gt)
]

(19)

s.t.:
T∑
t=1

st = L,

st ≥ 0, ∀t.

The minimum expected energy depends on the channel state
at t = T + 1 (gT+1 = G or gT+1 = B). For ease

2In practice, st is an integer. This will lead to an integer programming
problem, which is unnecessarily complex. We assume that st is continuous;
this assumption makes the optimization tractable, which provides closed-form
solution to the problem. The resulted energy is a lower bound to the actual
optimization problem, and the practical solution can be obtained by rounding
the continuous result.

of presentation, we denote the condition gT+1 = G and
gT+1 = B as (.;G) and (.;B), respectively; we integrate
this condition into the notation of the optimal number of data
bits transmitted in each time slot s∗t and the minimum energy
E∗
c . To obtain the minimum expected energy, we need to find

out the minimum energy under the condition gT+1 = G and
gT+1 = B, respectively. The derivation for the optimal data
scheduling vector and the minimum expected energy of the
cloud execution is provided in Theorem 5.1.

Theorem 5.1: Denote lt as the number of unfinished bits
at time slot t. For the optimal data transmission scheduling
problem in Eq. (19), the optimal data scheduling vector is

s∗t (lt, gt;G) =

⎧⎪⎨
⎪⎩
lt

[
(gt)

1
n−1

(gt)
1

n−1 +( 1
ζt−1;G

)
1

n−1

]
, t ≥ 2,

l1, t = 1,

(20)

if gT+1 = G, where

ζt;G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pGG

⎡
⎣( 1

(gG)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1
⎤
⎦

+pGB

⎡
⎣( 1

(gB)
1

n−1 +( 1
ζt−1;G

)
1

n−1

)n−1
⎤
⎦ , t ≥ 2,

pGG

[
1
gG

]
+ pGB

[
1
gB

]
, t = 1;

(21)

and

s∗t (lt, gt;B) =

⎧⎪⎨
⎪⎩
lt

(
(gt)

1
n−1

(gt)
1

n−1 +( 1
ζt−1;B

)
1

n−1

)
, t ≥ 2,

l1, t = 1,

(22)

if gT+1 = B, where

ζt;B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pBB

⎡
⎣
(

1

(gB)
1

n−1 +( 1
ζt−1;B

)
1

n−1

)n−1
⎤
⎦

+pBG

⎡
⎣
(

1

(gG)
1

n−1 +( 1
ζt−1;B

)
1

n−1

)n−1
⎤
⎦ , t ≥ 2,

pBB

[
1
gB

]
+ pBG

[
1
gG

]
, t = 1.

(23)

Correspondingly, the minimum transmission energy is

E∗
c (L, T ;G) = λLnζT ;G, (24)

and

E∗
c (L, T ;B) = λLnζT ;B, (25)

respectively. Therefore, the minimum expected transmission
energy E∗

c is

E∗
c (L, T ) =

TG
TG + TB

E∗
c (L, T ;G) +

TB
TG + TB

E∗
c (L, T ;B).

(26)
Proof: See Appendix D.

We plot in Figure 5 the number of bits transmitted in each
time slot, as a function of the time index. Notice that t =
0 means the last time slot. Intuitively, for the good channel
state (gt = gG), more bits should be transmitted; for the bad
channel state (gt = gB), less bits are transmitted to save the
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(c) gT+1 = gG, g1 = gB
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(f) gT+1 = gB , g1 = gB

Fig. 5. Optimal bit transmission schedule is plot as a function of the time slot index. In this graph, L = 800bits, n = 2, pGG = 0.995 , pBB = 0.96,
gG = 1 and gB = 0.1.

energy. Further, the number of bits transmitted in each time
slot follows the Proposition 5.1.

Proposition 5.1: For a period of time during which all the
channel states are good, the number of bits transmitted in each
time slot decreases. While for a period of time during which
all the channel states are bad, the number of bits transmitted
in each time slot increases.

Proposition 5.1 can be explained as follows. Figures 5(a)
and 5(d) are the two extreme cases where the channel states
are all good and bad respectively. On one hand, in Figure
5(a), the number of data transmitted is decreasing as time
proceeds. Given a good channel status in the current time
slot, the expected channel gain in next time slot is lower. As
such, the scheduler should transmit more data in the current
time slot. On the other hand, in Figure 5(d), the number of
data transmitted is increasing as time proceeds. Given a bad
channel status in the current time slot, the expected channel
gain in next time slot is larger. As such, the scheduler should
transmit less data in the current time slot. Also, Proposition
5.1 holds for other cases with good and bad channel states
mixed together, as indicated in Figures 5(b), 5(c), 5(e) and 5(f).
Moreover, we can derive three propositions for the optimal
energy consumption.

Proposition 5.2: As the data size L increases, the minimum
transmission energy increases monotonically and scales with
a factor of Ln, where n is the monomial order in Eq. (3). That
is, E∗

c ∼ Ln.
Proposition 5.3: As the application completion deadline T

increases, the minimum transmission energy decreases mono-
tonically and scales with a factor of T−(n−1), where n is the
monomial order in Eq. (3). That is, E∗

c ∼ T−(n−1).
Proof: See Appendix E.

Proposition 5.4: In Eq. (21) and (23), neither ζT ;G nor ζT ;B

scales to infinity.
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Fig. 6. Expected transmission energy is plotted as a function of deadline
T for the GE channel model. In this graph, L = 800bits, pGG = 0.995 ,
pBB = 0.96, gG = 1 and gB = 0.1.

Proof: See Appendix E.
From Proposition 5.2 and 5.3, the optimal energy consump-

tion of the cloud execution can be expressed as

E∗
c =

C(n)Ln

T n−1
, (27)

where C(n) is a function of n, depending on the factor λ, the
channel states (good or bad) and the state transition matrix of
GE model in the cloud execution.

In Figure 6, we plot the expected transmission energy under
GE model as a function of the deadline T with different n,
and compare them with a scaling factor of T−(n−1). Note that,
the scaling factor matches the numerical results well, which is
consistent with Proposition 5.3. Moreover, as the application
delay deadline T becomes smaller, the notation T−(n−1) will
be larger, which results in more energy consumption.
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Fig. 7. The minimum energy, E∗, is plotted as a function of the application
delay deadline T . The application workload is modeled as the Gamma
distribution, with α = 4, β = 200, L = 800bits. The channel is a GE
model with pGG = 0.995, pBB = 0.96, gG = 1 and gB = 0.1.

VI. OPTIMAL APPLICATION EXECUTION POLICY

In this section, we develop a threshold policy3 for the
optimal application execution, based on the analytical results
obtained in Section IV and V. In particular, for a given
application profile of A(L, T ), we compare the minimum
computation energy of mobile execution and the minimum
transmission energy of cloud execution. The optimal applica-
tion execution policy is to choose whichever consumes less
energy on the mobile device, in order to extend the battery
life.

A. Comparison of Minimum Energy Consumption between
Mobile Execution and Cloud Execution

As proved previously in Section IV and Section V, there
are scaling laws that can be derived between the energy
consumption and the application profile (i.e., data size and
deadline delay): E∗

m ∼ L3 and E∗
m ∼ T−2 for the mobile

execution, and E∗
c ∼ Ln and E∗

c ∼ T−(n−1) for the cloud
execution, respectively. Thus, when n < 3, the cloud execution
consumes less energy for large data, while when n > 3, it is
also encouraged to offload the application to the cloud for
relatively long delay deadline.

As an example, we use the same application parameters
of the mobile execution and the cloud execution as those
described in Section IV and V, to compare the energy
consumptions. In Figure 7, we plot the minimum energy
consumed by the mobile device for the mobile execution
and the cloud execution, as a function of the application
completion deadline of T . It can be observed that there are
2 cases for consideration: (1) When n is smaller than 3,
the cloud execution is more energy-efficient when the delay
deadline is below a threshold. This is because, when n < 3,
the scaling factor for the cloud execution is slower than T−2,
the scaling factor for the mobile execution. (2) When n is
larger than 3, the cloud execution is more energy-efficient

3This policy is suitable for the applications with small output data. For
applications with large output data, we can adjust the deadline of the
transmission in the cloud execution, and find out the operating region for
which execution is more energy optimal. Hence, our methodology still remains
valid and this policy could also be regarded as an approximation for the
execution decision of the applications with large output data.
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Fig. 8. The minimum energy, E∗, is plotted as a function of the data size L.
The application workload is modeled as the Gamma distribution, with α = 4,
β = 200, T = 50ms. The channel is a GE model with pGG = 0.995,
pBB = 0.96, gG = 1 and gB = 0.1.

when the delay deadline is beyond a threshold. This is because,
the scaling factor for the cloud execution is faster than T−2,
the scaling factor for the mobile execution. Hence, when L is
fixed, the monomial order of n can affect the optimal execution
strategy.

In Figure 8, we plot the minimum energy consumed by
the mobile device for the mobile execution and the cloud
execution, as a function of the input data size of L. It can be
observed that there are 2 cases for consideration: (1) When n
is smaller than 3, the cloud execution is more energy-efficient
when the data size is beyond a threshold. This is because,
when n < 3, the scaling factor for the cloud execution is
slower than L3, the scaling factor for the mobile execution.
(2) When n is larger than 3, the cloud execution is more
energy-efficient when the input data size is below a threshold.
This is because, when n > 3, the scaling factor for the cloud
execution is faster than L3, the scaling factor for the mobile
execution. Hence, when T is fixed, the monomial order of n
can affect the optimal execution strategy.

Moreover, by optimally deciding where to execute the
application, a significant amount of energy can be saved on
the mobile devices. For example, for an application profile of
A(800bits, 400ms) in Figure 7, cloud execution consumes 13
times energy less than mobile execution for n = 5.

B. Optimal Operating Regions for Execution Policy

In this subsection, we derive the energy-optimal execution
policy for the mobile application with small output data size.

First, for various application profiles A(L, T ) with L rang-
ing from 0 to 1000bits and T ranging from 0 to 250ms,
we compute the energy consumption of mobile execution
and cloud execution, and plot in Figure 9 the regions where
the mobile execution or the cloud execution is more energy
efficient under different n. Specifically, for n = 2, the
boundary between the two optimal operational regions appears
to be a line. In this case, if the point (T, L) is above the
line, the cloud execution is more energy-efficient; otherwise,
the mobile execution is more energy-efficient. With the same
parameters for both mobile execution and cloud execution, all
cases of n = 3 should be executed in the mobile device. This
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Fig. 9. Operating Regions for Optimal Energy Decision.

can be derived from Figures 7 and 8, in which for n = 3,
the curve of the cloud execution is always above the curve of
the mobile execution, indicating that energy consumption of
mobile execution is smaller. In the case of n = 4, the boundary
between the two optimal operating regions also appears to be
a line. However, in this case, if the point (T, L) is below the
line, the cloud execution is more energy-efficient; otherwise,
the mobile execution is more energy-efficient.

Then, the same approach can be adopted for different
application parameters (i.e., the scale parameter and the shape
parameter in the Gamma distribution of the number of CPU
cycles, and monomial order of transmission model) to obtain
the optimal policy for application execution. Similarly, the
optimal operational regions separated by a line for the mobile
execution and the cloud execution can be found respectively.

Moreover, inspired by the observations in Figure 9, we can
mathematically determine the execution policy. We define the
effective data consumption rate as the ratio of data input size
and delay deadline (Re = L/T ), and a threshold Rth =[
M
C(n)

] 1
n−3

. Specifically, the effective data consumption rate
refers to the data processing rate for mobile execution, and
the data transmission rate for cloud execution. Notice that Rth
depends on the monomial order (n). Since n can take different
values, we can have different decisions on the optimal energy
execution, which is given by Theorem 6.1.

Theorem 6.1: The energy-optimal execution policy can be
determined by comparing the effective data consumption rate

(Re = L/T ) with a predefined threshold (Rth =
[
M
C(n)

] 1
n−3

).
The energy-optimal execution for mobile device is:

(1)n < 3 mobile execution if Re ≤ Rth
cloud execution if Re > Rth

; (28)

(2)n > 3 mobile execution if Re ≥ Rth
cloud execution if Re < Rth

; (29)

(3)n = 3 mobile execution if M ≤ C(n)
cloud execution if M > C(n)

. (30)

Theorem 6.1 can be explained geometrically. In Figure 9(a)
and 9(c), the line separates the operational regions for the
mobile execution and the cloud execution, respectively. The
decision threshold, Rth, is the slope of the line. It depends
on the coefficients in the energy consumption model, and the
monomial order (n) in the wireless transmission model.

Theorem 6.1 can be applied for some mobile applications
that has small output data size (e.g., virus scanning, face
recognition, chess games, etc). The application profile A(L, T )
can be specified for different applications. Consider a cloud-
based antivirus application called CloudAV. CloudAV accepts
files as large input data from users, detects malicious or
unwanted content with intensive computation, and returns
results as small output data, without access of the special local
resources on the mobile device (e.g., GPS or sensors). Con-
sidering the characteristics of this application, we can claim
that the threshold policy is suitable for determining whether
the malware detection is executed on the mobile device or on
the cloud. The policy depends on the application profile (i.e.,
the file size L and the application completion deadline of T ),
the wireless transmission model (i.e., the monomial order n
in its energy consumption formula) and the ratio of energy
coefficients (i.e., effective switched capacitance κ on the chip
system of the device and energy coefficient λ in the wireless
channel model. In our examples, κ/λ = 6.67 × 10−12). We
can identify the energy-optimal malware detection policy by
evaluating the value of the effective data consumption rate
(L/T ). Moreover, energy consumed by the mobile device
can be saved significantly by deciding where to execute the
malware detection.

VII. SUMMARY AND FUTURE RESEARCH

In this paper we investigated the problem of how to con-
serve energy for the resource-constrained mobile device, by
optimally executing mobile applications in either the mo-
bile device or the cloud clone. We proposed a theoretical
framework for energy-optimal mobile cloud computing under
stochastic wireless channel. For the mobile execution, we
minimize the computation energy by dynamically configuring
the clock frequency of the chip. For the cloud execution,
we minimize the transmission energy by optimally schedul-
ing data transmission across the stochastic wireless channel
(i.e., the Gilbert-Elliott model). Closed-form solutions were
obtained for both scheduling problems to decide the optimal
application-execution condition under which either the mobile
execution or the cloud execution is more energy-efficient for
the mobile device. We derived a threshold policy for mobile
applications with small output data (e.g., CloudAV). The
threshold depends on the wireless transmission model and the
ratio of energy coefficients for the mobile execution and the
cloud execution. Moreover, numerical results suggest that for
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some applications, a significant amount of energy can be saved
by offloading mobile applications to the cloud.

This paper only focuses on the theoretical parts of applica-
tion offloading. For future work, we will evaluate the perfor-
mance by running real applications with intensive computation
and show the applicability of our theoretical framework. In
addition, we will consider the multi-task offloading in a more
fine-grained choice for mobile application execution.

APPENDIX A
PROOF OF THEOREM 4.1

In this section, we will use the Lagrange multiplier method
to solve the optimization problem in Eq. (13). The Lagrangian
function is given by

L(f(w), γ) =

Wρ∑
w=1

F cW (w)[f(w)]2 + γ(

Wρ∑
w=1

1

f(w)
− T )

=

Wρ∑
w=1

{F cW (w)[f(w)]2 +
γ

f(w)
} − γT,

where γ is the Lagrange multiplier.
The optimal clock schedule policy must satisfy the follow-

ing conditions,

∂L(f(w), γ)

∂f(w)
= 2F cW (w)f(w) − γ

[f(w)]2
= 0, (31)

∂L(f(w), γ)

∂γ
=

Wρ∑
w=1

1

f(w)
− T = 0. (32)

Solving Eq. (31), we obtain that, for 1 ≤ w ≤Wρ,

f∗(w) = { γ

2F cW (w)
}1/3. (33)

Plugging Eq. (33) into Eq. (32), we obtain
Wρ∑
w=1

[F cW (w)]1/3 = T (
γ

2
)1/3. (34)

Therefore, the optimal clock schedule policy is given by

f∗(w) =
θ

T [F cW (w)]1/3
, (35)

where θ =
∑Wρ

w=1 [F
c
W (w)]1/3. Substituting Eq. (35) into Eq.

(12), we obtain the optimal computation energy as

E∗
m =

κ

T 2
{
Wρ∑
w=1

[F cW (w)]1/3}3. (36)

APPENDIX B
PROOF OF PROPOSITION 4.2

It is equivalent to show that, as Wρ → ∞, θ =∑Wρ

w=1 [F
c
W (w)]1/3 converges to a fixed value.

For an exponentially-tailed distribution, we have F cW (w) ∼
μe−νw as w → ∞ for some constant μ > 0 and ν > 0.
Formally, for ∀ε > 0, there exits a W , such that for w > W ,
|F cW (w) − μe−νw| < ε. Using this fact, we can rewrite the
energy factor θ as for w ≥W .

θ =

W∑
w=1

[F cW (w)]1/3 +

Wρ∑
w=W+1

μ
1
3 e−

ν
3w. (37)

The first term is a constant. As Wρ → ∞, the second term

Wρ∑
w=W+1

μ
1
3 e−

ν
3w =

μ
1
3 e−

ν
3 [W+1][1− (e−

ν
3 )Wρ−W ]

1− e−
ν
3

(38)

will converge to a constant. Therefore, the minimum energy
consumption converges to a finite value.

APPENDIX C
PROOF OF PROPOSITION 4.4

In this section, we show the relationship of optimal energy
E∗
m and data size L.
In Eq. (36), F cW (w) = F cX(wL ). Assuming Wρ = LTρ, we

have
Wρ∑
w=1

[F cW (w)]1/3 =

Tρ−1∑
t=0

(

L∑
i=1

[F cW (Lt+ i)]1/3)

=

Tρ−1∑
t=0

(

L∑
i=1

[F cX(t+
i

L
)]1/3).

According to the mean value theorem, there exists an η ( 1
L <

η < 1), such that

Tρ−1∑
t=0

(
L∑
i=1

[F cX(t+
i

L
)]1/3) =

Tρ−1∑
t=0

(L[F cX(t+ η)]1/3)

= L

Tρ−1∑
t=0

([F cX(t+ η)]1/3).

Hence,
Wρ∑
w=1

[F cW (w)]1/3 = L

Tρ−1∑
t=0

([F cX(t+ η)]1/3).

For the Gamma distribution, the complementary cumulative
distribution function(CCDF) is

∑α−1
i=0

(βx)i

i! e−βx.
For this exponentially-tailed distribution, we have F cX(t +

η) ∼ μe−ν(t+η) as t → ∞ for some constant μ > 0 and
ν > 0. Formally, for ∀ε > 0, there exits a TN , such that for
t > TN , we have |F cX(t + η) − μe−ν(t+η)| < ε. Using this
fact, we get

Tρ−1∑
t=0

([F cX(t+ η)]1/3) =

TN∑
t=0

([F cX(t+ η)]1/3) (39)

+

Tρ−1∑
t=TN+1

μ
1
3 e−

ν
3 (t+η).

The first term is a constant. As Tρ → ∞, the second term

Tρ−1∑
t=TN+1

μ
1
3 e−

ν
3 (t+η) =

μ
1
3 e−

ν
3 [TN+1+η][1− (e−

ν
3 )Tρ−TN−1]

1− e−
ν
3

(40)
will converge to a constant. Thus,

∑Tρ−1
t=0 ([F cX(t + η)]1/3)

converges to a constant and would not scale to ∞. Hence,

Wρ∑
w=1

[F cW (w)]1/3 ∼ L. (41)

Combining the Eq.(36) and Eq.(41), we have E∗
m ∼ L3.
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APPENDIX D
PROOF OF THEOREM 5.1

In this section, we provide the proof of Theorem 5.1.
Using the dynamic programming (DP) approach, the opti-

mization problem in Eq. (19) can be rewritten as

Jt(lt, gt) =

⎧⎨
⎩

min
0≤st≤lt

(
λ

snt
gt

+ E(Jt−1(lt − st, gt−1))
)
, t ≥ 2

λ
ln1
g1
, t = 1.

Here, lt denotes the number of remaining (un-transmitted) bits
at t, with lt−1 = lt − st.

We use the induction approach. We first consider the case
that at t = T + 1, the channel is in the good state. At t = 1,
all the remaining l1 bits have to be transmitted to meet the
deadline constraint. Given the channel state at t = 2 is in the
good state, the expected minimum energy is given by

J̄1(l1, g1;G) = E

[
λ
ln1
g1

]
(42)

= λln1

(
pGG

[
1

gG

]
+ pGB

[
1

gB

])
.

Now suppose Eq. (21) is true for t − 1, the DP problem
stated in Eq. (42) becomes

Jt(lt, gt;G) = min
0≤st≤lt

(
λ
snt
gt

+ λ(lt − st)
nζt−1;G

)
. (43)

The optimal st, denoted as s∗t , can be solved as:

s∗t (lt, gt;G) =
ltg

1
n−1

t

g
1

n−1

t +
(

1
ζt−1;G

) 1
n−1

. (44)

Substituting (44) to (43), we have:

Jt(lt, gt;G) = λlnt

⎡
⎢⎣
⎛
⎝ 1

(gt)
1

n−1 + ( 1
ζt−1;G

)
1

n−1

⎞
⎠
n−1
⎤
⎥⎦ . (45)

By taking expectation of Jt(lt, gt) with respect to gt, we have:

ζt;G = E

⎡
⎢⎣
⎛
⎝ 1

(gt)
1

n−1 + ( 1
ζt−1;G

)
1

n−1

⎞
⎠
n−1
⎤
⎥⎦ (46)

= pGG

⎡
⎢⎣
⎛
⎝ 1

(gG)
1

n−1 + ( 1
ζt−1;G

)
1

n−1

⎞
⎠
n−1
⎤
⎥⎦

+ pGB

⎡
⎢⎣
⎛
⎝ 1

(gB)
1

n−1 + ( 1
ζt−1;G

)
1

n−1

⎞
⎠
n−1
⎤
⎥⎦ .

Therefore, the result of ζt;G in Eq. (21) follows by induction
and we obtain Eq. (24) for E∗

c (L, T ;G). The proof for ζt;B in
Eq. (23) and E∗

c (L, T ;B) in Eq. (25) follow the exact same
rationale, thus is omitted here for brevity.

At steady state, the probability that a channel is in good or
bad state is TG

TG+TB
and TB

TG+TB
, respectively, thus we have

the minimum expected transmission energy E∗
c in Eq. (26).

APPENDIX E
PROOF OF PROPOSITION 5.3

In this section, we present the relationship of optimal
transmission energy and delay deadline. Since,

ζt;G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pGG

⎡
⎣
⎛
⎝ 1

(gG)
1

n−1 +( 1
ζt−1;G

)
1

n−1

⎞
⎠

n−1⎤
⎦

+pGB

⎡
⎣
⎛
⎝ 1

(gB)
1

n−1 +( 1
ζt−1;G

)
1

n−1

⎞
⎠

n−1⎤
⎦ , t ≥ 2;

pGG

[
1
gG

]
+ pGB

[
1
gB

]
, t = 1.

(47)

and gG > gB , we have ζt;G < ζt;gB and ζt;G > ζt;gG , in
which

ζt;gB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pGG

⎡
⎣
⎛
⎝ 1

(gB)
1

n−1 +( 1
ζt−1;gB

)
1

n−1

⎞
⎠

n−1⎤
⎦

+pGB

⎡
⎣
⎛
⎝ 1

(gB)
1

n−1 +( 1
ζt−1;gB

)
1

n−1

⎞
⎠

n−1⎤
⎦ , t ≥ 2;

pGG

[
1

gB

]
+ pGB

[
1

gB

]
, t = 1.

(48)

and

ζt;gG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pGG

⎡
⎣
⎛
⎝ 1

(gG)
1

n−1 +( 1
ζt−1;gG

)
1

n−1

⎞
⎠

n−1⎤
⎦

+pGB

⎡
⎣
⎛
⎝ 1

(gG)
1

n−1 +( 1
ζt−1;gG

)
1

n−1

⎞
⎠

n−1⎤
⎦ , t ≥ 2;

pGG

[
1
gG

]
+ pGB

[
1
gG

]
, t = 1.

(49)

Also, since PGB + PGG = 1, we can obtain

ζt;gB =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣( 1

(gB)
1

n−1 +( 1
ζt−1;gB

)
1

n−1

)n−1
⎤
⎦ , t ≥ 2;

1
gB
, t = 1.

(50)

For t = T , we have

[
1

ζT ;gB

] 1
n−1

=

[
1

ζT−1;gB

] 1
n−1

+ (gB)
1

n−1 . (51)

Hence,

[
1

ζT ;gB

] 1
n−1

=

[
1

ζ1;gB

] 1
n−1

+ (T − 1)(gB)
1

n−1 (52)

= (gB)
−(n−1)T.

That is, ζT ;gB =
[

1
gB

]
T−(n−1). Similarly, we have ζT ;gG =[

1
gG

]
T−(n−1). In that case, we have ζT ;G ∼ T−(n−1).

Similarly, we have ζT ;B ∼ T−(n−1).
Considering the equations of (24), (25) and (26), we have

E∗
c (L, T ) ∼ T−(n−1).
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