
he tussle between resource-hungry applications and
resource-poor smartphones is driving the evolution of
mobile application platforms. Recently, there has
been an explosion of mobile applications on smart-

phones. Many of these applications are computation-intensive,
such as video streaming, data mining, and online gaming.
However, these emerging applications are impeded by resource
constraints on smartphones. First, smartphones are equipped
with a limited battery system that has become one of the
biggest complaints by users [1]. Second, smartphones still lag
behind their desktop counterparts in terms of computing
power and memory capacity. In addition, network connectivity
is sporadic because of fading effects in the wireless channel.

Application offloading was proposed as an effective
scheme to address this tussle [2]. With the advent of cloud
computing [3, 4], two approaches have been investigated for
application offloading. The first approach is to offload an
application to an infrastructure cloud for execution. In this
case, each smartphone is associated with a system-level clone
or a delegated surrogate on the cloud, such as Cloudlet [5],
Clone Cloud [6], and Weblet [7], which executes applications
on behalf of the smartphone. However, network connectivity
is not always available. In addition, with the increasing
requests for application offloading to the cloud, communica-
tion at base stations or access points could become the bot-
tleneck. The second approach is to offload the application to
a group of proximal smartphones [8]. These smartphones,
connected to each other by a wireless radio, cooperatively

execute the application and can be viewed as a virtual cloud
computing environment. However, this ad hoc virtual cloud
cannot entertain computation-intensive mobile applications
due to limited aggregated onboard battery systems and com-
puting resources on smartphones. Therefore, neither of
these two approaches can achieve high scalability of smart-
phones.

In this article, we propose a unified elastic computing plat-
form by combining the ad hoc virtual cloud and infrastructure-
based cloud for higher scalability. The infrastructure-based
cloud is empowered by execution engines and cloud clones.
The ad hoc virtual cloud is formed by the cooperation of
smartphones within the same coverage range. With the com-
bined fabric of the infrastructure-based cloud and the ad hoc
virtual cloud in our elastic computing platform, application
offloading can be conducted more efficiently.

Under the elastic computing platform, we first present the
decision-making policy of application offloading (i.e., offload-
ing policy). The offloading policy determines each task of the
application to be executed on the standalone smartphone or
offloaded to the cloud for execution. We build a directed
acyclic graph model to represent the task execution of mobile
application and define an optimization framework for the
offloading policy. In particular, we investigate four special
cases (i.e., a node, a linear chain, a tree, and a mesh in the
graph) and obtain the offloading policy for each case. We also
investigate two implementation strategies for an offloading
mechanism, system-level and method-level offloading. In addi-

T

34 IEEE Network • September/October 2013

Abstract
Application offloading has been a popular approach to alleviate a tussle between
resource-constrained smartphones and resource-hungry mobile applications. In this
article, for leveraging cloud computing, we propose a unified elastic computing
platform that supports application offloading for mobile devices, reducing energy
consumption on smartphones. The proposed computing fabric consists of an infra -
structure-based cloud and an ad hoc virtual cloud formed by a cluster of smart-
phones. We present both an offloading policy and a mechanism under which
applications are delegated to the cloud for execution. For the former, we establish
a unified optimization framework to decide where each task of the application
should be executed — on the standalone smartphone, in the ad hoc virtual cloud,
or in the infrastructure-based cloud. For the latter, we provide implementation
strategies for application offloading. The proposed elastic computing platform can
enhance the scalability of smartphones, fueling a new wave of innovative mobile
applications, for example, anti-virus and gaming on smartphones.

Toward a Unified Elastic Computing
Platform for Smartphones with

Cloud Support
Weiwen Zhang and Yonggang Wen, Nanyang Technological University

Jun Wu, Tongji University
Hui Li, Sichuan University

T

0890-8044/13/$25.00 © 2013 IEEE

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 34

tion, we study opportunities (i.e.,
task delegation, cloud clone peer-
to-peer [P2P] network, data back-
up, and data staging) and
challenges (i.e., performance, secu-
rity and energy issues) in this plat-
form.

The unified elastic computing
platform can enhance the scalability
of smartphones, fueling a new wave
of innovative mobile applications
(e.g., anti-virus and mobile cloud
gaming).

The rest of the article is orga-
nized as follows. We present an
overview of the unified elastic com-
puting platform. We propose the
offloading policy in this computing
platform. We present implementa-
tion strategies for the offloading
mechanism. We discuss opportuni-
ties and challenges of the comput-
ing platform. We highlight two
mobile applications that can benefit
from the computing platform.
Finally, we summarize the article
and suggest future work .

An Overview of the Unified Elastic
Computing Platform
This section presents an overview of the unified elastic com-
puting platform. We first propose a generic architecture of
the platform and then present execution strategies of mobile
applications under the platform.

Generic Architecture of the Elastic Computing Platform
Figure 1 illustrates a generic architecture of the elastic com-
puting platform, which consists of an ad hoc virtual cloud and
an infrastructure-based cloud.

The infrastructure-based cloud is empowered by cloud clones
and remote execution engines, which extends the computing
power and reduces the energy consumption of smartphones. In
the infrastructure-based cloud, there is an identical image of
the system for each smartphone, which is referred to as the
cloud clone. The cloud clone executes mobile applications on
behalf of the smartphone, thus reducing application delay and
energy consumption on the smartphone. The cloud clones are
logically connected, forming a cloud clone P2P network. There
are also execution engines and data storage in the back-end
that open up more opportunities for application offloading.

The ad hoc virtual cloud is formed by a cluster of smart-
phones nearby that work cooperatively to accomplish applica-
tion offloading. A smartphone communicates with its
neighbors directly by a local wireless network interface (e.g.,
Bluetooth). As the smartphone moves from one environment
to another, it will join a new cluster of smartphones and can
still benefit from application offloading seamlessly. As a
result, the ad hoc virtual cloud copes with the issue of spo-
radic wireless network connectivity between the smartphone
and the infrastructure-based cloud.

In this elastic computing platform, the infrastructure-based
cloud and the ad hoc virtual cloud complement each other to
address the issues of limited battery power on the smartphone
and sporadic network connectivity. Hence, the elastic comput-
ing platform enhances the scalability of smartphones.

Execution Strategies under Elastic Computing Platform
In this platform, computing resources, including any cloud
clone and smartphone, are elastically allocated to the execu-
tion of mobile applications. The application execution can be
made among three execution strategies, including:
• Standalone execution by the individual smartphone
• Cooperative execution by the cluster of smartphones
• Cloud execution by cloud clone or execution engine

The standalone execution requires the computation of the
application to be completed on the individual smartphone.
The cooperative execution and the cloud execution consume
computing resources in the cloud by application offloading via
a wireless network.

The Offloading Policy for the Unified Elastic
Computing Platform
In this section, we propose an optimization framework for the
offloading policy in the unified elastic computing platform.
The offloading policy is to determine which execution strategy
(i.e., standalone execution, cooperative execution, or cloud
execution) should be chosen for each task of the application.
We first present an optimization framework, and then investi-
gate four special cases (i.e., a node, a linear topology, a tree,
and a mesh) of offloading policy.

The Optimization Framework of the Offloading Policy
We construct a general directed acyclic graph model to repre-
sent the task flow in the application, referred to as the task-
flow graph. In the graph, a node represents a task, and a link
connecting two nodes represents data dependence between
the corresponding tasks. Data dependence indicates that a
task cannot be executed until it receives some required data
from its precedent tasks. In addition, each link is labeled with
the cost between the adjacent nodes (e.g., energy consump-
tion on the smartphone), which depends on the application
profile and network conditions. The total cost for the applica-
tion execution is the summation over the cost of each link.

IEEE Network • September/October 2013 35

Figure 1. Generic architecture of the elastic computing platform is composed of an infrastruc-
ture cloud and an ad hoc virtual cloud.

OS

©VMware

Smartphone
Ad hoc virtual

cloud

Communication between cloud clones

Application offloading to the cloud

Cooperation between mobile phones

Task delegation

Data access

Execution
engine

Data
storage

Infrastructure
cloud

©VMware

APP

OS

APP

OS

APP

OS

APP

OS

APP

OS

APP

OS

APP OS

APP

©VMware, In
c.©VMware, In

c.

©VMware, In
c.

©VMware, In
c.

©VMware, In
c.©VMware, In

c.

©VMware, In
c.

©VMware, In
c.

Cloud
phone

�VMware, In
c.

©

VMware, In

c. © VMware, In

c.

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 35

We propose an optimization framework as follows. The
objective is to minimize the total cost (e.g., energy consump-
tion on the smartphone) while respecting execution con-
straints for all the tasks (e.g., application delay). We aim to
derive optimal or near-optimal algorithms to allocate tasks
into computing resources (i.e., standalone smartphone, a clus-
ter of smartphones, and cloud clone). However, due to its
combinatorial nature, the optimization problem is NP-com-
plete. To obtain useful results and insights, we focus on a few
particular cases that are computationally tractable, as shown
in Fig. 2, including:
• Only one active node, representing the whole application
• A linear chain topology, representing a sequential list of

tasks
• A tree structure, representing a tree-based hierarchy of

tasks
• A regular mesh structure, representing a lattice-based topol-

ogy of tasks
In the following subsections, we provide solutions for these

particular cases.

Energy-Optimal Offloading Policy: One-Node Case
In this subsection, we consider the energy-optimal application
execution policy when the task-flow graph has only one active
node, as illustrated in Fig. 2a. The decision is to determine
whether the entire application should be executed on the
smartphone or the cloud, with an objective to minimize the
energy consumption on the smartphone while meeting the
application’s completion deadline.1

We can obtain the optimal energy for both the standalone
and cloud executions as presented in [9]. Consider an applica-
tion profile (T, L), where the application with L bits of input
data should be completed before time delay T. For standalone
execution, the computation workload is completed on the
smartphone by varying CPU frequency for each workload. For
cloud execution, input data is transmitted to the cloud by
adapting the transmission rate in response to network condi-
tions. The minimum energy consumption of the smartphone
by standalone execution and cloud execution are Em* = ML3/T2

and Ec* = C(n) Ln/Tn–1, respectively. Herein, M is a constant
depending on the chip architecture of the smartphone, and
C(n) is a function of monomial order n depending on the
energy model of data transmission over the wireless channel.
Comparing Em* with Ec*, we can determine which execution is
more energy-efficient.

Figure 3 shows the results of optimal application execution
for the one-node case. First, for n < 3 and n > 3, optimal
application execution regions of the standalone and cloud exe-
cutions are separated by a line. Geometrically, the slope of
the line can be interpreted as a threshold,

which is a constant. We define an effective data consump-
tion rate as the ratio of input data size and delay deadline;
that is, Re = L/T for the determination of the optimal exe-
cution. For example, for n = 4 in Fig. 3c, if the point (T,
L) is below the line, cloud execution is optimal; otherwise,
standalone execution is optimal. Second, for the case of n =
3, the energy consumption of standalone and cloud execu-
tions have the same order of L and T; thus, the decision
depends on the comparison between M and C(n). In the set-
ting of this case, M < C(n); hence, standalone execution is
the optimal execution.

Energy-Efficient Offloading Policy: The Linear Chain
Case
In this subsection, we investigate offloading policy for the task
flow of a linear chain as illustrated in Fig. 2b.

We first construct a directed acyclic graph to model task
execution in a linear chain in Fig. 4b. Two dummy nodes, S
and D, are introduced for application initiation and termina-
tion. Node k indicates that task k has been completed on the
smartphone, while node k represents that task k has been
completed by the cloud clone, where k = 1, 2, …, n, and n is
the total number of tasks in the application. A link between
the adjacent nodes represents data dependence between the
tasks. In this case, data dependence requires that task k can
only be started after the completion of task k – 1, since the
output data of task k – 1 is input data of task k. Also, each
link is associated with a nonnegative cost to complete the cor-
responding task (e.g., energy consumption on the smartphone
or completion time). In addition, if task k accesses local
resources (e.g., GPS and sensors), it should be executed on
the smartphone, and hence the cost of the link connecting
with node k is infinite.

Based on the graph in Fig. 4, we then formulate the offload-
ing policy as a constrained shortest path problem as presented
in [10]. The objective is to find the shortest path in terms of
energy consumption between S and D in the graph, subject to
the constraint that total completion time of that path should
be less than or equal to time deadline Td. A path p is feasible
if total completion time satisfies the delay constraint. A feasi-
ble path p* with minimum energy consumption is the optimal
solution among all the feasible paths. Mathematically, we
have

where P is the set of all possible paths, and eu,v and du,v are
energy consumption and completion time between any adja-

R
M

C n()
,th

n

1

3
=

⎡

⎣
⎢

⎤

⎦
⎥

−

E E

E E

P
e p e

s t d p d T

min [()]

. . [()] ,

p
u v

u v p

u v
u v p

d

,
(,)

,
(,)

∑

∑

=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤

∈ ∈

∈

IEEE Network • September/October 201336

Figure 2. Examples of task-flow graphs in different topologies: a)
only one active node; b) linear chain topology; c) tree structure;
d) regular mesh structure.

54

4

5

32

2 2 4

3 3

(c) (d)

11

1 1 5

(b)(a)

1 For ease of presentation, we focus on the analysis of cloud execution; the
same rationale can be applied for cooperative execution.

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 36

cent nodes u and v on the path p, respectively. Note that the
expectation is taken over the channel state due to fading
effects in wireless networks. This constrained optimization
problem, however, is NP-complete.

To solve this optimization problem efficiently, we adapt
a canonical algorithm, Lagrangian Relaxation Based
Aggregated Cost (LARAC). We define the aggregated cost
function, L(l) = E [e(p)+ld(p)] – lTd, where l i s a
Lagrange multiplier. By the Lagrange duality principle, we
have L(l) £ E [e(p*)], which gives a lower bound for the
optimal solution of offloading policy. More details of the
algorithm can be found in [10], and are here omitted due
to page limits.

Figure 5 illustrates an example of offloading policy for the
linear chain topology under a stochastic channel model where
data transmission rate is independent and identically distribut-
ed. We observe that the decision depends on the ratio between
data size and workload. For example, for task 1, its input data
size is large while workload is small; hence, it is executed on
the smartphone. For task 3, its input data size is small and
workload is large; hence, it is efficient to offload task 3 to the
cloud clone for execution.

Offloading Policy by Parallel Execution: The Tree and
Mesh Cases
In this subsection, we study offloading policy by parallel exe-
cution for the task-flow graphs of tree and mesh. We observe
that loose data dependence of tree and mesh and multiple
wireless interfaces on the smartphone provide us opportuni-
ties to offload tasks more efficiently.

First, tree and mesh structures have looser data depen-
dence on tasks than linear chain topology. Hence, tasks with-
out data dependence can be executed in parallel. For example,
in Fig. 2c, tasks 2 and 3, at the same level of the tree, can be
simultaneously executed by the cloud clone in the infrastruc-
ture-based cloud or the cluster of smartphones in the ad hoc
virtual cloud.

Second, using multiple wireless interfaces on the smart-
phone can accelerate data transmission before parallel execu-
tion of tasks on the cloud. Input and output data of tasks can
be concurrently transmitted via multiple wireless network
interfaces (e.g., Bluetooth and 3G) to reduce data transmis-
sion time. For example, in Fig. 2d, output data of task 1 can
be transmitted to the cloud clone and smartphones nearby
simultaneously by 3G and Bluetooth before the execution of
tasks 2 and 3, respectively.

Based on these two opportunities, the offloading policy for
tree and mesh task-flow graphs is to jointly allocate comput-
ing resources for the execution of all the tasks and choose
wireless network interfaces for data transmission. As an
example, we consider the mesh structure in Fig. 2d, aiming to
minimize application completion time. It is equivalent to
minimize the absolute value of difference between comple-
tion time of the upper and lower paths between tasks 1 and 5
in the graph.

The Offloading Mechanism of the Unified
Elastic Computing Platform
There are two alternative implementation strategies of
offloading mechanism: the method-level offloading approach
(e.g., MAUI [11]) and system-level offloading approach (e.g.,
Cloudlet [5] and CloneCloud [6]). In this section, we discuss
the offloading mechanism of the infrastructure-based cloud
and ad hoc virtual cloud, respectively.

IEEE Network • September/October 2013 37

Figure 3. Optimal application execution for the one node case.
For n = 2 and n = 4, optimal application execution regions of
the standalone execution and cloud execution are separated by
a line. The slope of the line is Eq. 1, where M is a constant
depending on the chip architecture of the smartphone, and
C(n) is a function of monomial order n depending on the ener-
gy model of data transmission over a wireless channel. For n =
3, the decision of optimal execution depends on the compari-
son between M and C(n).

Delay deadline, T (ms)

(a)

500

200

0

D
at

a
si

ze
, L

 (
bi

ts
)

400

600

800

1000

100 150

Standalone execution

Cloud
execution

200 250

Delay deadline, T (ms)

(b)

500

200

0

D
at

a
si

ze
, L

 (
bi

ts
)

400

600

800

1000

100 150

Standalone execution

200 250

Delay deadline, T (ms)

(c)

500

200

0

D
at

a
si

ze
, L

 (
bi

ts
)

400

600

800

1000

100 150

Standalone execution

Cloud execution

200 250

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 37

The Offloading Mechanism of the Infrastructure-Based
Cloud

The method-level offloading approach can be applied to
implement application offloading in the infrastructure-based
cloud, due to its high execution efficiency. In the method-level
offloading approach, an application is partitioned, and a part
of code is executed by remote procedure call (RPC). This
approach provides a set of low-level programming interfaces
for remote execution, which achieves high execution efficien-
cy. However, it requires programmers to decide which method
or module should be offloaded. For this implementation, we
can adopt an architecture similar to OpenMobster, which is
an open source mobile cloud platform.

We can also choose the system-level offloading approach to
implement application offloading in the infrastructure-based
cloud due to its easy programmability. In this approach, an
image of a smartphone is cloned in the cloud through virtual
machine technology (e.g., Xen). With a system identical to
that of the smartphone, the clone provides a set of high-level
programming interfaces, which is easy to program. However,
completely cloning the system of the smartphone can increase

the complexity of security control in the infras-
tructure-based cloud. An alternative solution is to
set up a set of weblets [7] elastically via software-
oriented architecture (SOA) to execute the appli-
cation. For this implementation, we can adopt an
architecture based on weblets.

Offloading Mechanism of the Ad Hoc
Virtual Cloud
In the ad hoc virtual cloud, the method-level
offloading approach can be adopted to implement
application offloading. As storage of smartphones
is limited, the system-level offloading approach

via VM clone is impractical in the ad hoc virtual cloud. As a
result, we choose the method-level offloading approach via
RPC for the mechanism.

Opportunities and Challenges of Unified
Elastic Computing Platform
In this section, we discuss opportunities and challenges of the
unified elastic computing platform.

Opportunities
The proposed elastic computing platform provides opportuni-
ties to enhance the capability of smartphones, which include
task delegation, and cloud clone P2P network, data backup,
and data staging. These are the advantages of our proposed
platform compared to previous work.

Task Delegation — The execution of computation-intensive
tasks can be delegated to remote execution engines in the
cloud infrastructure, which is referred to as task delega-
tion. Some applications (e.g., media transcoding) can con-
sume more computing resources than the cloud clone can
afford. In this case, we can leverage back-end execution
engines with sufficient computing resources to execute
these tasks.

Cloud Clone P2P Network — A cloud clone P2P network is
formed by a set of cloud clones in the infrastructure-based
cloud, which can mitigate sporadic network connectivity
among smartphones. Cloud clones are logically connected
with more stable connectivity and higher bandwidth than their
associated smartphones. Communication among smartphones
can be performed via cloud clones. In this way, there are new
opportunities for energy-efficient collaborative mobile appli-
cations among smartphones.

Data Backup — If the smartphone is lost accidentally, the data
can be recovered in another secure smartphone by data back-
up from the cloud clone, which is similar to iCloud.

Data Staging — The cloud clone in the infrastructure-based
cloud can serve as a proxy for data staging, which can reduce
the latency for the smartphone to fetch data. For example, an
original high-definition video, stored in the infrastructure, can
be transformed into HTTP streaming format with diverse
playback rates in any cloud clone [12]. When a mobile user
requests video, the cloud clone replies with a required stream-
ing rate.

Challenges
There are also challenges in the elastic computing platform,
including performance, security, and energy issue.

IEEE Network • September/October 201338

Figure 5. Offloading policy under the IID channel model for lin-
ear chain topology. There are 10 tasks. The horizontal axis
denotes the tasks to be executed, the left vertical axis represents
task context, including normalized workload (M cycles) and
input/output data size (kb), and the right vertical axis represents
the optimal task execution location (0 for smartphone and 1 for
cloud clone). For a particular task, the darker bar represents
the workload of the task, while its left and right lighter bars rep-
resent the input and output data sizes of the task, respectively.
The line represents the execution decision. The expected data
transmission rate over the wireless channel is 10 kb/s. The
application time deadline is 0.7s.

1

10

0

Ta
sk

 c
on

te
xt

D
ec

is
io

n

20

30

40

50 0

1

2 3 4 5 6 7 8 9 10

Data
Workload

Figure 4. A graph of task execution flow for linear chain topology. Node k rep-
resents that task k has been completed on the mobile device, while node k
represents that task k has been completed on the cloud.

......

D

Cloud clone

Smartphone

nn-121

nn-112s

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 38

Performance — We refer to performance as the service
response time of application offloading for mobile users. To
guarantee performance, we need a topology design of cloud
clones in the infrastructure-based cloud. In [13], there are
peer-based, proxy-based, and clone-based models for the
topology design. A suitable topology of cloud clones should be
chosen to achieve high performance for different types of
mobile applications.

Security — Security issues should be addressed in our proposed
elastic computing platform. First, cloud clones should be trust-
ed. The smartphone should identify a trusted cloud clone by
itself (i.e., trust establishment [5]) or check the identity of the
cloud clone based on trust measurements conducted by a third
party (i.e., reputation-based trust [5]). Second, cloud services
(i.e., computation and storage) provided by the cloud infras-
tructure should be trusted. We need to ensure that there are
no other hidden programs running behind the service. In addi-
tion, security mechanisms should be light-weight without incur-
ring much energy consumption on smartphones.

Energy — Although we have mitigated the battery insufficien-
cy of an individual smartphone by application offloading,
energy consumption of the cloud side has not yet been
accounted for, especially for ad hoc virtual clouds. Note that
the battery systems of smartphones in an ad hoc virtual cloud
is also limited. Therefore, we need a strategy to choose smart-
phones and distribute workload based on their computing
capability and residual battery volume for application offload-
ing in order to prolong the lifetime of all the smartphones.

Applications
In this section, we discuss two mobile applications that can
benefit from offloading in our proposed elastic computing
platform: antivirus and mobile cloud gaming.

Mobile Antivirus Application
In our elastic computing platform, we can exploit the cloud
clone to scan for viruses and malicious content, as shown in
Fig. 6. Initially, a smartphone sends input files to the cloud
clone for scanning. Then the detection engine in the cloud
clone scans the content of the input files against a virus
database maintained by the infrastructure cloud. Finally, a
threat report is sent back to the smartphone.

We can apply the threshold policy to decide whether virus
scanning should be executed on the smartphone or on the
cloud. The policy depends on the size of files to be scanned,
completion time for scanning, and current network channel

status. We can evaluate the value of the effective
data consumption rate to obtain the energy-opti-
mal execution policy.

Mobile Cloud Gaming
Our proposed elastic computing platform can serve
as a mobile cloud gaming system [14], which is a
promising paradigm to eliminate the resource con-
straint on the smartphone for mobile games. First,
a cloud clone is delegated to complete the compu-
tation-intensive tasks (e.g., 3D graphics rendering),
while the smartphone as a thin client receives
results displayed on its screen. Second, a cloud
clone P2P network can enhance the performance of
multi-user mobile games on smartphones. Cloud
clones in the P2P network can communicate with
each other to obtain the information from mobile
users and complete the computation in the game.

We envision that the offloading policy can be applied in
mobile cloud gaming. It is quite common for a complex
mobile gaming application to be decomposed into multiple
tasks in a linear chain, tree, or mesh topology. The offloading
policy will optimize the execution of real-time interactive
mobile games.

Conclusion
We combine the ad hoc virtual cloud and infrastructure-based
cloud as the fabric of the unified elastic computing platform
to enhance the scalability of smartphones. Under this plat-
form, we present an offloading policy by a unified optimiza-
tion framework and an offloading mechanism to implement
application offloading. We also discuss two applications (anti-
virus and mobile cloud gaming) that can benefit from the
elastic computing platform. In the future, we will consider
more generic graphs for general offloading policy and build
real mobile applications.

References
[1] M. Satyanarayanan, “Fundamental Challenges in Mobile Computing,”

Proc. ACM Symp. Principles of Distrib. Computing, 1996, pp. 1–7.
[2] R. Balan et al., “The Case for Cyber Foraging,” Proc. 10th ACM Special

Interest Group on Op. Sys. European Wksp., 2002, pp. 87–92.
[3] K. Kumar and Y. H. Lu, “Cloud Computing for Mobile Users: Can Offload-

ing Computation Save Energy?,” IEEE Computer, vol. 43, no. 4, 2010,
pp. 51–56.

[4] M. Chen et al., “Enabling Technologies for Future Data Center Network-
ing: A Primer,” IEEE Network, 2013.

[5] M. Satyanarayanan, R. C. P. Bahl, and N. Davies, “The Case for VM-
Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing, vol. 8,
no. 4, 2009, pp. 14-23.

[6] B. G. Chun et al., “Clonecloud: Elastic Execution Between Mobile Device
and Cloud,” Proc. 6th Euro. Conf. Computer Sys., 2011, pp. 301–14.

[7] X. W. Zhang et al., “Towards an Elastic Application Model for Augment-
ing the Computing Capabilities of Mobile Devices with Cloud Comput-
ing,” Mobile Networks and Applications, vol. 16, no. 3, 2011, pp.
270–84.

[8] G. Huerta-Canepa and D. Lee, “A Virtual Cloud Computing Provider for
Mobile Devices,” Proc. 1st ACM Wksp. Mobile Cloud Computing and Ser-
vices: Social Networks and Beyond, 2010.

[9] Y. Wen et al., “Energy-Optimal Execution Policy for a Cloud-Assisted
Mobile Application Platform,” tech. rep., 2011.

[10] W. Zhang, Y. Wen, and D. Wu, “Energy-Efficient Scheduling Policy for
Collaborative Execution in Mobile Cloud Computing,” 32nd Annual IEEE
Infocom, 2013, pp. 190–94.

[11] E. Cuervo et al., “MAUI: Making Smartphones Last Longer With Code
Offload,” Int’l. Conf. Mobile Sys., Applications, and Services, 2010, pp. 49–62.

[12] W. Zhang et al., “QoE-Driven Cache Management for HTTP Adaptive Bit
Rate Streaming Over Wireless Networks,” to appear, IEEE Trans. Multime-
dia, 2013.

[13] G. Hu, W. P. Tay, and Y. Wen, “Cloud Robotics: Architecture, Chal-
lenges and Applications,” IEEE Network Special Issue on Machine and
Robotic Networking, vol. 26, no. 3, 2012, pp. 21–28.

IEEE Network • September/October 2013 39

Figure 6. Architecture of virus scanning by a cloud clone.

Input files

Threat report

Back-end
storage

Cloud clone

Mobile
device

Virus
database

Detection
engine

�VMware, Inc.

OS

APP

�VMware, In
c.

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 39

[14] W. Cai, V. C. Leung, and M. Chen, “Next Generation Mobile Cloud
Gaming,” Proc. IEEE Int’l. Symp. Mobile Cloud, Computing, and Service
Engineering, 2013.

Biographies
WEIWEN ZHANG (wzhang9@ntu.edu.sg) received his Bachelor’s degree in soft-
ware engineering and Master’s degree in computer science from South China
University of Technology (SCUT) in 2008 and 2011, respectively. He is cur-
rently a Ph.D. candidate in the School of Computer Engineering at Nanyang
Technological University (NTU) in Singapore. His research interests include
cloud computing and mobile computing.

YONGGANG WEN (ygwen@ntu.edu.sg) received his Ph.D. degree in electrical
engineering and computer science from the Massachusetts Institute of Technol-
ogy (MIT) in 2008. He is currently an assistant professor with the School of
Computer Engineering at NTU. Previously, he worked at Cisco as a senior
software engineer and system architect for content networking products. He
also worked as a research intern at Bell Laboratories and Sycamore Net-
works, and served as a technical advisor to the chairman at Linear A Net-

works, Inc. His research interests include cloud computing, mobile computing,
multimedia networks, cyber security, and green ICT.

JUN WU (wujun@tongji.edu.cn) received his B.S. degree in information engi-
neering and M.S. degree in communication and electronic system from Xidian
University in 1993 and 1996, respectively. He received his Ph.D. degree in
signal and information procesing from Beijing University of Posts and Telecom-
munications in 1999. He joined Tongji University as a professor in 2010. He
has been a principal scientist at Huawei and Broadcom before joining Tongji.
His research interests include wireless communication, information theory, and
signal processing.

HUI LI (huili0154@hotmail.com) received his M.S degree in computer science
from Simon Fraser University in 1997. He received his Ph.D. degree in com-
puter science from Sichuan University in 2008. He is currently a professor in
the College of Computer Science at Sichuan University, China. He worked at
Northern Telecom as a senior software developer. He also worked as a key
system engineer in Wisesoft. His research interests include virtual reality, multi-
media systems, computer graphics, cloud computing, and social networks.

IEEE Network • September/October 201340

ZHANG_LAYOUT_Layout 1 9/20/13 12:57 PM Page 40

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

