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Abstract—Equivalence checking techniques help establish
whether two versions of a program exhibit the same behavior.
The majority of popular techniques for formally proving/refuting
equivalence are evaluated on small and simplistic benchmarks,
omitting “difficult” programming constructs, such as non-linear
arithmetic, loops, floating-point arithmetic, and string and array
manipulation. This hinders efficient evaluation of these techniques
and the ability to establish their practical applicability in
real scenarios. This paper addresses this gap by contributing
EQBENCH – the largest and most comprehensive benchmark
for equivalence checking analysis, which contains 147 equivalent
and 125 non-equivalent cases, in both C and Java languages.
We believe EQBENCH can facilitate a more realistic evaluation
of equivalence checking techniques, assessing their individual
strength and weaknesses. EQBENCH is publicly available at:
https://osf.io/93s5b/.

Index Terms—Equivalence checking, benchmark, Java, C.

I. INTRODUCTION

Equivalence checking establishes whether two versions of
a program have identical behavior and is used in a variety of
tasks, such as verifying the correctness of software upgrades,
refactoring, and optimizations [1]. The most common form of
equivalence used in practice is functional equivalence (or input-
output equivalence), which establishes whether two terminating
versions of a program produce the same output for any identical
input [2], [3]. Several equivalence checking techniques have
been recently proposed [3], [4], [5], [6], [7], [8], [9]. These
techniques accept as input two versions of a program and either
formally prove equivalence or produce a counterexample to
show that the input programs are non-equivalent.

The techniques are typically evaluated on small and sim-
plistic benchmarks: RÊVE [10] was evaluated on 23 EQ and
9 NEQ C programs, with an average of 13.2 lines of code
in each program. ModDiff [7] was evaluated on 16 EQ and
12 NEQ C programs with an average of 7.4 lines of code
per program. CLEVER [8] used the ModDiff benchmark and
further extended it with Python programs, bringing the total
numbers to 29 EQ and 21 NEQ cases, with an average of
9.5 lines of code per program. Our earlier work, ARDIFF [9],
substantially extended these benchmarks, using 73 EQ and
69 NEQ programs with an average of 33.9 lines of code per
program. Yet, these benchmarks are written in Java and most
of them do not have a C equivalent.

The lack of a representative and common benchmark hinders
the comparison between the tools. Moreover, as existing

benchmarks are relatively small, that makes it difficult to
realistically assess the strengths and weaknesses of existing
approaches. This paper aims at addressing this gap by con-
tributing EQBENCH – the largest and most comprehensive
benchmark for equivalence checking analysis. It unifies and
extends benchmarks used in earlier works [10], [7], [8], [9],
contributing 147 equivalent and 125 non-equivalent cases,
which we capture in both C and Java, to facilitate applicability
for different equivalence checking techniques.

Moreover, a distinct feature of our benchmark is that it
includes complex language constructs, such as non-linear
arithmetic, loops, floating-point arithmetic, and string and array
manipulations, which challenge most formal methods/equiv-
alence checking techniques. We borrow programs containing
these constructs from existing literature on evaluating formal
method techniques in the presence of complex path conditions
and non-linear functions [11] and adapt them to the equivalence
checking context, as discussed in Section II. In comparison with
our earlier ARDIFF benchmark, EQBENCH includes additional
cases that handle string and array manipulations, systematically
collected meta-data on each benchmark which describes the
types of changes it contains, and both Java and C version
of each benchmark to facilitate comparison between different
language-specific tools.

II. DATASET GENERATION

We now describe the process we followed for creating
EQBENCH.

Data Selection. We started from including in our dataset
benchmarks proposed by recent work on symbolic-execution-
based equivalence checking [10], [7], [8], [9]. Besides the
ARDIFF benchmark [9], which we base EQBENCH on, the
remaining benchmarks are relatively small and contain no com-
plex constraints. As such, we introduced additional complexity
and more diverse language constructs into the dataset. To this
end, we adapted benchmarks collected by Li et al. [11] from
the literature on evaluating symbolic and concolic execution
methods in the presence of complex path conditions and non-
linear functions [12], [13]. The methods of those benchmarks
are classical numerical computation functions used in real-
world distributions. For example, stat computes the mean and
standard deviation of a list of numbers and tsafe is an aviation
safety program that predicts and resolves the loss of separation
between airplanes.
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Change Injection. As benchmarks by Li et al. [11] were not
originally designed for the equivalence checking problem, we
injected changes in the programs to create their equivalent
(EQ) and non-equivalent (NEQ) versions. Specifically, for each
program, we created one EQ and one NEQ version of each
of its methods with at least three lines of code (we cannot
effectively inject changes in shorter methods). We then created
several EQ and NEQ versions of each program: first, we created
a program version per a changed method, i.e., modifying one
method only and leaving the remaining ones unchanged. Then,
we created one EQ version where all methods are modified
to their equivalent versions and one NEQ version where all
methods are modified to their non-equivalent versions. For
example, for the tsafe benchmark that contains three methods,
we created four EQ and four NEQ versions: three EQ + three
NEQ versions for EQ or NEQ changes in one of the original
methods and one EQ + one NEQ versions for EQ or NEQ
changes in all methods together. Other combinations of EQ and
NEQ methods are also possible, as discussed in Section IV.

When creating EQ and NEQ versions of a method, we
controlled for the number, type, and location of the inserted
changes. We used a random number generator to automatically
pick the number of changes to inject in each method: between
one and three. Given the size of the methods in our benchmark
(31.4 LOC on average), we believe such a number of changes
is realistic and applicable for the main equivalence checking
usage scenario – regression verification, where equivalence of
successive, closely related versions of a program is established.

To generate NEQ methods, we randomly selected whether to
introduce each change within a loop or not. Based on that, we
randomly picked an assignment or a control statement to change
(we did not modify method calls, loop control statements, i.e.,
break and continue, etc.) Inspired by the mutation testing
techniques [14] that generate faulty programs (mutants) by
injecting simple syntactic changes, we inserted/deleted/updated
parts of the selected statements. Specifically, we represented
the selected statement as an Abstract Syntax Tree (AST) whose
nodes are program variables and operators and further randomly
picked an AST edit operation: insertion (Ins), deletion (Del),
or update (Upd) [15].

If a selected statement was an assignment, Ins added an
expression to its right-hand side, which is a set of AST nodes
with a randomly selected operator (e.g., +, −, and /) and an
operand of the corresponding type (e.g., Integer, Float, and
String). For example, the statement c=a-b could be modified
to c=a-b+10. Del removed a random set of AST nodes
from the right-hand side of the statement or removed the
statement altogether, in case it was not an initialization of
a variable. For example, the statement int c=a+b could
become int c=a or int c. Upd replaced a set of randomly-
selected operators and/or operands in the right-hand side of
the assignment statement by a set of new values. For example,
the statement c=a-b could be modified to c=a+10 where the
AST nodes - and b are replaced with + and 10, respectively.

The treatment of control statements, i.e., if and loop

TABLE I: NEQ: change types and their frequencies.
Stmt. Type Descriptions Example # Cases

A
ss

ig
nm

en
t Ins Adding a random expression to the

right-hand side of the statement
c=a-b; ⇒
c=a-b+10; 46

Del
Removing a random expression from the
right-hand side of the statement or
removing the whole statement

c=a-b; ⇒
c=a; 35

Upd Replacing a random expression in the
right-hand side of the statement

c=a-b; ⇒
c=a+10; 31

C
on

tr
ol

Ins
Adding random comparison and/or logical
operators with the corresponding operands
selected at random

if(a<b) ⇒
if(a<b || a==0) 37

Del
Removing random logical and/or
comparison operators or replacing the
condition by true

if(a<b) ⇒
if(true) 20

Upd Replacing a random set of logical and/or
comparison operators and their operands

if(a<b) ⇒
if(a<=b) 28

Total – 197

conditions, is similar, except that the changes were made to
the control condition rather than the right-hand side of an
assignment. We considered two types of control statement
operators: logical (e.g., && and ||) and comparison (e.g.,
<= and !=) [16], randomly selecting which one to modify.
Ins added random comparison and/or logical operators with
the corresponding operands selected at random to the control
condition. For example, the statement if(a<b) could become
if(a<b||a==0) by adding one logical and one comparison
operators with the corresponding operands. Del removed
random logical and/or comparison operators and, if the control
condition became empty, replaced the condition by true. For
example, the statement if(a<b&&b==0) could be modified
to if(a<b) or to if(true). Upd replaced a set of logical
and/or comparison operators and their corresponding operands
at random. For example, Upd of if(a<b) could result in the
statement if(a<=b+10).

Table I summaries these possible changes, together with an
example for each change type and the number of changes of
each type that we injected during our benchmark generation
process. Overall, we injected 197 changes to generate 83 NEQ
methods, with 112 and 85 changes to assignment and control
statements, respectively; 42% of the injected changes (83/197)
were insertions, 28% (55/197) were deletions, and 30% (59/197)
were updates. After applying the changes, we verified the effect
of the change on the return value of the method and generated
a test case exemplifying the difference between the original
and produced versions of the program containing the method.
We added these test cases to each benchmark in our dataset.

To generate EQ methods that represent realistic software evo-
lution scenarios, we applied method-level code refactoring
techniques, such as, extracting and inlining variables, replacing
magic numbers with variables, removing dead code, and
decomposing conditionals [17], [18]. We also renamed variables
and inserted dead or unreachable code [19]. Specifically,
dead code is code that is executed but has no effect, e.g.,
adding x++ followed by x--. Unreachable code is the code
that is guarded by conditions that cannot hold in practice,
e.g., if(false). Such redundant code, albeit not explicitly
added by developers, appears in real scenarios as a result of
program optimization, modification, and reuse [20]. Similar to
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TABLE II: EQ: change types and their frequencies.
Type and Description Example # Cases

Refactoring
Extracting variables to return q*p - p*0.05; ⇒

40simplify assignments base=q*p; discount=p*0.05;
return base-discount;

Inlining variables to c=a*b;
25simplify assignments return c; ⇒

return a*b;
Replacing magic numbers c=a*b*9.81; ⇒

17with variables gravity=9.81;
c=a*b*gravity;

Removing dead code c=a*b;
8return a/b; ⇒

return a/b;
Decomposing conditionals if(a>b && a<c){} ⇒

5if(inRange(a)){}
bool inRange(a){ return a>b && a<c; }

Combining conditions having if(a>b){ return a; }
2same results if(a>c){ return a; } ⇒

if(a>b || a>c){ return a; }
Replacing nested conditions if(isDead){ c=a; }

4

by a flat list of conditions else{ if(isRetired){ c=b; } }
return c; ⇒
if(isDead){ return a; }
if(isRetired){ return b; }
return c;

Redundant code
Adding dead code ⇒ c=c; 63
Adding unreachable code ⇒ if(false){ c=10; } 5
Renaming variables t=height*width; ⇒ 7area=height*width;

Total 176

NEQ cases, we randomly selected whether to introduce each
change within a loop or not and further randomly selected
between applying refactorings, renaming variables, or inserting
redundant code.

Table II shows the number of changes of each type that
were introduced in EQ methods. Out of 176 changes injected
to create the 83 EQ methods, 57% (101/176) changes were
refactorings, 36% (63/176) were insertion of dead code, 3%
(5/176) were insertion of unreachable code statements, and 4%
(7/176) were variable renaming.

To validate the equivalence of the original and the produced
EQ versions, an additional member of our research group
independently reviewed all programs created by the first author
of this paper, validating their equivalence to the original
program. When possible, we also ran an equivalence checking
technique to assert equivalence [9]. We further manually
translated each NEQ and EQ cases from Java to C and from
C to Java, as necessary.

III. DATASET CHARACTERISTICS

Dataset Statistics A summary of the benchmark is given in
Table III. The first four columns of the table show the name
of each benchmark, the number of EQ and NEQ versions it
includes, the type of non-linear operations it contains, and the
method size in lines of code (LOC) – minimum, maximum,
and mean. The fifth and sixth columns show the fraction of
complex non-linear arithmetic and loops in a program, averaged
across EQ and NEQ versions of the benchmarks. For example,
the bess benchmark contains 18 EQ and 18 NEQ versions
ranging from 4 to 96 LOC, with 41.8% of complex statements
on average.

Bench 1

Prog 1

Eq............................equivalent pair
C-Desc.json..............C Meta-data
J-Desc.json............Java Meta-data
oldV.c, newV.c ...............C file
oldV.java, newV.java......Java file

Neq.......................non-equivalent pair
C-Desc.json

J-Desc.json

oldV.c, newV.c

oldV.java, newV.java

Prog 2

...

Fig. 1: The structure of the benchmark.

Overall, considering programs from all benchmarks together,
58.8% of the programs (160 out of 272) contain at least one
loop and there are 0.89 loops per program on average. Similarly,
57.3% of the programs (156 out of 272) contain at least one
statement with complex non-linear arithmetic and there are
25.1% of statements with non-linear arithmetic per program
on average. The last column of Table III shows the fraction
of changed statements in each of the benchmarks, averaged
across all EQ and NEQ versions of a benchmark. There are
14.4% changed program statements per version, on average.

Data Representation. Our benchmarks are publicly available in
an archived repository, as a ZIP file [21]. For easier distribution,
we also stored a version of the repository in GitHub [22]. The
structure of the repository is shown in Figure 1. It is organized
in 18 directories corresponding to 18 benchmarks, where each
benchmark takes a row in Table III. Inside each benchmark
directory, we have one folder for each program. Since we have
both equivalent and non-equivalent pairs for each program, we
provide two sub-folders within each program directory, i.e.,
EQ and NEQ. Inside each of the program pair sub-directory,
there are four versions: two written in Java (oldV.java and
newV.java) and two written in C (oldV.c and newV.c).

For each program version, we also provide two files that
contain the meta-data describing the program, in JSON [23]
format. The files are named C-Desc.json and J-Desc.json and
correspond to C and Java versions of the program, respectively.
Figure 2 shows an example of the meta-data for the Java
version of sign program in the airy benchmark. The file is
structured as follows:
• benchmark name: the name of the benchmark, e.g., airy;
• program name: the name of the program, e.g., sign;
• LOC: program lines of code;
• #loops: the number of bounded or un-bounded loops;
• #non-linear arithmetic: the number statements with non-

linear arithmetic expressions;
• changes: description of each injected change (line number,

type, and operation);
• counter-example (for NEQ only): values for input param-

eters making two programs non-equivalent.
The C version of the file differs only in the LOC and change
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TABLE III: Overview of the EQBENCH dataset.

Bench. # EQ/NEQ Vers. Operations LOC % Non-Linear Exp. # Loops % Changed Stms.Min. Max. Mean

RÊVE 23/9 Polynomials 16 53 13.2 0.4 1.3 9
CLEVER 29/21 Polynomials 4 14 9.5 0 0.9 27.5

airy 6/6 logarithms, arrays 5 57 12.4 6.5 0.5 36.5
bess 18/18 Polynomials, square roots 4 96 22.8 41.8 0.5 8.5

caldat 5/5 trigonometrics, strings 22 76 39.2 25.8 1.5 10.2
dart 1/1 Polynomials 10 9.1 0 21
ell 13/13 Polynomials, trigonometrics 6 116 62.4 37.9 1.5 7.2

frenel 3/3 Object manipulation, trigonometrics 62 168 100.6 21.9 2 3.4
gam 12/12 Logarithms, factorials, strings 7 87 33.3 32.4 1.4 10.8
pow 1/1 Exponentials 22 4.9 0 4
ran 11/11 Polynomials, exponentials, arrays 7 99 39.5 37.8 2.6 5.2
sine 1/1 Bit-vector 148 7.8 0 0.2
tcas 4/4 Constant equality checks 11 54 26.8 0 0 10.4
tsafe 4/4 Trigonometrics 9 39 26.4 31.4 0 6.2

raytrace 6/6 object manipulations, strings 5 73 25.9 35.1 0.6 11.2
statcalc 1/1 Trigonometrics, strings 10 13.2 0 10

optimization 3/3 Strings, exponentials 5 19 9.6 43.5 0 29.2
ej_hash 6/6 object manipulations 5 32 9.5 0 0 28.1

New 95/95 Polynomials, logarithms, Strings, etc. 4 168 33.4 29.3 0.81 11.9
Total 147/125 – 4 168 26.5 25.1 0.89 14.4

1 "benchmark name": "airy",
2 "program name": "sign",
3 "LOC": 16,
4 "# Loops": 0,
5 "# non-linear arithmetics":0,
6 "changes": [{
7 "change line": 3,
8 "change type": "Insertion",
9 "change operation": "Arithmetic"

10 },{
11 "change line": 8,
12 "change type": "Update",
13 "change operation": "Arithmetic"
14 },{
15 "change line": 11,
16 "change type": "Insertion",
17 "change operation": "Logical"
18 }],
19 "counter-example":[{"a": 5.0},{"b": 5.0}]

Fig. 2: Meta-data of sign program in airy benchmark.

line fields as the changes applied to both versions are identical.
The change locations in the program files (.c and .java) are
also annotated by the //change comments.

IV. LIMITATIONS AND EXTENSIONS

Our main motivation for creating the EQBENCH is to provide
evaluation target for equivalence checking techniques, allowing
researchers to assess the capabilities of their tools and compare
them with each other on a standard benchmark. One limitation
of our benchmark is that it targets regression verification
case, which assumes that substantial portions of the code is
unchanged between two subsequent versions of a program. As
such, our dataset might not be applicable to other applications
of equivalence checking, such as verification of compiler
correctness [24], optimization [25], and program synthesis [26].

Because of the manual effort needed for manually construct-
ing and validating the EQ and NEQ cases, we created one
EQ and one NEQ version for each method of the programs
and a limited number of EQ and NEQ cases per program (one

per each changed methods and one for all changed methods
together – in both EQ and NEQ scenarios). As a straightforward
extension, other combinations of changed methods, with some,
but not all changed methods of both types, can easily be
created to enhance the applicability of the benchmark to intra-
procedural equivalence checking analysis. Another obvious
way of extending our dataset is to include more equivalent/non-
equivalent pairs. We invite other researchers to join our effort
of extending EQBENCH by contributing to it directly on
GitHub [22].

EQBENCH can be further extended by collecting examples
of changes from open-source repositories. Such extension will
make it possible to investigate the size and complexity of
evolutionary changes, comparing them to our manually injected
ones. The main challenges making such extension would be
(a) dissecting a project to extract a stand-alone sample that can
serve as a benchmark, (b) characterizing the change, and (c)
manually labeling it as EQ or NEQ.

Another way to extend EQBENCH is by translating the
collected cases into additional languages, e.g., Python (required
by CLEVER [8]) and Boogie [27] (required by SymDiff [4]).

V. CONCLUSION

This paper contributes EQBENCH: a dataset of 147 equivalent
and 125 non-equivalent program pairs from 18 different
software projects, which we made available in both Java and
C programming languages. To the best of our knowledge,
our dataset is the largest, the most comprehensive, and
systematically documented one. We hope it will help support
equivalence checking research, by allowing researchers to
assess the capabilities of their tools and compare them on
a common set of programs.

Acknowledgments. Part of this work was funded by Huawei
Canada and by the Ministry of Education, Singapore, under
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