
DeepStellar: Model-BasedQuantitative Analysis of Stateful
Deep Learning Systems

Xiaoning Du
Nanyang Technological University

Singapore

Xiaofei Xie∗

Nanyang Technological University
Singapore

Yi Li
Nanyang Technological University

Singapore

Lei Ma∗

Kyushu University
Japan

Yang Liu
Nanyang Technological University

Singapore
Zhejiang Sci-Tech University, China

Jianjun Zhao
Kyushu University

Japan

ABSTRACT

Deep Learning (DL) has achieved tremendous success in many

cutting-edge applications. However, the state-of-the-art DL systems

still suffer from quality issues. While some recent progress has been

made on the analysis of feed-forward DL systems, little study has

been done on the Recurrent Neural Network (RNN)-based stateful

DL systems, which are widely used in audio, natural languages and

video processing, etc. In this paper, we initiate the very first step

towards the quantitative analysis of RNN-based DL systems. We

model RNN as an abstract state transition system to characterize

its internal behaviors. Based on the abstract model, we design two

trace similarity metrics and five coverage criteria which enable the

quantitative analysis of RNNs. We further propose two algorithms

powered by the quantitative measures for adversarial sample detec-

tion and coverage-guided test generation. We evaluate DeepStellar

on four RNN-based systems covering image classification and auto-

mated speech recognition. The results demonstrate that the abstract

model is useful in capturing the internal behaviors of RNNs, and

confirm that (1) the similarity metrics could effectively capture the

differences between samples even with very small perturbations

(achieving 97% accuracy for detecting adversarial samples) and (2)

the coverage criteria are useful in revealing erroneous behaviors

(generating three times more adversarial samples than random

testing and hundreds times more than the unrolling approach).

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Software

and its engineering→ Software testing and debugging.

∗Xiaofei Xie (xfxie@ntu.edu.sg) and Lei Ma (malei@ait.kyushu-u.ac.jp) are the corre-
sponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338954

KEYWORDS

Deep learning, recurrent neural network, model-based analysis,

adversarial sample, testing

ACM Reference Format:

Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019.

DeepStellar : Model-Based Quantitative Analysis of Stateful Deep Learning

Systems. In Proceedings of the 27th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3338906.3338954

1 INTRODUCTION

Deep Learning (DL) has experienced significant progress over the

past decade in many real-world applications such as image process-

ing [12], speech recognition [20], natural language processing [43],

and autonomous driving [25]. However, the state-of-the-art DL

systems still suffer from quality, reliability and security problems,

which could lead to accidents and catastrophic events especially

when deployed on safety- and security-critical systems. We have

witnessed many quality and security issues, such as one pixel at-

tack [47], Alexa/Siri manipulation with hidden voice command [48],

and the Google/Uber self-driving car accidents [18, 51]. An early-

stage assessment of DL systems is of great importance in discover-

ing defects and improving the overall product quality.

Although analysis processes and techniques are well-established

for traditional software, existing techniques and toolchains could

not be directly applied to DL systems, due to the fundamental differ-

ences in the programming paradigms, development methodologies,

as well as the decision logic representations of the software artifacts

(e.g., architectures) [32, 41, 50]. To bridge the gap, research on test-

ing [27, 32, 41, 46, 50, 56], verification [54], and adversarial sample

detection [15, 19, 52] of Feed-forward Neural Networks (FNN), e.g.,

Convolution Neural Networks (CNN) and fully connected neural

networks, started to emerge recently.

Yet, the existing techniques are not specially designed to be ap-

plicable to RNN. Particularly, in contrast to FNN, RNN captures

the temporal behaviors by loops and memorization with internal

states to take into account the influence of previous (or future)

observations. The architecture of a simple RNN is shown in Fig. 1.

A simple RNN is a network of neuron-like nodes organized into

successive iterations. It takes as inputs both the data stream and

the internal state vector maintained. Instead of taking the input

data as a whole, RNN processes a small chunk of data as it arrives,

477

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao

Si+1SiSi-1

RNNInput Output

state vector

x0 … xi-1 xi xi+1 …

y0 … yi-1 yi yi+1 …

Input:

Output:

S0

1unroll

Figure 1: Architecture of a simple RNN.

and sequentially produces outputs in each iteration while updating

the internal states. In other words, information in an RNN not only

flows from front neural layers to the rear ones, but also from the cur-

rent iteration to the subsequent ones. The stateful nature of an RNN

contributes to its huge success in handling sequential data, such as

audios and natural languages. At present, Long Short-Term Mem-

ory (LSTM) [22] and Gated Recurrent Unit (GRU) [10] are among

the state-of-the-art and most widely used RNNs, designed with en-

hancement to overcome the “vanishing gradient problem” [21] that

exists in the training process of most DL systems, and is aggravated

by the iterative design of vanilla RNNs.

Although recent work mentions the possibility to analyze an

RNN through direct unrolling, treating it as an FNN [27, 32, 50],

such a strategy is still far from sufficient to handle inputs of varied

lengths. Different from an FNN, where each layer has a fixed role

in feature extraction, a layer in an unrolled RNN often does not

preserve the same feature latent space function (or semantics) for

different input sequences. Therefore, the same unrolling which

works well for one input may not fit for another. In addition, there

could be scalability issues when the input sequences are extremely

long.

To better characterize the internal behaviors of RNNs, we pro-

pose DeepStellar , a general-purpose quantitative analysis frame-

work for RNN-based DL systems. Considering its stateful nature,

we first model an RNN as Discrete-Time Markov Chain (DTMC)

to capture its statistical behaviors. Based on the DTMC model,

we design two trace similarity metrics to quantify the prediction

proximity of different inputs, and five coverage criteria to measure

the adequacy of test data from different perspectives. To further

demonstrate the usefulness of DeepStellar , we develop algorithms

for two applications based the quantitative analysis, namely, RNN

testing and adversarial sample detection, towards addressing highly

concerned issues at present in both academia and industry.

We implemented DeepStellar and empirically evaluated the use-

fulness of the abstract model, similarity metrics and coverage crite-

ria on four RNN-based systems from image classification to Auto-

mated Speech Recognition (ASR). Specifically, we first performed

controlled experiments to evaluate the capability of the abstract

model. The results demonstrate that, (1) the trace similarity metrics

serve as good indicators of the discriminatory power of RNNs, and

the abstract model is sensitive enough to distinguish inputs gen-

erated with very small perturbations; and (2) the coverage criteria

derived from the abstract model are able to measure test adequacy

and are effective in manifesting erroneous behaviors. Further, we

applied the metrics and criteria on two applications, i.e., adversarial

sample detection and coverage-guided testing of RNNs. The results

show that DeepStellar (1) detects 89% and 97% of the adversarial

samples, respectively, for ASR and image classification systems, and

(2) generates tests with high coverage and yields at most hundreds

of times more adversarial samples than random testing and existing

neuron coverage guided testing with unrolling [50].

The main contributions of this paper are summarized as follows:

• We propose to formalize an RNN-based stateful DL system as a

DTMC model, to characterize the internal states and dynamic

behaviors of the systems.

• Based on the DTMC abstraction, we design two similarity met-

rics and five coverage criteria for stateful DL systems, which

are among the first to quantify sample differences and test data

adequacy for RNNs.

• With DeepStellar , we design two algorithms for detecting adver-

sarial samples and conducting guided testing for RNNs based on

the metrics and criteria.

• We conduct in-depth evaluation to demonstrate the usefulness

of DeepStellar with controlled experiments as well as two typical

real-world applications.

2 OVERVIEW

Fig. 2 summarizes the workflow of our approach, including the

abstract model construction of RNN, different quantitative measures

defined over the abstract model, and two applications to detect and

generate adversarial samples of RNNs.

The abstract model construction module takes a trained RNN

as input and analyses its internal behaviors through profiling. The

inputs for profiling are from the training data, which can best reflect

the characteristics of a trained RNN model. Specifically, each input

sequence is profiled to derive a trace, i.e., a sequence of RNN state

vectors. After the profiling, we can get a set of traces which record

the states visited and transitions taken during the training stage.

In practice, the internal state space of an RNN and the number

of traces enabled by the training data are often beyond our analysis

capability. Therefore, we perform abstraction over the states and

traces to obtain an abstract model that captures the global character-

istics of the trained network. At the state level, we apply Principle

Component Analysis (PCA) [26] to reduce the dimensions of the

state vectors and keeps the first k most dominant components. For

each of the k dimensions, we further partition it intom equal in-

tervals. At the transition level, we consolidate concrete transitions

into abstract ones according to the abstract states. We also take

into account the frequencies of different transitions at each state

and effectively derive a Discrete-Time Markov Chain (DTMC) [38]

model for the trained RNN.

Based on the abstract model, we design two metrics for eval-

uating the trace similarity induced by different inputs, and five

coverage criteria to facilitate the systematic testing of RNNs. The

metrics and coverage criteria are designed from both the state-

and transition-level. Specifically, the trace similarity metrics in-

clude state-based trace similarity (SBTSim) and transition-based

trace similarity (TBTSim). The coverage criteria include the basic

state coverage (BSCov), n-step state boundary coverage (n-SBCov),
weighted state coverage (WSCov), basic transition coverage (BTCov),

and weighted transition coverage (WTCov).

We then apply the metrics and criteria on two applications, i.e.,

the adversarial sample detection and coverage-guided testing, both of

which aim to mitigate the threats from adversarial samples. With

the similarity metrics, we propose an approach to detect adversarial

478

DeepStellar : Model-BasedQuantitative Analysis of Stateful Deep Learning Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

State Trace
Statistics

Stateful
DNN

Abstraction
Model

Abstract Model Construction

States and
Transitions

Profiling

State Abstraction

Transition
Abstraction

Dimension
Reduction

Interval
Abstraction

Trace
Similarity

Quality
Measure.

Adversarial
Samples Detection

Coverage-guided
Testing

Quantitative Indicators Typical Applications

…

Similarity Metrics

Coverage Criteria

STSim TTSim

BSCov

k-SBCov
BTCov

WTCov

State Level Trans. Level

WSCov

i

Figure 2: Overview of DeepStellar and its typical applications.

x0 : y0
s0 s1

s2

s′2

s3

x1
: y1

x2 : y2

x
′
2
: y

′
2

x ′
1 : y ′

1

Figure 3: An example FST representing two traces.

samples at runtime. With the coverage criteria, we develop a testing

framework to guide test generation with the aim to improve cover-

age and uncover defects for quality assurance. The two techniques

are complementary to each other. The testing technique aims to

generate unseen adversarial samples that help developers analyze

and improve the robustness of the model. The adversarial sample

detection technique is able to identify malicious inputs and prevent

potential damages at runtime.

3 STATE TRANSITION MODELING OF RNN

3.1 RNN Internal States and State Transitions

Following [42], we represent a neural network abstractly as a dif-

ferentiable parameterized function f (·). The input to an RNN is a

sequence x ∈ XN , whereX is the input domain and N is the length

of the sequence. Let xi ∈ X be the i-th element of the sequence

x. Then, when passing x into an RNN, it maintains a state vector

s ∈ SN with s0 = 0 and (si+1,yi) = f (si ,xi), where S is the do-

main of the hidden state, si ∈ S is the hidden state of RNN at the

i-th iteration, and yi ∈ O is the corresponding output at that step.

We use sdi to denote the d-th dimension of the state vector si .
Naturally, each input sequence x induces a finite sequence of

state transitions t, which we define as a trace. The i-th element

in a trace t, denoted by ti , is the transition from si to si+1 after

accepting an input xi and producing an output yi . A Finite State

Transducer (FST) [16] can be used to represent a collection of traces

more compactly [23] as defined below.

Definition 1. An FST is a tuple (S,X,O, I , F ,δ) such that S is a

non-empty finite set of states, X is the input alphabet, O is the output

alphabet, I ⊆ S is the set of initial states, F ⊆ S is the set of final

states, and δ ⊆ S × X × O × S is the transition relation.

For example, Fig. 3 shows a simple FST representing two traces,

namely, s0s1s2s3 and s0s1s
′
2s3 with s0 being the initial state and s3

being the final state. The first trace takes an input sequence x0x1x2
and emits an output sequence y0y1y2; the second trace takes an

input sequence x0x
′
1x2 and emits an output sequence y0y

′
1y2.

3.2 Abstract State Transition Model

The number of states and traces enabled while training an RNN can

be huge. To effectively capture the behaviors triggered by a large

number of input sequences and better capture the global characteris-

tics of the trained network, we introduce an abstract state transition

model in this paper. The abstract model over-approximates the ob-

served traces induced of an RNN and has a much smaller set of

states and transitions compared with the original one. The abstrac-

tion is also configurable – one can trade-off between the size and

precision of the model so that the abstract model is still able to

maintain useful information of the input sequences for particular

analysis tasks. To obtain an abstract model for a trained RNN, we

abstract over both the states and the transitions.

State Abstraction. Each concrete state si is represented as a vector
(s1i , . . . , s

m
i), usually in high dimension (i.e.,m could be a large num-

ber). Intuitively, an abstract state represents a set of concrete states

which are close in space. To obtain such a state abstraction, we first

apply the Principle Component Analysis (PCA) [26] to perform an

orthogonal transformation on the concrete states – finding the first

k principle components (i.e., axes) which best distinguish the given

state vectors and ignore their differences on the other components.

This is effectively to project all concrete states onto the chosen

k-dimensional component basis (denoted as PCA-k).

Then, we split the new k-dimensional space into mk regular

grids [49] such that there arem equal-length intervals on each axis:

edi = [lbd + i ×
ubd − lbd

m
, lbd + (i + 1) ×

ubd − lbd
m

],

where edi represents the i-th interval on the d-th dimension, lbd and

ubd are the lower and upper bounds of all state vectors on the d-th
dimension, respectively. In this way, all concrete states si which
fall within the same grid are mapped to the same abstract state:

ŝ = {si |s
1
i ∈ e1_ ∧ · · · ∧ ski ∈ ek_ }.We denote the set of all abstract

states as Ŝ. Noticeably, the precision of the state abstraction can

easily be configured by tuning the parameters k andm.

Let j = Id (ŝ) be the index of ŝ on the d-th dimension such that

for all s ∈ ŝ , sd falls in edj (0 ≤ j < m). For any two abstract states ŝ

and ŝ ′, we define their distance as:

Dist(ŝ, ŝ ′) = Σk
d=1 |I

d (ŝ) − Id (ŝ ′)|.

This definition can also be generalized to include space beyond the

lower and upper bounds.

479

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao

ŝ0

ŝ1

ŝ3 ŝ2

t1t2

t3

(a) Example concrete traces.

ŝ0

ŝ1

ŝ2ŝ3

1

1

0.250.
25

0.25

0.25

(b) DTMC abstraction.

Figure 4: A set of concrete traces and their corresponding

abstract state transition model.

Transition Abstraction. Once the state abstraction is computed,

a concrete transition between two concrete states can be mapped

as a part of an abstract transition. An abstract transition represents

a set of concrete transitions which share the same source and desti-

nation abstract states. In other words, there is an abstract transition

between two abstract states ŝ and ŝ ′ if and only if there exists a

concrete transition between s and s ′ such that s ∈ ŝ ∧ s ′ ∈ ŝ ′. The
set of all abstract transitions is denoted as δ̂ ⊆ Ŝ × Ŝ.

For instance, Fig. 4a depicts three concrete traces, i.e., t1, t2 and

t3, where states are shown as dots and transitions are directed edges.

The grids drawn in dashed lines represent the abstract states, i.e.,

ŝ0, ŝ1, ŝ2, and ŝ3, each of which is mapped to a set of concrete states

inside the corresponding grid. The set of abstract transitions is,

therefore, {(ŝ0, ŝ1), (ŝ1, ŝ0), (ŝ1, ŝ1), (ŝ1, ŝ2), (ŝ1, ŝ3), (ŝ3, ŝ3)}.

3.3 Trace Similarity Metrics

To precisely compare two input sequences, we define the trace

similarity metrics to quantify the proximity of their induced state

transitions on the abstract model. Given an abstract modelM and

an input x, we denote the set of abstract states and transitions

covered by x as Ŝx and δ̂x. Then, the state- and transition-based trace
similarity metrics for the two inputs x and y are defined based on the

Jaccard indices of their states and transitions covered, respectively:

STSimM(x, y) =
|Ŝx ∩ Ŝy |

|Ŝx ∪ Ŝy |
, TTSimM(x, y) =

|δ̂x ∩ δ̂y |

|δ̂x ∪ δ̂y |
.

The trace similarity metrics range over [0, 1], where 0 indicates

disjoint sets (i.e., traces induced by x and y are totally different),

while 1 indicating equal sets (i.e., the traces are similar).

Fig. 5 shows the concrete traces on an RNN-based ASR model

induced by two speech input samples, Fig. 5a (“this book is about

science”) and Fig. 5b (“this book is about literature”). The darker

dots appear earlier in the sequence, and vice versa. We can see a

clear difference of the two at later parts of the sequence. The two

concrete traces are then projected onto the 3-dimensional space

under the PCA-3 abstraction with 5 intervals on each dimension,

to calculate the trace similarities. The state- and transition-based

trace similarities of the two inputs are 0.71 and 0.64, respectively.

Each input sequence in the training set yields a concrete trace

of the RNN model. The abstract state transition model captures all

the concrete traces enabled from training data (or its representative

parts) and other potential traces which have not been enabled. The

(a) “This book is about science.” (b) “This book is about literature.”

Figure 5: Visualization of concrete traces of two audio over

an RNN-based ASR model with the PCA-3 abstraction.

defined state and transition abstraction make the resulting abstract

model represent an over-approximation and generalization of the

observed behaviors of the trained RNN model.

3.4 Representing Trained RNN as a
Discrete-Time Markov Chain

To also take into account the likelihood of transitions at different

states, we augment the abstract model with transition probabilities,

effectively making it a Discrete-Time Markov Chain (DTMC).

Definition 2. A DTMC is a tuple (Ŝ, I , T̂), where Ŝ is a set of

abstract states, I is a set of initial states, and T̂ : Ŝ × Ŝ 	→ [0, 1]

is the transition probability function which gives the probability of

different abstract transitions.

We write Pr(ŝ, ŝ ′) to denote the conditional probability of vis-

iting ŝ ′ given the current state ŝ , such that Σ
ŝ ′ ∈Ŝ

Pr(ŝ, ŝ ′) = 1.

We define the transition probability as the number of concrete

transitions from ŝ to ŝ ′ over the number of all outgoing concrete

transitions from ŝ , i.e., Pr(ŝ, ŝ ′) = | {(s,s ′) |s ∈ŝ∧s ′ ∈ŝ ′ } |
| {(s,_) |s ∈ŝ } |

. For example,

Fig. 4b shows the abstract state transition model for the concrete

traces in Fig. 4a as a DTMC. The abstract transitions are labeled

with their transition probabilities. For instance, since all outgo-

ing transitions at ŝ0 end in ŝ1, the transition probability from ŝ0
to ŝ1 is 1. There are four possible outgoing transitions at ŝ1, i.e.,
{(ŝ1, ŝ1), (ŝ1, ŝ2), (ŝ1, ŝ3), (ŝ1, ŝ0)}. Hence, the transition probability

from ŝ1 to ŝ2 is computed as Pr(ŝ1, ŝ2) =
1
4 . Computation for other

abstract transitions are similar.

As is shown in the example, a DTMCmodel is constructed by first

applying the state and transition abstractions on a set of concrete

traces, and then computing transition probability distributions for

each abstract state. The time complexity of the abstraction step

depends on the number of concrete traces, while the complexity for

computing the transition probabilities only depends on the number

of abstract transitions.

4 COVERAGE CRITERIA FOR RNN

Inspired by traditional software testing, we propose a set of testing

coverage criteria for RNNs based on the abstract state transition

model. The goal of the RNN coverage criteria is to measure the

sufficiency of test data in exercising the trained as well as the unseen

behaviors. The state and transition abstractions are designed to

reflect the internal network configurations at a certain point as well

as the temporal behaviors of the network over time, respectively.

Therefore, to maximize the chance of discovering defects in stateful

480

DeepStellar : Model-BasedQuantitative Analysis of Stateful Deep Learning Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

neural networks, one should combine coverage criteria based on

both the state and transition abstractions to systematically generate

comprehensive and diverse test suites.

LetM = (Ŝ, I , T̂) be an abstract model of the trained RNN rep-

resented as a DTMC. Let T = {x0, . . . , xn } be a set of test input

sequences. We define both the state-level and transition-level cov-

erage of T to measure how extensively T exercises the states and

transitions ofM , respectively.

4.1 State-Level Coverage Criteria

The state-level coverage criteria focus on the internal states of the

RNN. The set of abstract states Ŝ represents a space generalization

of the visited states obtained from training data (or its representative

parts), which is referred to as the major function region [32]. The

space outside the major function region is never visited by the

training data, and thus represents the corner-case region [32]. The

test data should cover the major function region extensively to

validate the trained behaviors and cover the corner-case region

sufficiently in order to discover defects in unseen behaviors.

Basic State Coverage. Given an RNN abstract modelM and a set

of test inputsT , the basic state coveragemeasures how thoroughlyT
covers the major function region visited while training. To quantify

this, we compare the set of abstract states visited by the training

inputs and the test inputs, denoted by ŜM and ŜT , respectively.

Then, the basic state coverage is given by the number of abstract

states visited by both the training and the test inputs over the

number of states visited by the training inputs,

BSCov(T ,M) =
|ŜT ∩ ŜM |

|ŜM |
.

Weighted State Coverage. The basic state coverage treats every

state with equal weights. During training, not all states are visited

equally often and one may want to emphasize more on some states

than the others. To take into account the frequencies of different

states and be able to assign weights to states, we define theweighted

state coverage and allow users to specify a weight function. The de-

fault weight of an abstract state ŝ is defined as the relative frequency

of it among all the abstract states, i.e., w(ŝ) = | {s |s ∈ŝ } |
|S |

, where S

is the set of all distinct concrete states. Then, the weighted state

coverage is defined as:

WSCov(T ,M) =
Σ
ŝ ∈ŜT ∩ŜM

w(ŝ)

Σ
ŝ ∈ŜM

w(ŝ)
.

In practice, the weight function can be defined differently according

to specific needs. For example, when a constant function is chosen,

the weighted state coverage is equivalent to the basic one. In § 6.3,

we evaluate two weight functions, including the default and the

reversed one which assigns larger weight to less visited states.

n-Step State Boundary Coverage. The test data may also trigger

new states that are never visited during training. The n-step state
boundary coverage measures how well the corner-case regions are

covered by the test inputs T . The corner-case regions ŜMc are the

set of abstract states outside of ŜM , which have non-zero distances

from any states in ŜM . Then ŜMc can be further divided into dif-

ferent boundary regions defined by their distances from ŜMc . For

example, the n-step boundary region, ŜMc (n), contains all abstract

states which have a minimal distance n from ŜM , or more formally,

ŜMc (n) = {ŝ ∈ ŜMc |min
ŝ ′ ∈ŜM

Dist(ŝ, ŝ ′) = n}.

The n-step state boundary coverage is defined as the ratio of

states visited by the test inputs in the boundary regions of at most

n steps away from ŜM :

n-SBCov(T ,M) =
|ŜT ∩

⋃n
i=1 ŜMc (i)|

|
⋃n
i=1 ŜMc (i)|

.

4.2 Transition-Level Coverage Criteria

The state-level coverage indicates how thorough the internal states

of an RNN are exercised but it does not reflect the different ways

transitions have happened among states in successive time steps.

The transition-level coverage criteria targets at the abstract transi-

tions activated by various input sequences and a higher transition

coverage shows that the inputs are more adequate in triggering

diverse temporal dynamic behaviors.

Basic Transition Coverage. To quantify transition coverage, we

compare the abstract transitions exercised during both the training

and testing stages, written as δ̂M and δ̂T , respectively. The basic
transition coverage is defined as:

BTCov(T ,M) =
|δ̂T ∩ δ̂M |

|δ̂M |
.

Basic transition coverage subsumes basic state coverage. In other

words, for any abstract modelM , a test input T satisfies basic tran-

sition coverage regarding toM , also satisfies basic state coverage.

Weighted Transition Coverage. Similar as the state-level cover-

age, we can calculate theweighted transition coverage by considering

the relative frequency of each transition. More formally,

WTCov(T ,M) =
Σ
(ŝ, ŝ ′)∈δ̂T ∩δ̂M

w(ŝ, ŝ ′)

Σ
(ŝ, ŝ ′)∈δ̂M

w(ŝ, ŝ ′)
.

where the weight function can be configured similarly as in the

weighted state coverage. By default, the weight of a transition (ŝ, ŝ ′)
is computed as transition probability defined in § 3.4.

5 APPLICATIONS

To demonstrate the usefulness of the abstract model and the pro-

posed quality measures, we apply them in finding adversarial sam-

ples for RNNs in two scenarios: (1) adversarial sample detection

to identify adversarial inputs at runtime, and (2) coverage-guided

testing to generate unseen adversarial samples offline.

5.1 Adversarial Sample Detection for RNNs

Adversarial sample detection aims to check whether a given input

is an adversarial sample at runtime. We propose to use the trace

similarity metrics to measure the behavioral differences between

two inputs. Based on this idea, we develop a new approach to detect

adversarial samples for RNNs.

Given a target sample i , we define a reference sample r such that

the RNN gives the same predictions for both i and r . The traces
derived from the original and the reference samples are typically

similar when i is benign. However, when i is adversarial, the trace
difference between the two samples can be much larger. With such

481

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao

Algorithm 1: Training an Adversarial Detection Classifier

input :D: RNN-based DL system, M : Abstract model of D

output :C : A classifier for detecting adversarial samples

1 Prepare benign set B , adversarial set A and reference set R;

2 disb ← ∅;

3 for b ∈ B do

4 R′ ← select(R, b) ;

5 vec ← ∅;

6 for r ∈ R′ do

7 (r1, state_vec1) ← predict(R, r);

8 (r2, state_vec2) ← predict(R, b);

9 j ← TraceSimilarity(state_vec1, state_vec2, M);

10 vec ← vec
⋃
{j };

11 d ← average(vec);

12 disb ← disb
⋃
{d };

13 Compute disa similar with disb ;

14 C ← LinearRegressionClassifer(disa, disb)

insight, we propose to detect adversarial sample based on the trace

difference from its reference sample.

We use a learning-based approach (Algorithm 1) to train a clas-

sifier. The inputs include an RNN-based system D and an abstract

model M . We first collect a set of benign samples B and a set of

adversarial samples A. The set of reference samples R are also pre-

pared for comparison (more details in the next paragraph), and the

trace similarities between benign/adversarial samples and the ref-

erence samples are calculated. For each benign sample b, the select
function obtains a group of corresponding reference samples R′

from the reference samples R. Based on this, we compute the trace

similarity between b and each reference sample r ∈ R′ (Lines 6- 10)

and take the average similarity (Line 11) to represents the distance

betweenb and the set of reference samples R′. The distance is added

into the benign distance list disb (Line 12). Similarly, we compute

the adversarial distance list disa (Line 13). With disa and disb , a
linear regression classifier C is learned. Given a new input i , we
compute the similarity di between i and the reference samples, and

rely on C(di) to indicate whether i is a benign or adversarial.

We apply and evaluate the detection algorithms on two domains,

namely, ASR and image classification. The approaches used to gen-

erate reference samples are as follows: for ASR, given an audio

input a that is transcribed to texts t by the RNN, we generate the

reference audios using off-the-shelf text-to-speech engines (e.g.,

Google cloud text-to-speech [4]) that generate the audio t with
correct and clear pronouncing. For image classification, given a

new image i with prediction result c (i.e., the image i belongs to
class c), the reference images are selected from the training data

such that they share the same label as c .

5.2 Coverage-Guided Testing of RNNs

In this section, we propose a Coverage-Guided Testing (CGT) tech-

nique which aims to generate adversarial samples incorrectly recog-

nized by an RNN. CGT uses the proposed coverage criteria (§ 4) to

guide the test generation and evaluates the quality of the tests from

different perspectives. During the testing process, CGT maintains

a test queue. In each run, it selects a seed (i.e., test case) from the

Algorithm 2: Coverage guided testing of RNN

input : I : Initial seeds, D : RNN-based DL system, M : Abstract

model of D

output :F : Failed tests, Q : Test queue

1 F ← ∅;

2 Q ← I ;

3 while a ← Select(Q) do

4 Randomly pick transformation t with a random parameter p ;

5 A = mutate(t , p , a);

6 for a′ ∈ A do

7 (result, state_vec) ← predict(R, a′);

8 cov ← CovAnalysis(state_vec, M);

9 if Failed(a’, result) then

10 F ← F
⋃
{a′ }

11 else if CoverageIncrease(cov, Q) then

12 Q ← Q
⋃
a′;

13 UpdateCoverage(Q);

queue and generates multiple mutants. A mutant is an adversarial

sample if it is predicted incorrectly by the network. Otherwise, if the

mutant improves the coverage, it is then retained as an interesting

seed and added back to the queue.

Algorithm 2 presents the process to generate tests for RNNs. The

inputs include the initial seeds I , the RNN-based DL system D and

the abstract modelM . The outputs are benign tests and failed tests

for which D gives correct and incorrect inference respectively. The

initial test queue contains a set of initial seeds. In each run, CGT

selects one input a from the test queue (Line 2), and randomly picks

a transformation function t with parameter p (Line 4). Then, a set

of new samples A are generated under transformation t (Line 5).
For each new sample a′, CGT first obtains the concrete trace by

letting D do the inference (Line 7) and then calculates the coverage

information over the abstract model (Line 8). If the inference is

incorrect, a′ is added into the failed test set F (Line 10). If a′ is
correctly predicted and covers new states or transitions, CGT puts

it in the test queue and updates the coverage criteria of all tests

currently in the queue (Line 12- 13).

A challenge in DL testing is the lack of oracle that tells the

ground-truth label of any new mutant. Mutation operators are

often specific to the application domains. For CGT, we mainly

focus on image classification and apply the metamorphic mutation

strategy [55] for generating new mutants that would keep the

prediction meaning from the human’s perspective during testing.

6 EVALUATION

To demonstrate the usefulness of the proposed techniques, we

implemented DeepStellar in Pythonbased on the Keras (2.2.4) [11]

with TensorFlow (1.4, 1.8 and 1.11) [7]. We first study whether the

abstract model is able to characterize the stateful behaviors of RNNs

(i.e.,RQ1&RQ2). Based on this, we further evaluate the usefulness

of the proposed quantitative measures on the two applications (i.e.,

RQ3 & RQ4). Specifically, we leverage DeepStellar to investigate

the following research questions:

RQ1: Are the proposed trace similarity metrics suitable indicators

for the discriminatory power of RNNs (i.e., sensitive to even small

perturbations on inputs)?

482

DeepStellar : Model-BasedQuantitative Analysis of Stateful Deep Learning Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Subject model information.

Subject Model
Kernel RNN # Trainable Acc. (%)

Type State vec. shape Parameters Train. Test.

DeepSpeech 0.1.1 Bi-LSTM (None, 4096) 122,740,765 - -
DeepSpeech 0.3.0 LSTM (None, 2048) 47,228,957 - 11.00
MNIST-LSTM LSTM (None, 128) 81,674 99.69 98.66
MNIST-GRU GRU (None, 128) 61,578 99.70 98.61

RQ2: How sensitive are different coverage criteria for capturing

erroneous behaviors of RNNs?

RQ3: How useful is the trace similarity-based detection algorithm

for detecting adversarial samples of RNNs?

RQ4: How effective is the coverage-guided testing in achieving

high coverage and generating adversarial samples of RNNs?

6.1 Experiment Settings

Models and Dataset. We selected four RNN-based DL models in-

cluding twoASRmodels and two image classificationmodels, which

cover popular RNN variants (see Table 1). The trainable parameter

size often reflects the complexity of models, and the models we

select range from small-scale ones with about 60k parameters, to

practical-sized ones with over 100 million parameters. The highest

dimension of the RNN state vectors (Column “State vec. shape”)

hits 4,096, indicating the high complexity of the models.

For the ASR tasks, we selected two versions of Mozilla pre-

trained DeepSpeech [2] (i.e., 0.1.1 and 0.3.0) that are among

the state-of-the-art open source ASR models with different types of

RNN core. DeepSpeech-0.1.1 adopts a bi-directional LSTM, and

DeepSpeech-0.3.0 uses a one-directional LSTM. The state vectors

of both models are with a high dimension of 64-bit floating point

type. For the image classification task, we followed the instruc-

tions and trained two RNN-based classifiers on MNIST dataset (i.e.,

MNIST-LSTM, MINIST-GRU) that achieve competitive accuracy.These

two models are relatively lightweight, whose internal states are

conveyed via 128-dimensional vectors of 32-bit floating points.

Abstract Model Construction. For ASR models, we use Common

Voice [1] training dataset to perform the profiling, which is used for

the training of the DeepSpeech models. Overall, there are 193,284

audios in the dataset. Each sample is processed by both models to

collect the state traces. As for the image classification models, we

use the official MNIST training dataset that contains 60,000 images.

For the PCA transformation, due to the huge size of state vectors

for ASR models, we randomly selected 20% of state vectors to fit the

PCA model, and use it for all further analysis. For image models,

we use all of the state vectors. The model abstraction parameters k
andm can be configured to generate DTMC models with different

granularity. Table 2 summarizes 13 different configurations we

evaluated, as well as the number of abstract states and transitions

in each obtained DTMCmodel. Note that we use (k,m) to represent

a configuration with k dimensions andm partitions.

Data Preparation. For a comprehensive evaluation of the pro-

posed metrics and coverage criteria, we prepared three types of

samples: 1) original benign samples from the test data, 2) perturbed

samples which are generated by a slight perturbation on the origi-

nal benign samples, and 3) adversarial samples from the original

benign samples. For ASR models, we use word error rate (WER)

Table 2: Abstract model details under different configura-

tions for each studied RNN.

Config. DeepSpeech-0.1.1 DeepSpeech-0.3.0 MNIST-LSTM MNIST-GRU

(k,m) # St. # Trans. # St. # Trans. # St. # Trans. # St. # Trans.

(2, 5) 26 187 27 159 28 162 28 192
(2, 10) 88 1,067 86 755 93 745 92 1,203
(2, 20) 325 8,185 308 4,958 340 4,531 334 8,740
(2, 40) 1,221 74,936 1,154 38,653 1,267 27,657 1,241 57,506
(2, 80) 4,700 733,007 4,397 327,480 4,719 105,529 4,656 167,640
(3, 5) 107 1,416 96 1,269 109 938 109 1,188
(3, 10) 595 13,643 533 10,836 632 6,186 606 9,973
(3, 20) 3,811 179,925 3,291 128,144 3,806 39,148 3,713 72,989
(3, 40) 26,154 2,480,927 21,970 1,708,455 21,458 128,225 22,829 183,478
(3, 80) 183,724 18,408,782 145,602 15,232,230 78,259 200,567 101,417 218,765
(6, 10) 65,550 2,567,944 55,055 2,040,096 24,276 96,749 34,423 139,595
(6, 20) 1,373,236 23,057,145 1,108,832 21,164,285 110,325 185,223 149,801 209,887
(6, 40) 15,804,002 38,324,511 14,258,035 37,594,508 194,765 213,978 215,680 223,505

to measure the inference precision. In particular, benign samples

are with WER of zero. The perturbed samples would have a rela-

tively smaller WER while the targeted adversarial samples have a

larger WER. For image classification tasks, the perturbed samples

we generate are with slight perturbations but still remain benign.

Initially, we randomly selected 100 benign audios and 100 benign

images separately from their test datasets, from which we gener-

ate the perturbed and adversarial samples. For each ASR model,

we generate 10,000 perturbed audios from original benign ones

with existing audio data augmentation techniques [5] (i.e., speed

and volume adjustment, low/high-frequency filtering, noise blend-

ing). Finally, we only successfully generate adversarial samples for

DeepSpeech-0.1.1 because there exists a compatibility issue be-

tween DeepSpeech-0.3.0 and the adversarial attack tools [8] we

used. It is worth noting that the generation of targeted adversarial

audios is rather computationally intensive and time-consuming.

To be specific, we select the 11 commands [13] as the targets and

generate 1,100 (100 seeds× 11 targets) adversarial audios, which

took about 12 days in total on 4 GPUs (i.e., 48 days V100 GPU time).

For each MNIST model, we also generate 10,000 benign perturbed

samples with existing image transformation techniques [50] (i.e.,

image contrast, brightness, translation, scaling, shearing, rotation

and add white noise). Besides, we generate 10,000 adversarial sam-

ples with each state-of-the-art attack tool, including, FGSM [17],

BIM [28] and DeepFool [37].

For both audio and image case, we set conservative parameters

for transformation so that the perturbation on original samples is

slight and imperceptible. Note that all the adversarial samples are

also with minimal perturbations and not perceptible by human.

Coverage Criteria Instances. For the n-SBCov criteria, we em-

pirically study two instances with n = 3 and n = 6, denoted as

3-SBCov and 6-SBCov, respectively. For the WSCov and WTCov,

besides the default weight function, which assigns larger weights to

states or transitions with high visiting frequency during profiling,

we introduce another weight function to assign smaller weights

to more frequently visited states and transitions by inverting the

original weights. We use WSCov and WTCov to denote the criteria

with default weight function, and refer WSCov’ and WTCov’ to

the inverted ones. The criteria allow observing how the test data

cover states and transitions that have high/low visiting frequency.

All the experiments were run on a server with the Ubuntu 16.04

system with 28-core 2.0GHz Xeon CPU, 196 GB RAM and 4 NVIDIA

Tesla V100 16G GPUs.

483

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao

Table 3: Correlation of trace similarities and prediction diff.

Config. DeepSpeech-0.1.1 DeepSpeech-0.3.0 MNIST-LSTM MNIST-GRU

(k,m) ρ(st .) ρ(tr .) ρ(st .) ρ(tr .) U (st .) U (tr .) U (st .) U (tr .)

(2, 5) -0.25 -0.28 -0.36 -0.44 2.99.E+08 2.79.E+08 2.70.E+08 2.62.E+08
(2, 10) -0.27 -0.35 -0.44 -0.50 3.03.E+08 2.76.E+08 2.53.E+08 2.48.E+08
(2, 20) -0.35 -0.38 -0.46 -0.49 2.84.E+08 2.55.E+08 2.49.E+08 2.33.E+08
(2, 40) -0.37 -0.26 -0.43 -0.47 2.50.E+08 2.30.E+08 2.29.E+08 2.05.E+08
(2, 80) -0.30 -0.16 -0.40 -0.36 2.30.E+08 2.20.E+08 2.04.E+08 1.92.E+08
(3, 5) -0.34 -0.38 -0.47 -0.52 3.11.E+08 2.92.E+08 2.89.E+08 2.74.E+08
(3, 10) -0.39 -0.39 -0.52 -0.50 3.04.E+08 2.64.E+08 2.73.E+08 2.45.E+08
(3, 20) -0.38 -0.34 -0.51 -0.53 2.74.E+08 2.35.E+08 2.44.E+08 2.09.E+08
(3, 40) -0.31 -0.15 -0.51 -0.43 2.35.E+08 2.14.E+08 2.05.E+08 1.82.E+08
(3, 80) -0.23 -0.09 -0.41 -0.25 2.17.E+08 2.11.E+08 1.93.E+08 1.89.E+08
(6, 10) -0.54 -0.47 -0.62 -0.59 2.65.E+08 2.18.E+08 2.23.E+08 1.95.E+08
(6, 20) -0.40 -0.24 -0.59 -0.43 2.25.E+08 2.14.E+08 1.89.E+08 1.90.E+08
(6, 40) -0.06 -0.06 -0.40 -0.13 2.14.E+08 2.09.E+08 1.89.E+08 1.89.E+08

6.2 RQ1: Trace Similarity

Setup.We perform a statistical analysis on the correlation between

the trace similarity and the prediction difference over the slightly

perturbed samples and their original benign samples. The difference

is difficult to capture because the sample and its slightly perturbed

counterpart are perceived almost the same from human perceptions.

We compute the prediction difference of ASR with the word-level

Levenshtein distance [6] of their transcripts, and the prediction

difference in image classification by checking whether they belong

to different classes.

For audios, we use the 10,000 perturbed samples, which are with

various Levenshtein distances compared with their original seeds.

For the image case, we take the 10,000 perturbed samples and also

randomly select another 10,000 samples from all the generated

adversarial samples. This is to include both correctly and wrongly

inferring perturbed images. For the statistical analysis, we use

Spearman rank-order correlation [44] (denoted as ρ), to analyze the
monotonic association between two variables, for the ASR models;

and we use Mann-Whitney U test [35] (denoted asU), to check the

binary association, for MNIST models.

Results. Table 3 shows the results of the correlation between trace

similarity and prediction difference measured over the perturbed

data, where Column ρ(st .) and ColumnU (st .) represent the results
of STSim; and Column ρ(tr .) and ColumnU (tr .) represent the re-
sults of TTSim. The best two results of each column are highlighted

in bold font. All reported correlations are statistically significant

(with p << 0.01). Negative association of Spearman correlation

indicates that the larger the similarity metrics, the less different

the predicted transcripts would be. For MNIST models, the Mann-

Whitney U test results indicate that when measuring the trace

similarity compared with the original benign samples, perturbed

samples obtain significantly larger values than adversarial ones.

Answer to RQ1: Both state- and transition-level trace similar-

ity metrics are capable of capturing the prediction difference

even for slightly perturbed samples. Thus, trace similarity

could be useful for detecting adversarial samples (See RQ4).

6.3 RQ2. Coverage Criteria

Setup. In this experiment, we evaluate the sensitivity of the pro-

posed coverage criteria to adversarial samples. The abstraction con-

figurations used in RQ2 are selected based on the RQ1 results. In

Table 4: Coverage criteria sensitivity to the slightly per-

turbed samples and adversarial samples.

Sub. Conf.
Data

State (%) Transition (%)

mod. (k ,m) BSCov WSCov WSCov’ 3-SBCov 6-SBCov BTCov WTCov WTCov’

O 67.9 99.7 3.0 0.0 0.0 23.5 95.5 23.5
(3, 10) O+P 74.5 10 99.9 0 3.2 7 0.0 0.0 0.0 0.0 37.9 61 98.7 3 37.9 61

O+A 74.1 9 99.9 0 3.2 7 0.0 0.0 0.0 0.0 44.0 87 98.6 3 44.0 87
DS1 O 13.7 81.1 0.4 0.0 0.0 0.8 29.6 0.8

(6, 10) O+P 26.0 90 92.9 15 0.7 75 0.0 0.0 0.0 0.0 3.4 325 49.4 67 3.4 325
O+A 35.4 158 94.0 16 0.9 125 0.1 0.1 0.0 0.0 6.4 700 53.0 79 6.4 700

O 1.7 22.9 0.1 0.0 0.0 0.1 5.1 0.1
(6, 20) O+P 7.2 324 47.1 106 0.4 300 0.0 0.0 0.0 0.0 0.4 300 9.1 78 0.4 300

O+A 13.9 718 51.8 126 0.8 700 0.2 0.2 0.1 0.1 0.4 300 6.2 22 0.4 300

(2, 5)
O 85.7 100.0 14.2 0.0 0.0 57.1 99.0 56.8

O+A 85.7 0 100.0 0 14.2 0 0.0 0.0 0.0 0.0 85.3 49 100.0 1 85.2 50
ML

(3, 5)
O 71.6 99.4 8.2 0.0 0.0 32.1 95.6 32.0

O+A 89.0 24 99.9 1 10.2 24 0.4 0.4 0.2 0.2 76.7 139 99.4 4 75.8 137

(3, 10)
O 54.6 96.4 5.6 0.0 0.0 15.1 77.8 15.1

O+A 81.8 50 99.4 3 8.2 46 1.5 1.5 0.7 0.7 60.3 299 95.0 22 60.0 297

* The coverage increase ratio/value w.r.t. its seed group are marked with grey background.

order to better differentiate various coverage criteria, three configu-

rations were selected from RQ1, which are most sensitive to minor

perturbations according to either STSim or TTSim. We compare the

coverage results of the 100 original benign samples (denote as O),
and the coverage achieved by including perturbed samples (denoted

asO+P) or adversarial samples (denoted asO+A) (see Column Data

of Table 4). Note that the perturbed samples are not included for the

MNISTmodels because they are all benign. For DeepSpeech-0.1.1,
the number of adversarial samples is 1,100, and we also select the

same number of perturbed samples to make a fair comparison. For

other models, we use all 10,000 perturbed/adversarial samples.

Results. Table 4 reports the coverage results using different cover-

age criteria on different dataset (see results of DeepSpeech-0.3.0
and MNIST-GRU on website [3]). The coverage increase ratio indi-

cates the sensitivity of the coverage criteria to adversarial samples.

We observed that finer-grained abstract models tend to have larger

coverage increase ratio. This is because finer-grained state and

transition information is more likely to distinguish adversarial sam-

ples from the benign samples. We also found that the sensitivities

of various criteria to adversarial samples are rather different. For

example, the increase ratio of WSCov/WTCov is relatively small

because they mainly concern the frequently covered states and tran-

sitions (during profiling) which are often already fully covered by

benign samples. In contrast, the increase ratio of WSCov’/WTCov’

is larger, with a competitive performance as BSCov and BTCov,

indicating rarely visited states and transitions tend to be covered by

adversarial/perturbed samples. For the n-SBCov criteria, we present
the increase value instead the increase ratio as the initial criteria

are zero. The increase is not quite significant, as these states are

really hard to cover even by adversarial samples. Furthermore, for

DeepSpeech-0.1.1, we find that the coverage criteria of O+A are

generally higher than those of O+P . This is possibly due to the

larger average WER of the adversarial audios.

Answer to RQ2: The test coverage criteria are more sensitive

with finer-grained abstraction. All proposed coverage criteria

are sensitive to erroneous behaviors in adversarial samples,

among which, BSCov, and BTCov are the most sensitive ones.

484

DeepStellar : Model-BasedQuantitative Analysis of Stateful Deep Learning Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 5: AUROC results (%) of trace similarity based adver-

sarial detection by configurations.

Config. DeepSpeech-0.1.1 MNIST-LSTM

(k, m) STSim TTSim
FSGM BIM DeepFool

STSim TTSim STSim TTSim STSim TTSim

(2, 5) 49.78 67.67 77.97 79.8 74.61 74.85 75.11 73.55
(2, 10) 59.52 84.73 83.13 84.29 80.81 79.91 78.92 80.1
(2, 20) 80.90 81.24 83.37 84.71 80.42 80.42 79.09 80.27
(2, 40) 81.00 50.00 79.95 88.01 77.9 80.77 76.82 81.86
(2, 80) 70.25 50.00 90.54 96.55 82.38 92.12 84.43 92.46
(3, 5) 69.41 85.40 86.95 85.31 84.71 83.25 82.42 80.15
(3, 10) 89.26 85.19 90.05 89.74 86.18 85.28 85.23 83.78
(3, 20) 85.25 50.00 89.4 92.62 84.63 84.72 83.53 85.46
(3, 40) 50.49 50.00 90.56 93.79 85.97 86.62 84.05 87.47
(3, 80) 50.00 50.00 96.63 93.64 92.97 89.75 93.44 90.43
(6, 10) 75.82 50.00 89.81 86.68 85.18 78.04 84.95 80.59
(6, 20) 50.00 50.00 86.94 84.53 79.45 72.64 82.54 78.99
(6, 40) 50.00 50.00 85.94 92.17 78.64 85.08 79.96 87.79

6.4 RQ3. Adversarial Sample Detection

Setup. This section evaluates DeepStellar for adversarial sample de-

tection on three models, namely, DeepSpeech-0.1.1, MNIST-LTSM,
and MNIST-GRU. We first prepared the benign, adversarial, and refer-

ence samples (refer to B, A and R in Algorithm 1) to train the linear

regression classifier. For the ASRmodel, we randomly selected 1,100

benign samples (800 for training and 300 for testing) from the test

dataset, to make an equal number as the 1,100 generated adversarial

samples. Specifically, the 11 target commands are divided into two

setsC1 andC2, which contain 8 and 3 commands, respectively. The

adversarial samples whose prediction results belong to C1 are used

as training data (i.e., 100 × 8), while the other as test data (i.e., 100 ×

3). The reference samples are constructed by re-transcribing all the

prediction results of both adversarial and benign samples to audios

with the Google cloud text-to-speech [4]. For MNIST models, we

take the 9,000 benign samples from the test data of MNIST and gen-

erate 9,000 adversarial samples with each of the three approaches,

i.e., FGSM, BIM and DeepFool, of which 70% are used for training

and 30% are used for testing. For reference samples, we randomly

selected 50 samples from the training data of MINIST for each of

the 10 categories (i.e., 50 × 10). With the constructed dataset, we

trained a classifier for each model to detect adversarial samples.

Results. Table 5 shows the AUROC [14] results of adversarial sam-

ple detection using different trace similarity metrics (i.e., STSim

and TTSim) and DTMC models with different configurations (Col-

umn Config.). The best two results of each model are highlighted,

e.g., 89.26% for DeepSpeech-0.1.1, 96.63% for MNIST-LSTM, and

96.63% for MNIST-GRU (see website [3]). The best results indi-

cate that state-based trace similarity is a bit more effective than

transition-based one in many cases. The results of MNIST models

on detecting attacks generated by different tools show that our

algorithm is robustness to a wide range of attacks, respectively

with accuracy of 97%, 93%, and 93%. Furthermore, the results un-

der DTMC models with different configurations vary largely. With

finer-grained model, the result is not necessarily better. Overall,

the results confirm that the trace similarity-based method is ef-

fective for adversarial sample detection under carefully selected

abstraction configurations, with more than 89% prediction accuracy.

Table 6: Coverage and unique adversarial samples detected.

Criteria (%) MNIST-LSTM MNIST-GRU

/Crash (#) Seed S-Guid. T-Guid. Ran. DeepTest Seed S-Guid. T-Guid. Ran. DeepTest

BSCov 54.59 97.78 97.78 86.23 65.35 63.20 95.87 96.04 88.78 68.98
WSCov 96.44 99.99 99.99 99.66 98.04 97.03 99.98 99.98 99.80 98.05
WSCov’ 5.56 9.97 9.97 8.79 6.66 3.83 5.82 5.83 5.38 4.18
3-SBCov 0.00 1.50 2.00 1.86 0.07 0.00 0.78 1.24 0.85 0
6-SBCov 0.00 0.56 0.75 0.69 0.03 0.00 0.29 0.46 0.32 0
BTCov 15.13 53.43 96.43 73.88 26.23 14.42 42.80 93.89 71.82 21.32
WTCov 77.80 94.81 99.90 98.02 85.12 63.40 88.78 99.69 96.95 72.34
WTCov’ 15.12 53.43 96.43 73.88 26.22 14.41 42.80 93.89 71.81 21.31
#Unique Cra. - 87,596 41,614 2,219 300 - 69,777 35,228 19,738 244

* The last row presents the number of unique crashes discovered in each experiment.

Answer to RQ3: Similarity metric based method is useful for

adversarial sample detection. The detection accuracy varies

under different metrics and model configurations.

6.5 RQ4. Coverage-guided Testing

Setup. We use the prepared 100 original benign samples as the

initial seeds, which are correctly predicted by both MNIST-LTSM

and MNIST-GRU. Based on the results of RQ2, we use the fined-

grained configuration (3,10) for constructing the DTMC models,

and select BSCov and BTCov as the testing guidance. Finally, we

implement two testing strategies, i.e., S-Guid. and T-Guid.. To further

demonstrate the usefulness of the coverage guidance, we include

random testing without coverage guidance and DeepTest [50], a

neuron coverage guided testing tool for unrolled RNNs, as baseline

approaches for comparison. Each testing configuration was run for

6 hours, upon which the studied coverage criteria tend to saturate.

To counter the randomness of testing tool, each configuration is

repeated 5 times and averaged results are reported.

Results. Table 6 summarizes the obtained coverage results for dif-

ferent coverage criteria and the unique adversarial samples detected

with the testing tools. The first column lists the studied coverage

criteria. Column Seed represents the coverage of the initial seeds.

Columns S-Guid., T-Guid., Random and DeepTest are the coverage

by different testing strategies. We can observe that all of the stud-

ied strategies improve the coverage to some extent. Transition

coverage-guided strategy outperforms the other two strategies in

achieving higher coverage under all criteria. Furthermore, state

coverage-guided strategy is often more effective in generating ad-

versarial samples although it does not obtain the highest coverage.

The overall results indicate that covering more new states could be

potentially helpful in generating adversarial samples.

Answer to RQ4: The coverage-guided testing is generally

useful in terms of achieving higher coverage and guiding

adversarial sample exploration. Among the three strategies,

transition coverage-guided method achieves higher coverage,

while state coverage-guided method uncovers more unique

adversarial samples.

6.6 Threats to Validity

We summarize factors that could affect the validity of our study. A

major threat is related to the abstract model configuration settings.

485

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao

There could be many possible configurations in the abstract model.

Due to the computation resource constraint, we tried our best to

experiment with as many settings as possible. Even though our

results may still not generalize beyond the considered settings.

The subject model selection could be another threat to general-

izability. We mitigate this by choosing models with diverse com-

plexities and different application domains, covering both simple

cases and industrial-grade ASR applications. In addition, for the

ASR model, the training sets for the adversarial detection classi-

fier is relatively small, which might affect the the performance of

the detection. Adopting a larger training set may help obtain even

better detection performance, which we leave as future work. Fur-

thermore, randomness is a threat in both sampling, testing across

our studied research questions. To counteract this, we repeat the

same setting for all experiments five times and average the results.

7 RELATEDWORK

In this section, we compare our work with other abstraction tech-

niques, testing and adversarial sample detection for DL systems.

Abstraction of RNN. Several approaches have been proposed to

model RNN, but mostly in the form of Finite State Automaton (FSA).

FSA helps to manifest the internal state transitions explicitly and

thus can be used to interpret the underlying decision rules embed-

ded in an RNN. DTMC is superior with the ability to capture state

transition distributions, making it more suitable for quantitative

analysis. Constructing an FSA from an RNN usually requires two

steps: (1) hidden state space partition and abstraction, and (2) transi-

tion abstraction and automaton construction. Various partitioning

strategies and automaton construction algorithms have been pro-

posed. Omlin and Giles [40] proposed to split each dimension of

the state vector into equal intervals, so as to divide the state space

into regular grids. Unsupervised classification algorithms were also

applied for state space partitions. For example, k-means and its

variants were studied in [9, 24, 53]. Weiss et al. [54] devised an

algorithm to dynamically create partitions, where an SVM classifier

with an RBF kernel is fitted to separate several state vectors from

its original partitions. Recent studies [24, 53, 54] have focused more

on the interpretability and visulizability of RNN behaviors, and

try to simplify the abstract model by reducing the size of the mod-

els. When applied to real-world tasks, including NLP and speech

recognition, the state space of the trained RNN models could be

tremendously large. This makes scalability an issue for partition

techniques such as k-means and kernel algorithms. However, we

adopted a cheaper interval abstraction and could benefit from its

flexibility in precision adjustment.

Testing of DNN. The lack of robustness places a major threat

to the commercialization and wide adoption of DL systems. Re-

searchers have devoted a great amount of efforts to investigate

effective and systematic approaches to test DL systems, led with a

pioneering work of Pei et al. [41]. The authors designed the first

testing criterion – neuron coverage – to measure how much inter-

nal logic of DNNs has been examined by a given set of test data.

Several new criteria have been proposed since then, including a set

of multi-granularity testing criteria proposed in DeepGauge [32],

a set of adapted MC/DC test criteria [45], and combinatorial test-

ing criteria [31]. So far, the proposed coverage criteria are used to

guide the metamorphic mutation-based testing [50], concolic test-

ing [46], and coverage-guided testing of DNN [39, 55]. In addition,

mutation testing technique is also proposed to evaluate the test

data quality through injecting faults into DL models [33]. In [56], a

black-box differential testing framework is proposed for detecting

the disagreements between multiple models.

MC/DC criteria are limited in scalability, and other criteria are

specific to the FNN architecture, even though applicable to RNN via

unrolling. The results reported in [50] demonstrated that the neuron

coverage works effectively on FNN but far from ideal on RNN when

used to guide test generation. This indicates that RNN is beyond a

simple folding of CNN, and existing criteria may not be well suited

for it. Due to the page limit, we refer the interested readers to a

comprehensive survey on machine learning testing [58].

Adversarial Sample Detection. Some techniques [15, 19, 29, 34,

52, 57] are proposed to detect adversarial samples that are predicted

incorrectly. The authors found that adversarial samples are much

more sensitive in model mutants, and proposed a sensitivity-based

approach to detect adversarial samples for feed-forwardmodels [52].

The technique in [36] augments the DNNs by adding a small sub-

network which obtains inputs from the intermediate feature repre-

sentations of the DNN and is trained to detect adversarial samples.

The authors proposed two features [15], i.e., density estimates and

Bayesian uncertainty estimates to show the differences between

benign and adversarial samples. Xu et al. [57] adopt two types of

feature squeezing, i.e., reducing the color bit depth of each pixel and

spatial smoothing to detect adversarial samples. These approaches

mainly consider CNNs and the image classification domain.

In [19], the authors detect the adversarial samples based on that

the adversarial samples have a relatively smaller softmax probability.

Following this line, the technique proposed in [29] observes that the

softmax probabilities between in- and out-of-distribution samples

can be further enlarged by temperature scaling in the softmax

function. Such methods can be used on RNNs but are limited to

the classification problem. Compared with them, our approach can

handle sequential outputs of RNNs (e.g., the outputs in automated

speech recognition) based on the abstract model.

8 CONCLUSION

Vulnerabilities of DL systems are threatening the trust and mass

adoption of these technologies. This work initiates the first step

towards the quantitative analysis of stateful DL systems. We model

an RNN as an abstract model, based on which a set of similarity

metrics and coverage criteria are proposed. We demonstrated the

usefulness of the proposed models and quantitative measures on

RNNs testing and adversarial sample detection. Our long term goal

is to provide quality assurance for the DL system life-cycle [30].

ACKNOWLEDGMENTS

This research was supported (in part) by the National Research

Foundation, Prime Ministers Office, Singapore under its National

Cybersecurity R&D Program (Award No. NRF2018NCR-NCR005-

0001), National Satellite of Excellence in Trustworthy Software

System (Award No. NRF2018NCR-NSOE003-0001) administered by

the National Cybersecurity R&D Directorate, and JSPS KAKENHI

Grant 19H04086, and NTU research grant NGF-2019-06-024.

486

DeepStellar : Model-BasedQuantitative Analysis of Stateful Deep Learning Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] 2018. Mozilla Common Voice. https://voice.mozilla.org/en.
[2] 2018. Mozilla’s DeepSpeech. https://github.com/mozilla/DeepSpeech.
[3] 2019. DeepStellar. https://sites.google.com/view/deepstellar/home
[4] 2019. Google cloud text-to-speech. https://cloud.google.com/text-to-speech/
[5] 2019. kaggle: Audio data augmentation. https://www.kaggle.com/CVxTz/audio-

data-augmentation
[6] 2019. Levenshtein Distance. https://en.wikipedia.org/wiki/Levenshtein_distance
[7] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, and et al. 2016. Ten-

sorFlow: A system for large-scale machine learning. In OSDI. 265–283.
[8] Nicholas Carlini and David Wagner. 2018. Audio Adversarial Examples: Targeted

Attacks on Speech-to-Text. (jan 2018). arXiv:1801.01944 http://arxiv.org/abs/
1801.01944

[9] Adelmo Luis Cechin, Denise Regina Pechmann Simon, and Klaus Stertz. 2003.
State Automata Extraction from Recurrent Neural Nets Using k-Means and Fuzzy
Clustering. In Proceedings of the XXIII International Conference of the Chilean
Computer Science Society. 73.

[10] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[11] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras.
[12] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column deep

neural networks for image classification. In CVPR. 3642–3649.
[13] Tianyu Du, Shouling Ji, Jinfeng Li, Qinchen Gu, Ting Wang, and Raheem Beyah.

2019. SirenAttack: Generating Adversarial Audio for End-to-End Acoustic Sys-
tems. arXiv preprint arXiv:1901.07846 (2019).

[14] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[15] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. 2017.
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410
(2017).

[16] Arthur Gill. 1962. Introduction to the Theory of Finite-State Machines. McGraw-Hill.
https://books.google.com.sg/books?id=2IzQAAAAMAAJ

[17] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In International Conference on Learning Repre-
sentations. http://arxiv.org/abs/1412.6572

[18] Google Accident. 2016. A Google self-driving car caused a crash for the first
time. https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-
crash-report

[19] DanHendrycks and KevinGimpel. 2016. A baseline for detectingmisclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

[20] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing
Magazine 29, 6 (2012), 82–97.

[21] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. 2001.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural computation 9, 8 (1997), 1735–1780.

[23] Bill G. Horne, C. Lee Giles, Pete C. Collingwood, School Of Computing, Man Sci,
Peter Tino, and Peter Tino. 1998. Finite State Machines and Recurrent Neural
Networks – Automata and Dynamical Systems Approaches. In Neural Networks
and Pattern Recognition. Academic Press, 171–220.

[24] Bo-Jian Hou and Zhi-Hua Zhou. 2018. Learning with Interpretable Structure
from RNN. (oct 2018). arXiv:1810.10708 http://arxiv.org/abs/1810.10708

[25] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayam-
pallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue,
Fernando Mujica, Adam Coates, and Andrew Y. Ng. 2015. An Empirical Eval-
uation of Deep Learning on Highway Driving. CoRR abs/1504.01716 (2015).
arXiv:1504.01716 http://arxiv.org/abs/1504.01716

[26] Ian Jolliffe. 2011. Principal Component Analysis. In International Encyclopedia of
Statistical Science. Springer, 1094–1096.

[27] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-
ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19). 1039–1049.

[28] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[29] Shiyu Liang, Yixuan Li, and R Srikant. 2017. Enhancing the reliability of out-of-
distribution image detection in neural networks. arXiv preprint arXiv:1706.02690
(2017).

[30] Lei Ma, Felix Juefei-Xu, Minhui Xue, Qiang Hu, Sen Chen, Bo Li, Yang Liu,
Jianjun Zhao, Jianxiong Yin, and Simon See. 2018. Secure Deep Learning Engi-
neering: A Software Quality Assurance Perspective. arXiv e-prints (Oct. 2018),
arXiv:1810.04538.

[31] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao.
2019. DeepCT: Tomographic Combinatorial Testing for Deep Learning Systems.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 614–618.

[32] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. In Proc. of the 33rd
ACM/IEEE Intl. Conf. on Automated Software Engineering (ASE 2018). 120–131.

[33] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,
Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. [n. d.]. DeepMutation: Mutation
Testing of Deep Learning Systems. In 29th IEEE International Symposium on
Software Reliability Engineering (ISSRE), Memphis, USA, Oct. 15-18, 2018. 100–111.

[34] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
2019. NIC: Detecting Adversarial Samples with Neural Network Invariant Check-
ing. In NDSS. 24–27.

[35] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[36] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. 2017.
On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267 (2017).

[37] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. CVPR
(2016), 2574–2582.

[38] J. R. Norris. 1997. Markov Chains. Cambridge University Press. https://doi.org/
10.1017/CBO9780511810633

[39] Augustus Odena and Ian Goodfellow. 2018. TensorFuzz: Debugging Neural
Networks with Coverage-Guided Fuzzing. (2018). arXiv:1807.10875

[40] Christian W Omlin and C Lee Giles. 1996. Extraction of rules from discrete-time
recurrent neural networks. Neural networks 9, 1 (1996), 41–52.

[41] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Auto-
mated whitebox testing of deep learning systems. In SOSP. 1–18.

[42] Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. 2016. Weighting Finite-
State Transductions with Neural Context. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 623–633.

[43] Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention
model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685
(2015).

[44] Charles Spearman. 1987. The proof and measurement of association between
two things. The American journal of psychology 100, 3/4 (1987), 441–471.

[45] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural
Networks. arXiv preprint arXiv:1803.04792 (2018).

[46] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. (2018).
https://doi.org/arXiv:1805.00089v2 arXiv:1805.00089

[47] The BBC. 2016. AI image recognition fooled by single pixel change. https:
//www.bbc.com/news/technology-41845878

[48] The New York Times. 2016. Alexa and Siri Can Hear This Hidden Command.
You Can’t. https://www.nytimes.com/2018/05/10/technology/alexa-siri-hidden-
command-audio-attacks.html

[49] Joe F Thompson, Bharat K Soni, and Nigel P Weatherill. 1998. Handbook of Grid
Generation. CRC press.

[50] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In ICSE. ACM, 303–314.

[51] Uber Accident. 2018. After Fatal Uber Crash, a Self-Driving Start-Up Moves
Forward. https://www.nytimes.com/2018/05/07/technology/uber-crash-
autonomous-driveai.html

[52] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2018.
Adversarial Sample Detection for Deep Neural Network through Model Mutation
Testing. arXiv preprint arXiv:1812.05793 (2018).

[53] Qinglong Wang, Kaixuan Zhang, Alexander G. Ororbia, II, Xinyu Xing, Xue
Liu, and C. Lee Giles. 2018. An Empirical Evaluation of Rule Extraction from
Recurrent Neural Networks. Neural Comput. 30, 9 (Sept. 2018), 2568–2591.

[54] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2017. Extracting Automata from
Recurrent Neural Networks Using Queries and Counterexamples. arXiv preprint
arXiv:1711.09576 (2017).

[55] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: A Coverage-Guided
Fuzz Testing Framework for Deep Neural Networks. In ISSTA.

[56] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. 2019.
DiffChaser: Detecting Disagreements for Deep Neural Networks. In IJCAI.

[57] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv preprint arXiv:1704.01155
(2017).

[58] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learn-
ing Testing: Survey, Landscapes and Horizons. arXiv e-prints (Jun 2019),
arXiv:1906.10742.

487

