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ABSTRACT

Deep learning (DL) has been applied widely, and the quality of DL
system becomes crucial, especially for safety-critical applications.
Existing work mainly focuses on the quality analysis of DL mod-
els, but lacks attention to the underlying frameworks on which
all DL models depend. In this work, we propose AUDEE, a novel
approach for testing DL frameworks and localizing bugs. AUDEE
adopts a search-based approach and implements three different
mutation strategies to generate diverse test cases by exploring
combinations of model structures, parameters, weights and inputs.
AUDEE is able to detect three types of bugs: logical bugs, crashes and
Not-a-Number (NaN) errors. In particular, for logical bugs, AUDEE
adopts a cross-reference check to detect behavioural inconsisten-
cies across multiple frameworks (e.g., TensorFlow and PyTorch),
which may indicate potential bugs in their implementations. For
NaN errors, AUDEE adopts a heuristic-based approach to generate
DNNss that tend to output outliers (i.e., too large or small values),
and these values are likely to produce NaN. Furthermore, AUDEE
leverages a causal-testing based technique to localize layers as well
as parameters that cause inconsistencies or bugs. To evaluate the
effectiveness of our approach, we applied AUDEE on testing four
DL frameworks, i.e., TensorFlow, PyTorch, CNTK, and Theano. We
generate a large number of DNNs which cover 25 widely-used APIs
in the four frameworks. The results demonstrate that AUDEE is
effective in detecting inconsistencies, crashes and NaN errors. In
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total, 26 unique unknown bugs were discovered, and 7 of them have
already been confirmed or fixed by the developers.
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1 INTRODUCTION

Inrecent years, deep learning (DL) has achieved tremendous success
in many domains, such as face recognition [41], speech recogni-
tion [16] and natural language processing [54]. However, it has
been demonstrated that DL system is vulnerable and may cause se-
rious consequences, e.g., the Tesla/Uber accidents [1, 5]. The quality
assurance of DL system is becoming increasingly important, espe-
cially when it is applied in safety- and security-critical applications
such as autonomous driving [8] and healthcare [26].

However, the quality assurance of DL systems is very complex
due to its unique programming paradigm. The DL system usually
involves three levels [34]: the application (e.g., DNN design), the
DL framework (e.g., basic DL functionality support) and the hard-
ware support (e.g., CUDA, CPU, and GPU). Developers first collect
training data and design deep neural networks (DNNs) with the
Application Programming Interfaces (APIs) of DL frameworks (e.g.,
TensorFlow [6] and PyTorch [32]). Then the DNNs are trained and
inferred on the frameworks, with the support of underlying CUDA,
GPU or CPU. Thus, the quality and robustness of a DL system is
dependent on the quality of the three levels.

Recently, there is a lot of research focusing on the quality assur-
ance of DL systems. However, most of them work on the application
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level, including the evaluation of DNN robustness [7, 15, 33, 50, 55]
and the robustness enhancement [20, 31, 51]. Except for the quality
assurance, some progress has been made on studying the bugs in
DL systems, such as the application programming bugs [58], the DL
framework bugs [34] and the deployment issues [17]. Nevertheless,
there still lacks the techniques on automatically testing the DL
frameworks and hardware (e.g., CUDA). In this paper, we mainly
focus on the problem of DL framework testing.

There are several challenges in DL framework testing. 1) The
test cases are different from those used by traditional software that
usually takes concrete values of the inputs or files (e.g., AFL [28],
EvoSuite [14]) as inputs. For DL framework testing, the test case
is a DNN together with its inputs. The state-of-the-art approach
CRADLE [34] selects some popular DNNs and train/test dataset to
test DL frameworks. However, these DNNs and dataset may not be
sufficient to cover all framework behaviours and may miss some
bugs. 2) It lacks oracles for identifying logical bugs as we do not
know what the ground truth is. Such logical bugs can be caused by
various reasons, such as the real framework bugs or different imple-
mentation logics. Differential testing provides a promising solution
to detect logical bugs by cross-checking inconsistent behaviours
among different DL frameworks [34]. Despite some logical bugs
have been found, it is non-trivial to understand their root causes.

After the inconsistencies are detected on a DNN, a source local-
ization process is needed to identify where the inconsistency oc-
curs for further root cause analysis and bug confirmation. However,
there are two challenges in this stage: 1) Since a DNN may contain
multiple layers and each layer may contain multiple parameters, it
is challenging to identify which layers and parameters cause the
inconsistency. 2) As the layers are connected, the inconsistent out-
puts caused by one layer will affect the subsequent layers, which
may have no bugs. CRADLE [34] proposes a metric to measure
the inconsistency degree for buggy layer localization. However, as
aforementioned, the inconsistency degree may be larger or smaller
due to the impacts of previous layers. Thus, it is non-trivial to set
one threshold that is applicable for all layers. If the threshold is too
large, some buggy layers with smaller inconsistency degree may
be missed. If the threshold is too small, there will be many false
positive cases, which increase the complexity of bug analysis.

To address these challenges, in this paper, we propose AUDEE,
a novel approach for detecting and localizing bugs in DL frame-
works. Specifically, AUDEE adopts a search-based testing method to
generate test cases. To test more functionalities in DL frameworks,
we first prepare diverse seed DNNs consisting of multiple hidden
layers (APIs), and a set of initial seed inputs for each DNN. Then we
design three levels of mutation strategies to diversify the test cases:
1) Network-level mutation, which mutates the parameters in each
layer of the DNN. 2) Input-level mutation, which mutates the in-
puts of DNN. 3) Weight-level mutation, which mutates the weights
of DNN. With these mutation strategies, AUDEE can cover more
framework behaviours. In particular, to identify logical bugs that do
not lead to crash or NaN, we adopt a heuristic-based cross-checking
method for automatically identifying the output inconsistencies
between different frameworks, which should have the same func-
tion. To identify the Not-a-Number (NaN) errors, we also design a
heuristic-based method that tends to generate outlier outputs (i.e.,
either too large or too small), which are more likely to produce NaN.
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After the bugs or inconsistencies are detected, we then propose a
causal-testing based technique to precisely narrow the localization
scope to certain layers and the parameters, by which the bugs and
inconsistencies are caused. Thus a further manual debugging anal-
ysis can be conducted more efficiently to investigate and confirm
the root causes.

To evaluate the effectiveness of AUDEE, we select 7 diverse seed
DNNSs on 3 popular dataset (MNIST, CIFAR-10, and IMDb) and apply
AUDEE in testing 4 DL frameworks, i.e., TensorFlow, PyTorch, CNTK,
and Theano. The results show that AUDEE is effective in detecting
inconsistencies and bugs. Specifically, AUDEE detects 151 unique in-
consistencies between the frameworks. Compared to CRADLE [34],
AUDEE can further perform a more fine-grained localization, which
identifies not only buggy layers but also buggy parameters. In addi-
tion, AUDEE is more effective and efficient in detecting NaNs than
the state-of-the-art tool TENsorFuzz [30]. On average, AUDEE de-
tects NaNs in 77.0% DNNs while 52.67% in TENsorRFuzz. To further
understand the root causes of the inconsistencies and bugs, with
an over 224 person-hour effort, we conduct a manual analysis on 5
inconsistencies, 8 NaNs and 13 crashes.

To summarize, this paper makes the following contributions:

e We propose an automated testing approach to identify logical
bugs, NaN errors and crashes of DL frameworks based on diverse
mutation strategies.

e We propose a fine-grained localization method to identify the
buggy layer as well as buggy parameters, by which the inconsis-
tencies or bugs are caused.

e We conduct an extensive evaluation to demonstrate the effec-
tiveness of our techniques on four DL frameworks, where 26
unknown bugs are identified, and 7 of them have been confirmed
or fixed by the developers.

e We conduct an empirical study on 151 unique inconsistencies and
26 real bugs to summarize their root causes, which can provide
useful guidance for the evolution of DL frameworks.

2 APPROACH

In this section, we first define the problems in DL framework testing
and then detail the bug detection and localization algorithms.

2.1 Problem Definition

DEFINITION 1 (DEEP NEURAL NETWORK). A Deep Neural Network
(DNN) f consists of a sequence of layers (Lo, L1, . .., Lp), where Ly is
the input layer, Ly, is the output layer, and Ly, . .., Ly—1 are the hidden
layers. Each layer is configured with some layer parameters LP and
assigned with neural weights L?. Given a d-dimensional input vector
x €RY, f calculates the outputs layer-by-layer:

¢(Lf,’, L_s)(x), i=0
XL, = P . s
¢(Lf, L9 (xr,_,), i>0

wherexy, | is the output of the previous layer L;—1, ¢ is the underlying
DL framework, and gb(L_P 10y i the layer algorithm which depends

on the configured parameters and learned weights. Given an input
x, the output of  with framework ¢ can be represented as fg (x) =

<xLO, e ,an>. Particularly, if f is a m—classification task, the label
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output on ¢ can be calculated as 4 (x) = argmax;e (o m—1}(xL, [i]),

where x,, is a m—dimensional probability vector.
The inconsistency between two frameworks is defined as follows:

DEFINITION 2 (INCONSISTENCY). Given a classifier f, an input x
and two different DL framework implementations (i.e., ¢1 and ¢3),

we consider an inconsistency occurs between ¢1 and ¢ ifl?1 (x) #
P2
I ¢ (x).

The inconsistencies are usually caused by the different code logic
between between ¢ and ¢,. The root causes of such differences
can be: 1) at least one of the two frameworks is buggy; or 2) neither
has a bug, but the algorithms are implemented quite differently.

We define a test case for DL framework testing as follows:

DEFINITION 3 (TEST CASE). A test case for testing DL frameworks
is a tuple (f,x), where f stands for a DNN consisting of multiple
layers and x represents an input to f.

In DL framework testing, we aim to detect program crashes, Not-
a-Number (NaN) errors, and result inconsistencies, by generating
diverse test cases to cover more behaviours of DL frameworks. As
a DNN may contain multiple layers and each layer may contain
multiple parameters, we need to localize a minimal root cause,
so that further debugging can be conducted more effectively. The
process of source localization is to identify both buggy layers and
parameters, by which the bugs or inconsistencies are generated.

2.2 Overview

Figure 1 shows the overview of AUDEE which includes three major
steps: the testing routines for DL frameworks, the source localiza-
tion, and the empirical study on inconsistencies and bugs.

As defined earlier, each test case consists of a DNN f and an input
x (Definition 3). The DNN f contains multiple layers, where each
layer L contains a number of parameters LP and weights LY. There-
fore, the diversity of test cases could be measured in four aspects:
@ layer diversity in f, ) parameter diversity in a layer, 3 input
diversity (i.e., different x), and @ weight diversity (i.e., different
L?). AupEE is designed to generate test cases aiming at achieving di-
versity from above four aspects. Specifically, considering Figure 1a,
we first summarize the widely used APIs (e.g., convolution and
pooling) and their configurable parameters (Section 2.3). Then, a
set of seed DNNs which cover these APIs are selected (for (D). Next,
AuDEE randomly generates multiple DNNs by mutating the values
of parameters in each layer based on the API configurations (for
@). With a set of seed inputs, the generated DNNs are used to test
the DL frameworks (i.e., TensorFlow, PyTorch, CNTK, and Theano)
by passing the inputs to these DNNs.

Apart from test cases, test oracles are also needed in DL frame-
work testing. In this paper, we mainly focus on three types of issues:
crashes, NaN errors (e.g., square root of negative values), and logical
bugs. The first two types can be caught easily with corresponding in-
strumentations. For logical bugs, we aim to identify inconsistencies
by leveraging multiple DL frameworks as cross-checking oracles.
With the help of model converters (e.g., MMdnn [27], ONNX [13],
and Keras [4]), the same DNN can be run on different frameworks.
If AUDEE cannot identify bugs or inconsistencies with the generated
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DNN:ss, then the fine-grained mutations are performed to generate
more diverse test cases, i.e., mutating the seed inputs, the DNN
weights, or both of them (for 3) and (9)). AUDEE repeats this process
until an inconsistency is triggered or it exceeds a given time budget.

After the inconsistencies or bugs are detected in f, we adopt a
layer-based causal testing to localize the buggy layers as well as
buggy parameters (Figure 1b). AUDEE identifies the most inconsistent-
prone layer. Then it minimally modifies the value of each parameter
one by one and observe their impacts to the inconsistency mean-
while. Intuitively, if the inconsistent behaviour disappears after we
change the value of certain parameter, then the parameter is likely
to be the root cause. Finally, to further understand the root causes
of bugs and inconsistencies, we conduct an empirical study on the
bugs and inconsistencies discovered by AuDEE (Figure 1c).

2.3 API Configuration and DNN Generation

As aforementioned, the DNN is a stack of multiple layers, and
each layer is configured with multiple parameters to realize its DL-
specific functionality. In the framework implementation, a layer is
generally represented by a certain APL Namely, testing a layer can
be equally considered as testing the corresponding API Overall, we
manually investigate 25 commonly used APIs of four frameworks
(i.e., TensorFlow, PyTorch, CNTK, and Theano) and summarize the
configurable parameter values for each API, which can be seen on
our website [3]. Then we randomly generate a set of DNN variants
by combining different parameter configurations. Particularly, to
better evaluate these APIs, we also introduce some crafty invalid
values for certain parameters. This can expand our testing space
to go through more code paths in the framework implementation.
Examples of such invalid values are the None for string-type param-
eters, and the negative numbers for some numerical parameters.
Figure 2 shows an example of parameter configuration for the
API Conv2D. The left side is a simplified configuration file of Conv2D
including six parameters, where int and str indicate the value types
of the parameter. For the value type int, “1” and “2” represent the
required dimensions of the values. For the value type str, we list all
of possible values (e.g., “relu” and “linear”) for the optional parame-
ter. Based on the left configuration file, AUDEE generates a series
of parameter sets for Conv2D by randomly combining all values of
all involved parameters. The right side shows some generated pa-
rameter sets, including one valid example and one invalid example
(marked by red dash box), respectively. Obviously, the kernel size
requires to be a positive number, and kernel_size = 0 is an invalid
parameter, which finally raises a crash under TensorFlow [48].

2.4 Search-based DL Framework Testing

By random parameter mutation (Section 2.3), we can perform the
testing with initial seed inputs and fixed weights. To cover more
framework behaviours, we need more representative inputs and
weights. However, it is impossible to traverse all cases, due to the
high dimensions of the inputs and weights. Then, the challenge is
how to generate optimal inputs and weights that are more likely
to trigger the abnormal framework behaviours. AUDEE adopts a
Genetic Algorithm (GA) [52] based testing, a popular heuristic
technique, to find optimal solution through multiple evolutions.
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Figure 2: Parameter generation for the Conv2D layer.

Algorithm 1 overviews our GA-based approach to detect incon-
sistencies and bugs. The inputs include a DNN f with the weights 0,
an input x, the DL frameworks ® = (¢1, ..., ;) under test, and de-
tailed configurations of GA (e.g., crossover rate and mutation rate).
The output is a set of test cases which trigger abnormal behaviours
on these frameworks (i.e., inconsistencies and bugs).

First, we construct the initial population on different levels
(Line 3, Section 2.4.2). Then AUDEE performs evolutions for at most
maxIte times (Line 4). In each iteration, AUDEE first updates the
fitness value for each chromosome of the population P (Line 6).
Two kinds of fitness functions are designed to detect the incon-
sistencies and NaN errors, respectively (Sections 2.4.3 and 2.4.4).
Based on the fitness values, AUDEE selects the top m chromosomes
(i-e., P’) as the better offspring (Line 7). Then n — m new chromo-
somes are generated based on the standard crossover and mutation
operations. Specifically, two parents are randomly selected from
the offspring P’ (Line 10). Afterwards the gene-wise crossover is
performed with a crossover rate r; (Line 11). At each time, if the
random probability is less than 1, the current gene of x; is selected.
Otherwise, the gene of x3 is selected. The new chromosome x’
is then mutated with a mutation rate rp (Line 14). We randomly
add the Cauchy noise [53] to x’ and get a new chromosome x”/,
which is then added to the new population P’’ (Line 15). Note that,
our mutation is different from those used in existing DL model
testing techniques [33, 50, 55, 56], where the mutation is restricted
as small as possible so that the inputs are realistic due to the lack
of oracle in DL model testing. However, in DL framework testing,
we leverage the unrestricted mutation by designing the explicit
oracles (Section 2.4.1). After each evolution, AUDEE checks whether

Algorithm 1: DL Framework Bug Detection

Input :f: ADNN, 0: Weights of the DNN
x: An input to the DNN
®: The targeted DL frameworks
r1: Crossover rate, rp: Mutation rate
maxIte: Maximum iterations, n: Size of population
Output: F: A set of failed test cases
Const :m: The number of selected parents
1 iter :==0;
2 F:=0;
3 P :=initPopulation(x, 6, n);
4 while iter < maxIte do

5 iter := iter + 1;

6 Fit := computeFitness(P, ®);
7 P’ :=select(P, m, Fit);

8 P” =P’

9 while sizeof (P”’) < n do

10 x1, x2 := selectParents(P’);
11 x’ := crossover(x1, X2,r1);
12 r:=U(0,1);

13 if r < rp then

14 x"" := mutate(x’);

15 L P =P | J{x"Y

16 X := checkFailed(P"");
17 if X # () then
18 L F:=FUX;

19 return F;

there are failed cases in current population (Line 16). If yes, they
are added into the failed pool F (Lines 17 to 18). Note that, the failed
cases refer to various anomalous behaviours on DL frameworks,
categorized by our testing oracles in Section 2.4.1.

2.4.1 Oracles. As mentioned earlier, we focus on three different
types of errors as the testing oracles in this paper:

(1) Crashes. We monitor the processes of DNN loading and infer-
ence to check whether the DL framework exits abnormally.

(2) NaN errors. We check whether there are some not-a-number
values in outputs of each layer.

(3) Logical bugs. For the inconsistencies that do not raise crashes
or NaNs, we conduct a cross-checking between DL frameworks,
which should have the same functionality. Intuitively, given the
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same input and same DNN, an inconsistency is likely to mean
that some logical bugs are triggered in at least one framework.

2.4.2  Generation of Population. With the initial inputs and weights,

we construct a population of chromosomes, which define genes that

GA is trying to optimize. We design three levels of chromosomes:

(1) Input Level. The chromosome is an input of the DNN such
as image, audio or embedded values of natural language. The
original input is flattened as a vector (xo, ..., x,), where x; is a
gene in the chromosome.

(2) Weight Level. The chromosome is the weights of the DNN.
The weights of all layers are concatenated into one vector
(0o, ...,0m), where 0; is a floating point number serving as
the gene of the chromosome.

(3) Input & Weight Level. The chromosome is the concatenation
of input and the weights represented as: (xo, . .., xn; 60, . . ., Om)-

Given an input x and the weights 6, we construct a set of pop-
ulations by randomly adding Cauchy noises [53]. For input level
population, the initial weights 6 remain unchanged during the evo-
lutions. We only mutate the inputs so that bugs can be triggered on
the DNN f with new inputs. Similarly, for weight level population,
the inputs keep unchanged. The weights of the DNN are evolved
such that bugs can be triggered on the new weights. For input and
weight level, we mutate both of the inputs and weights simultane-
ously. The optimization space of input-and-weight level is much
wider than that applying only input level or only weight level.

2.4.3 Inconsistency Fitness Function. An inconsistency is usually a
cumulative effect produced by the calculation difference of hidden
layers within the DNN [17], which is finally represented as a classi-
fication difference in the inference results (Definition 2). We call the
impact of each hidden layer on an inconsistency as the inconsistency
degree of this layer. To measure the inconsistency degree between
two DL frameworks, we define the layer distance as follows:

DEFINITION 4 (LAYER DISTANCE). Given a DNN f = (Lo, ...,Ly)
with an input x, the outputs of f on two DL frameworks ¢ and ¢’

are fg (x) = <xfo, .. .,xf > and fgr (x) = <xg .. .,xf, >, respectively.
We define the output distance of layer L; between two frameworks as:

m 7
huts, = 201 -,

where m is the dimension of the output of L;.

The layer distance characterizes the output difference between
two frameworks on this layer. Intuitively, a large layer distance will
inevitably affect subsequent calculations and may ultimately leads
to inconsistent inference results (see Figure 5a for example). AUDEE
adopts the layer distance as fitness so that GA could amplify the in-
consistency degree through evolutions, until it is significant enough
to trigger an inconsistency. A question is which layers should be
selected to compute the distance. The most straightforward solu-
tion is using the average distance of all hidden layers. However,
it is too computationally expensive in practice, especially when
a DNN contains too many layers. Inspired by the state-of-the-art
adversarial attack techniques [7, 15], we select the logits layer as
the target layer, because it is the output layer of the DNN, which
can reflect the overall inconsistency degree of all previous layers.
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2.4.4 NaN Fitness Function. Not-a-Number (NaN) is a numerical
data type used to represent any value that is undefined or un-
presentable. NaN could raise dangerous behaviours in important
systems [30]. Since there exist massive high-precision computing
operations in DL tasks, it is more likely to generate NaN outputs.

NaN errors are commonly reported in some cases including in-
valid operations (e.g., the square root of a negative number) and un-
safe operations that take overflow/underflow values as inputs [59].
Through tracing the NaN cases layer by layer, we observe that NaN
is usually caused by the outlier values, especially when some too-
large or too-small vector elements are involved in calculation. For
example, softmax is a common operation in DL tasks to generate
the final inference probabilities. In TensorFlow, it is implemented
as softmax(x) = tf.exp(x)/tf.reduce_sum(tf.exp(x)), where x
is a numerical vector. If there is an element that is too large in x,
tf.exp may output an inf value, which can further lead to NaN
when the inf involves in some arithmetics [43]. Another example is
the square root operation which is also common in the implemen-
tation of the DL framework. It generates a NaN output if the input
contains negative elements (see the NaN bug [47]). Both cases can
be attributed to the unbalanced numerical distribution when the
inputs or weights participate in calculation.

Based on above observations, we propose a heuristic-based fit-
ness function for NaN detection. Given a DNN f with an input x
and a target DL framework ¢, the NaN fitness is calculated as:

max(xf) - min(xf),

where L; is one layer in f, xf_ is an m-dimensional vector. This
fitness is designed to characterize the unbalanced data distribution
on certain layer. Then GA is applied to amplify the unbalanced
distribution within the hidden layers until a NaN is triggered. Intu-
itively, the generated unevenly distributed output vector, with very
large or very small elements included, are more likely to produce
NaNs. Similarly, we also select the logits layer to calculate the NaN
fitness. Note that, unlike inconsistency detection, it does not rely on
the multi-framework cross-checking to calculate the NaN fitness.

2.5 Source Localization

After an inconsistency is detected, we need to localize the source
(i.e., caused by which layers and which parameters) so that the
bug analysis could be easily performed. Here, we propose a causal-
testing based approach using the layer change rate as metric, which
is to measure the output change of certain layer compared to the
adjacent previous layers [34]. Specifically, given an input x on two
frameworks ¢ and ¢’, the change rate of layer L; can be calculated
as follows:

b9’ Spvody, ~ Opre
R7W ()= —/—
L; 5
! pre T €
where 83, = maxjepre(L;) (5;1 ¢,) and pre(L) stands for the pre-
Py

vious layers whose outputs are the inputs of layer L. Notably, the
€ =107 is set to avoid the division-by-zero.

CRADLE [34] applies this metric to highlight the buggy layers,
whose change rates are higher than a preset threshold. However,
it may be coarse as a correct layer can also have a high change
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rate caused by the previous buggy layers. AUDEE performs a fine-
grained “localize-fix” strategy to troubleshoot the inconsistency
layer by layer. The basic idea is as follows: we start from the top
layer to identify the first layer that has an outlier change rate. Then
we “fix” this inconsistent behaviour of this layer by changing the
values of the problematic parameters such that this layer will not
affect the results of the following layers. Next we will continue to
identify another buggy layer until no one could be found. By this
way, we can focus on the influence of current layer for the final
result, regardless of the impacts from the previous layers.

Algorithm 2 details the source localization process, with the help
of an inconsistency threshold t1, and a consistency threshold #,
(t1 > t2). The inputs contain a DNN f and an input x, which causes
the inconsistency on two frameworks ¢ and ¢’. In each iteration,
we identify the first layer L whose change rate is greater than t;
(Lines 3 to 4). af represents the parameters of layer L (Line 5). For
each parameter, we replace the value with other values guided by
the summarized API configuration (Line 8), and construct a dummy
DNN f” that only contains the new layer L’ (Line 9). Note that, the
parameter replacement may lead to other misbehaviours (i.e., crash
or NaN), which are easier to localize. For crash, we can simply re-
trieve the exception logs. For NaN error, it is obvious to capture. The
replaced parameter value is the source of the crash/NaN (Lines 10
to 12). Afterwards, we check whether the previous large distance
persists by feeding the same layer input. Algorithm 1 is used to
amplify the layer distance between frameworks (Line 14) and Xp;qx
is the input that generates the maximum layer distance. Intuitively,
if we cannot amplify the layer distance on L’ (i.e., the change rate is
always less than t3), it means the inconsistent behaviour disappears
after the value change. Thus this parameter value is one source
of the inconsistency (Line 16). After the inconsistency-triggering
parameters P are identified (Line 17), we “fix” the DNN by replacing
the values of these buggy parameters, so that there is no anomalies
on the identified layer (Line 18). The new DNN ensures that this
layer has no impacts on the change rate of subsequent layers. Then
we continue to localize the following layers with the new DNN.

We set conservative values for the thresholds ¢; and t; based on
our manual study results (see Section 3.3). If the change rate is below
t2, the inconsistency is likely to be a precision issue. If the change
rate is higher than #;, then it is more likely to be caused by a bug or
the implementation difference. Note that, AUDEE simply narrows
the localization scope to which layers and which parameters raise
such an inconsistency. It still needs further manual source code
debugging to judge whether the identified inconsistency is a real
bug or just due to the different framework implementations.

3 EVALUATION AND RESULTS

We implement AUDEE using Python on top of Keras [4] and Py-
Torch [32]. To evaluate the effectiveness of AUDEE and understand
the root causes of inconsistencies and bugs, we design substantial
experiments! aiming at answering the following research questions:
e RQ1: How effective is AUDEE in detecting inconsistencies?
e RQ2: How useful is AUDEE in localizing layers as well as
parameters for the inconsistencies?
e RQ3: How effective is AUDEE in detecting NaNs?

IMore experimental details can be found on our website [3].
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Algorithm 2: Inconsistency Source Localization
Input :f:(Lo,...,Lp): ADNN
x: An input
¢, $": Two DL frameworks
Output:X, Y: two sets of layers as well as parameters
Const :t;: A larger threshold, t2: A smaller threshold

1 X,Y:=0;

2 repeat

s | p= R ML e £, RPY () > )

4 L = p[o];

5 Let ar = {ao, ..., am} be the parameters of L;
6 P:=0;

7 for a € ar do

8 L', o’ := replace(L, a);

o fr=AL;

10 y := checkCrash_NaN(f");

11 if y # 0 then

12 | Y:=YU, a);

13 else

14 Xmax = detectInconsistency(f”); > Algorithm 1
5 if R? (Ximax) < 2 then

16 L P = PU{(X},

17 X =X U{(L,P)};

18 f = fixDNN(f,X,L);

19 until § = 0;

20 return X, Y;

e RQ4: What are the root causes of inconsistencies and bugs?
How many unique bugs are found by AUDEE?

3.1 Dataset and Experimental Setups

To evaluate AUDEE, we choose the latest stable versions of four
widely used DL frameworks as targets (i.e., TensorFlow [6] 2.1.0,
PyTorch [32] 1.4.0, CNTK [37] 2.7, and Theano [42] 1.0.4). To cap-
ture inconsistencies, the same DNN needs to be run on different
frameworks. We thus conduct the inconsistency detection between
four framework pairs, i.e., TensorFlow vs. CNTK, TensorFlow vs.
Theano, TensorFlow vs. PyTorch, and CNTK vs. Theano. We use
Keras [4] as a high-level wrapper so that a DNN can be seamlessly
inferred on TensorFlow, CNTK and Theano. For TensorFlow and
PyTorch, we use the state-of-the-art model converter MMdnn [27]
to convert the DNNs from TensorFlow to PyTorch. In other words,
Keras and MMdnn serve as bridges, ensuring the DNN can be
equivalently compared across different frameworks, with the same
runtime configurations (e.g., layer parameters and weights).

Overall, seven DNNss are selected in AUDEE, including four pop-
ular CNN models and three RNN models. These models cover 25
popular APIs in total. Three publicly available datasets are selected
as the inputs to these models. Specifically, for CNNs, LeNet-5 [23] is
inferred on MNIST [24] for hand-written digit recognition; ResNet-
20 [18], VGG-16 [39], and MobileNet-V2 [36] are used to detect
objects on CIFAR-10 [22]. In addition, we also construct three mod-
els with RNN layers involved (i.e., SimpleRNN, LSTM, and GRU).
These models are tested on IMDDb [2], a dataset of movie reviews
that is widely used in the sentiment analysis.
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Figure 3: The amplification of layer distance (5) on LeNet-5
by the input mutation and weight mutation.

All experiments are conducted on a high performance server,
equipped with a GNU/Linux system, a 190GB RAM, two 18-core
2.3GHz Intel Xeon E5-2699 CPUs, and one NVIDIA Tesla P40 GPU.

3.2 RQ1: Inconsistency Detection

For each seed DNN, we randomly generate 500 different DNNs by
changing the values of layer parameters (i.e., network mutation).
Then we select 10,000 inputs from the test dataset to check whether
some inconsistencies are triggered in the framework pairs. Then
the fine-grained input mutation and weight mutation are applied on
those non-inconsistency DNNs for further inconsistency detection.
Specifically, we randomly select 20 non-inconsistency generated
DNNS, each of which is repeatedly tested until an inconsistency is
discovered or it reaches a 30-minute timeout. Note that, multiple
inconsistencies could be found on a DNN, with different inputs
or weights. We conduct an inconsistency reduction based on the
following criteria: given a DNN, the inconsistencies caused by dif-
ferent inputs are regarded as the same one, while those caused by
different weights are regarded as different ones. This is because the
change of weights will modify the decision logic of the DNN, thus
we consider the model with mutated weights as a new DNN, which
is different from the original DNN.

Figure 3 shows how the input mutation and weight mutation
amplify the layer distances within LeNet-5 and thus trigger incon-
sistencies between TensorFlow and Theano. Given an input image
whose label is 2 and the DNN (i.e., LeNet-5), both frameworks infer
the image as the label “2”, with the initial layer distance being 0.01,
marked as the blue arrow. By applying input mutation, AUDEE then
generates another new input by adding some noise. Feeding the
mutated image to the DNN (see the orange arrow), the layer dis-
tance is amplified to 0.89, and triggers an inconsistency (i.e., 2 and
4). By applying weight mutation, AUDEE also generates a new DNN
(marked by red), which we call the variant DNN. Finally, as shown
by the grey arrow, the inconsistency remains when inferring the
mutated image on the variant DNN, with the layer distance further
amplified to 1.95.

Table 1 shows the number of inconsistencies detected by AUDEE
with different mutation strategies. Columns TF-CN, TF-TH, CN-TH,
and TF-PTH represent the framework pairs, where TF, CN, TH, and
PTH are TensorFlow, CNTK, Theano, and PyTorch, respectively.
Columns NET, IN, WT, and IN-WT show the number of gener-
ated DNNs on which the inconsistencies are triggered by network
mutation, input-level mutation, weight-level mutation, and input-
and-weight mutation, respectively. Column Tot summarizes the
total number of inconsistencies of all strategies. Notably, “-” means
that MMdnn fails to convert the DNN from TensorFlow to PyTorch.
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Figure 4: The distribution of top-1 change rate on different
DNNs.
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Figure 5: The source localization of an inconsistency on
ResNet-20 between TensorFlow and CNTK.

Overall, the results show that AUDEE can effectively detect in-
consistencies between DL frameworks. Totally, AUDEE detects 1821
inconsistencies, including 726 between TensorFlow and CNTK,
501 between TensorFlow and Theano, 537 between Theano and
CNTK and 57 between TensorFlow and PyTorch. With the network
mutation (i.e., change the parameter values), we can detect incon-
sistencies in 15.49% of variant DNNs. For those variant DNNs that
do not produce inconsistencies, we randomly select 20 of them, and
apply the GA-based technique for further inconsistency generation.
We can see all of the three mutation strategies behave well in trig-
gering inconsistencies from scratch, wherein the weight-mutation
is more effective than the input-mutation (consider the columns
IN and WT for comparison). More importantly, we find a joint
usage of input and weight mutation outperforms the strategy that
uses either alone. For example, AUDEE totally generates 35 and 150
inconsistencies between TensorFlow and CNTK, with the input-
mutation and weight-mutation, respectively. When it comes to the
input-and-weight mutation, AUDEE generates 359 inconsistencies,
showing an significant increase of 925.71% and 139.33% compared
to the other two strategies, respectively.

Answer to RQ1: AUDEE can detect inconsistencies effectively.
By random network mutation, AUDEE can detect inconsistencies
for some DNNs quickly. Furthermore, the input-level mutation
and the weight-level mutation can complement network muta-
tion very well in detecting more inconsistencies. A joint muta-
tion of input and weight shows the best detection performance.
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Table 1: The results of inconsistencies generated by different mutation strategies

DNN's TF-CN TF-TH CN-TH TF-PTH
Tot NET IN WT IN-WT |Tot NET IN WT IN-WT|Tot NET IN WT IN-WT |Tot NET IN WT IN-WT
LeNet-5 42 28 3 4 71 99 71 5 7 16| 100 72 5 6 17| 17 8 2 2 5
ResNet-20 252 84 10 60 98| 252 84 9 59 100| 45 1 2 20 22| 31 15 4 5 7
VGG-16 25 10 1 6 8| 26 10 2 5 9 23 6 2 6 9 9 2 1 2 4
MobileNet-V2| 34 8 5 8 13| 33 9 7 7 10| 35 8 5 7 15 - - - - -
SimpleRNN 17 2 3 2 10| 16 2 2 2 10 9 1 1 1 6 - - - - -
LST™M 303 29 7 60 207 32 2 5 10 15| 285 29 8 52 196 - - - - -
GRU 53 21 6 10 16| 43 21 4 7 11| 40 19 5 5 11 - - - - -
Total 726 182 35 150 3591501 199 34 97 171|537 136 28 97 276| 57 25 7 9 16
Table 2: The results of source localization Note that, for each DNN, the inconsistency may be caused by mul-
tiple inputs and we randomly select one. Column #Layer shows
DNN ‘ ‘ CRADLE the total number of layers in the DNN. The RNN models contain
s #M #layer L_AUDEE five I f which one layer is the RNN layer. Column #L_AUDEE
\ | #L(75%) FP(75%) ve layers, of wihic Y yer. L AUL
shows the average number of layer and parameter pairs, which
LeNet-5 79 ? 1.15 2 1087% are localized by AUDEE. We have manually checked all results and
VGG-16 22 56 1.5 14  22.94% . : L.
ResNet-20 84 71 218 18 22.98% found that all of them were true inconsistencies, i.e., caused by
MobileNet-V2 | 19 158 3.9 40  23.77% bugs or implementation differences. More details on the results of
SimpleRNN 2 5 1 1 0 manual analysis will be introduced in Section 3.5.
LSTM 29 5 1 1 0 We also list the results by using the strategy in CRADLE for
GRU 25 5 1 1 0 comparison. CRADLE selects the third quantile of the change rates

3.3 RQ2: Effectiveness of Localization

To select the thresholds (i.e., t; and t2) for Algorithm 2, we first
conduct a manual study to understand the distribution of change
rates of DNNs in terms of two categories, i.e., the inconsistency
and consistency, respectively. We focus on the top-1 change rate
(Top1-CR) of all layers. Given a DNN f = (Ly,...,Ly), its top-1
change rate between two DL frameworks ¢ and ¢’ on the input x is
max({Rf(’]qy (x),... ,R?:ﬁl (x)}). Specifically, for each of the seven
DNN types, we randomly select 150-200 test cases (i.e., DNN and
input) for the two categories, respectively. In total, we study 1145
inconsistent cases and 1332 consistent cases to observe the distri-
bution of the top-1 change rate.

Figure 4 shows the box plots of Top1-CR for the two categories.
Due to the space limit, we only present the results of three DNNs
and others can be found in our website [3]. Overall, we find that the
DNNss with inconsistencies have much larger Top1-CR, while the
Top1-CR on consistent DNNs tends to be very small. Moreover, we
also find the Top1-CR depends on the DNN structure. For example,
the inconsistency Top1-CR on LSTM is less than that on other
two DNNs. Based on this observation, we select two conservative
thresholds so that the buggy layers are more likely to be identified.
For the inconsistency threshold t1, a smaller value 1000 is selected.
In other words, if the layer distance is greater than 1000, it will
be regarded as the inconsistency candidate. For the consistency
threshold f, a very small value 2 is selected. Thus, one layer tends
to be bug-free only if the change rate is less than 2.

Table 2 shows the results of source localization. Column #M
presents the total number of DNNs which have inconsistencies.

from all layers as the threshold (Column #L(75%)), leaving the re-
maining quarter always be identified as buggy layers. As a result,
CRADLE will inevitably report some false positive layers (Column
FP(75%)) which increases the complexity of inconsistency analy-
sis. Additionally, except for buggy layers, AUDEE also localizes the
buggy parameters which is very useful in the further debugging
analysis. Notably, we emphasize it is not absolutely fair to compare
Aupee with CRADLE, because the threshold in CRADLE could
be adjusted. Our purpose is to show that AUDEE can provide fine-
grained localization results, including not only bug-candidate layers
like CRADLE, but further bug-prone parameters as well.

Figure 5 shows an example that AUDEE localizes the source of
inconsistency within ResNet-20 between TensorFlow and CNTK.
As shown in the red box, there exist some Conv2D layers that ex-
hibit very large change rate (i.e., 2.06e+6>> t1). Intuitively, such a
huge difference will inevitably affect the subsequent calculations
and may ultimately leads to inconsistent results on two frame-
works. We filter these outlier layers and apply a causal-testing
based method to minimally change the values of each parameter
(consider Algorithm 2). For example, for the parameter padding,
after changing the value from “same” to “valid” while keeping other
parameters unchanged (marked by red arrow), we find the change
rate decreases dramatically to 3.95e-1. Similarly, after we change
the parameter strides from 2 to 1, ensuring other parameters the
same as before, the change rate also decreases abruptly to 3.46e-1.
We consider the outlier layer distance disappears after the param-
eter changes, because the change rate is much smaller than the
consistency threshold #; in both cases. Finally, for the inconsistent
case of ResNet-20, AUDEE identifies two candidate sources, i.e., the
(Conv2D, padding="same”) and the (Conv2D, strides=2). Then we
could further narrow the debugging scope to the implementations
of these two parameters in Conv2D.



AuDEE: Automated Testing for Deep Learning Frameworks

Table 3: The average results of NaN detection
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Table 4: The bug distribution found by AUDEE

TensorFlow Theano
DNNs NET| TensorFuzz AUDEE
#NaN Time(s)|#NaN Time(s)#NaN Time(s)
ResNet-20 10, 14.9 17.61| 17.5 10.61| 17.4 16.17
VGG-16 7| 6.25 1061.49| 11.35 805.67| 12.95 911.67
MobileNet-V2 9| 10.45 67.25| 16.55 48.81| 16.65 53.19
Total 26| 31.6 1146.35| 454 865.09 47 981.03

Answer to RQ2: AupEt is useful in localizing layers and param-
eters, which are the source of the inconsistencies. The localiza-
tion can filter some irrelevant layers and parameters precisely
so that the manual debugging analysis can be conducted more
efficiently to investigate the root causes.

3.4 RQ3: NaN Detection

Similar to the inconsistency detection (RQ1), we first apply the
network mutation to generate 500 variants for each seed DNN,
checking whether any NaN is triggered on these DNNs. For those
DNN variants that do not produce NaN, we then randomly select 20
of them to further mutate the inputs and weights for NaN detection.
Following the results of RQ1 that a joint input-and-weight mutation
outperforms mutating either alone, we only adopt this mutation
strategy to detect NaNs in this experiment. For comparison, we
select the state-of-the-art tool TENsoRFuzz [30], a coverage-guided
testing technique as benchmark, which claims to be able to detect
NaNs. Since TENsorFUzz only supports TensorFlow, we merely
compare them on this framework. Note that, this does not mean
AUDEE cannot be applied to other DL frameworks for NaN detection.
The testing terminates once a NaN is detected or it reaches a preset
30-minute timeout. To reduce the randomness, we test each DNN
five times and calculate the average results.

Table 3 shows the average results of NaN detection. Column
NET stands for the number of DNNs with NaN outputs, which
are generated by the network mutation. Column #NaN shows the
average number of NaNs detected by TENsoRFuzz and AUDEE on
the 20 randomly selected DNNs. Column #Time(s) represents the
average of time used to capture the first NaN. Note that, neither of
TENSORFUZz and AUDEE can detect NaNs on some DNNs (e.g., the
RNN models) and frameworks (e.g., PyTorch), thus we ignore them
in Table 3. The results show that, from a total of 1500 generated
DNNs, network mutation identifies 26 NaN-producing DNNs. These
NaNs are triggered in multiple layers on all Keras backends (i.e.,
TensorFlow, CNTK, and Theano). We perform a deep investigation
and find they are all caused by one parameter (i.e., the exponential
activation function), that may output inf value given a large input.
More details about this NaN error can be found on our website [3].

Apart from the network mutation, AUDEE can also effectively
detect more NaNs with the input-and-weight mutation. On average,
AUDEE detects NaNs in 75.67% DNNs on TensorFlow and 78.33%
DNNs on Theano, respectively. By contrast, TENsorFuzz only de-
tects NaNs for 52.67% DNNs on TensorFlow. This indicates that
AUDEE is more effective than TENsoRFuUzz in detecting NaNs. In
terms of the time cost, AUDEE also behaves more efficiently. For

Bug Behaviour | TF CN TH PTH Keras | Total
NaN 4 1 2 1 0 8
Crash 3 2 2 0 6 13
Inconsistency 1 1 0 0 3 5
Total | 8 4 4 1 9 26

(a) CNTK

(b) TensorFlow (c) Theano

Figure 6: The padding demos on DepthwiseConv2D.

if (pad_1) {
// ensure that the last pooling starts inside the image
// needed to avoid problems in ceil mode
if ((outputSize - 1) * stride >= inputSize + pad_1)
--outputSize;
¥

return outputSize;

IS RS VI

Figure 7: The root cause of NaN on AvgPool2D of PyTorch.

1 0@ -129,6 +129,9 00 def __init__(self, rank,
2 self.filters = filters

3 self .kernel_size = conv_utils.normalize_tuple(

4 kernel_size, rank, 'kernel_size')

5 + if not all(self.kernel_size):

6 + raise ValueError('The argument “kernel_size" cannot contain 0(s). '

'Received: %s' 7% (kernel_size,))

Figure 8: The fix of convolutional crash in TensorFlow
(python/keras/layers/convolution. py).

each DNN, the average time used to capture the first NaN in AUDEE
is much less than that in TENsorFuzz. In addition, the time cost
depends on the size of the DNN. The larger DNN requires more
inference time, which also leads to consuming more time to detect
NaNs. For example, VGG-16 is much larger than other two DNNs
and it takes much longer to trigger a NaN.

Answer to RQ3: In terms of NaN detection, AUDEE outper-
forms the state-of-the-art technique TENsORFUZz in two folds:
(1) AUDEE can detect NaNs more effectively and efficiently. (2)
AUDEE supports more DL frameworks for NaN detection, not
simply limited to TensorFlow like TENsORFuUZz.

3.5 RQ4: Empirical Study

Based on above results, we further conduct an empirical study to
understand the root causes of inconsistencies and real bugs.

3.5.1 Study on Inconsistencies. In the study, we totally select 171
inconsistencies including: 1) a total of 151 unique inconsistencies
(i.e., 151 layer and parameter pairs) from the localization results and
2) 20 randomly selected inconsistencies which are filtered by the
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localization process. Then, we conduct a manual analysis on the de-
tailed implementations in these frameworks. Finally, we summarize
the root causes of inconsistencies into 3 categories:

(1) Implementation Bug (68/151). This kind of inconsistencies
are caused if there exist bugs in any of the frameworks. Con-
sidering the example in Figure 6a, CNTK has a bug in the
implementation of the layer DepthwiseConv2D. Specifically,
DepthwiseConv2D requires to calculate the convolution op-
eration separately on each channel. However, CNTK only
takes the first channel (marked by the red dash box) into
calculation, due to a support limitation of the inner MKL
library in case of the asymmetric padding. This channel-
ignorance bug makes CNTK generate quite different outputs
with TensorFlow and Theano, which triggers a significant
inconsistency.

Implementation Difference (83/151). There are some inconsis-
tent cases that, frameworks implement certain operation in
different ways, but none of them can be regarded as bugs.
Consider the example in Figure 6, the padding operation
is implemented differently in TensorFlow and Theano. The
blue grids represent the original input area, which is a 3-
channel 4 X 4 image. The red grids stand for the extension
area for zero-padding. The black grids represent a 2X2 convo-
lutional kernel. TensorFlow adopts the asymmetric padding
and prefers to arrange more padding area to the right/bottom
side given an odd padding number, as shown in Figure 6b.
By contrast, Theano strictly conducts symmetric padding
that pads the same space on both sides, no matter whether
the padding number is odd or even (see Figure 6¢). As a
result, the starting kernel covers different pixels in Theano
compared to TensorFlow, and further leads to output incon-
sistency. Actually, the different padding implementation has
widely affected many layers with padding options involved
in the parameter list, such as the convolutional operations
(e.g., Conv2D) and pooling operations (e.g., MaxPooling2D
and AveragePooling2D).

Precision (20). We also find 20 inconsistencies filtered by
AUDEE, that are caused by the floating-point precision. As
there exist many high-precision computations in DL tasks, it
is possible that some slight precision differences may affect
the final inference results. We investigate the Top1-CRs of
the 20 inconsistencies, and find they are all very small (less
than 1.9). However, such tiny precision differences still cause
a result change during inference. AUDEE can filter all of the
inconsistencies caused by precision so that manual analysis
can be conducted on the meaningful inconsistencies.
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It should be noted that, although the implement differences are
not identified as bugs, they may still lead to the quality issues when
DNNs are migrated between frameworks. In other words, a well-
trained DNN may exhibit low performance on other frameworks.
The results call for attention for considering and handling the incon-
sistencies in the migration phase. For example, the current model
converter (e.g., MMdnn [27], ONNX [13], Keras [4]) should consider
such potential inconsistencies and report warnings for some layers.

3.5.2 Study on Bugs. We also take substantial effort to manually
understand the root causes of all misbehaviours detected by AUDEE
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in the framework source code level, and finally get the bug con-
firmation. Table 4 shows the unique bugs found by AUDEE, whose
symptoms cover crash, NaN and inconsistency. In total, we dis-
cover 26 unique bugs, including 8 TensorFlow bugs, 4 CNTK bugs,
4 Theano bugs, 1 PyTorch bug, and 9 Keras bugs. We have reported
the bugs and 7 of them have been confirmed or fixed by the de-
velopers [9, 21, 35, 44-49]. More details about the 26 bugs can be
found on our website [3]. We summarize the root causes of these
bugs into two categories:

(1) Non-robust handling on corner cases. The framework de-
velopers may not fully consider the situations that may be
encountered when the program is running, thus ignoring
some key checks to ensure the code robustness. For exam-
ple, Fig. 8 shows a typical crash found by AuDEE, which has
already been fixed by TensorFlow [44, 48]. Various convo-
lutional APIs such as DepthwiseConv2D, SeparableConv2D,
and Conv2D on TensorFlow take “kernel_size=0" as nor-
mal parameter for calculation, and finally lead to crashes. As
another example, both TensorFlow and Theano conduct un-
safe sqrt operations in BatchNormalization without guar-
anteeing all inputs be positive, which could further trigger
NaN outputs [47]. In this study, we find 16 out of 26 bugs
suffer from non-robust implementations. In addition, such
cases are not found in PyTorch, indicating PyTorch may be
implemented more carefully.

Logical implementation errors. 10 out of 26 bugs are caused
by incorrect code logic in DL frameworks. The incorrect con-
volution calculation shown in Figure 6a is a typical example.
As another example, Fig. 7 shows a NaN bug occurred on
PyTorch, which is caused by the logical error when handling
the pooling operation. Specifically, PyTorch has a condition
check (Line 4) to ensure the pool unit starts inside the im-
age along a certain dimension. This check is only conducted
when there is a padding option set (Line 1). However, it is
still possible that the pool unit steps out of the image for the
no-padding cases, which could further result in a division-
by-zero operation, thus triggering NaN output afterwards.
We detect this bug with AUDEE and it has been fixed by the
PyTorch team [35].
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Answer to RQ4: The inconsistencies may be caused not only by
implementation errors, but also by implementation differences
and minor precision issues. The bugs in DL frameworks are
usually caused by the non-robust handling for corner cases or
the incorrect implementation logics.

4 THREATS TO VALIDITY

The selection of DNNs and inputs could be a threat to validity, which
may affect the results. To mitigate this threat, we select 7 widely
used DNNs and 10,000 seed inputs for evaluating network mutation.
For input and weight mutation, we randomly select 20 DNNs and
10,000 seed inputs. Note that, we mainly test the DL functionalities
using convolutional and recurrent based DNNs in this work. Other
functionalities (e.g., Transformer and Attention) are not included,
due to the substantial experiment scale. However, this does not
mean AUDEE is not capable of testing such functionalities, as long
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as relevant seed DNNs and API configurations are given. We leave
this part for our future work.

The thresholds in the localization may also affect the results
when applying in other DNNs. To mitigate this threat, we carefully
select the conservative thresholds by studying the distribution of
top-1 change rates of 1,145 inconsistencies and 1,332 consistencies,
respectively (i.e., Figure 4). Moreover, we manually check all unique
inconsistencies that are localized by AUDEE and find there are no
false positives in our results. The thresholds may miss the bugs
which have small change rates. However, our evolutional approach
can be used to amplify the change rate based on the input and
weight mutations.

Another threat would be the randomness when comparing the
NaN detection between TENsorRFuzz and AUDEE. To mitigate this
issue, we run TENSORFUZz and AUDEE for five times and calculate
the average results.

5 RELATED WORK

In this section, we summarize the relevant work including DL frame-
work testing and DL model testing.

5.1 DL Framework Testing

In recent years, there have been a lot of work focusing on the perfor-
mance enhancement and quality assurance of DL frameworks. Liu
et al. [25] and Guo et al. [17] conducted empirical studies to evalu-
ate the performance and robustness of models during the training
and inference phases. Their results revealed the implementation
differences between multiple DL frameworks. For example, the con-
figuration optimized for one framework does not necessarily work
well on another framework [25]. Moreover, even the same DNN
may produce different outputs on different frameworks [17]. These
results motivate us to detect inconsistencies across DL frameworks
through automated methods.

Zhang et al. [58] performed an empirical study on the bugs of
DL systems using TensorFlow. Nargiz et al. [19] further conducted
comprehensive studies on Keras, TensorFlow, and PyTorch with
a summarized taxonomy of faults. Different from our work, they
mainly focused on the application level (e.g., incorrect API usage
and incorrect shape handling in the training program) instead of
the DL framework implementations. Mahdi et al. [29] studied the
assertion-based oracle approximation assertions in the current DL
libraries. Our work adopts the differential testing technique for de-
tecting inconsistencies without the need of explicit oracles. Saikat
et al. [11] proposed an approach on testing the probabilistic pro-
gramming systems. They used the generation-based approach to
produce test cases based on some manually defined templates. By
contrast, AUDEE adopts the search-based testing method to generate
test cases for testing DL frameworks.

The most relevant work to AUDEE is CRADLE [34]. Our work
distinguishes from CRADLE in the following aspects: 1) CRADLE
applied the existing DNNs and inputs to detect bugs while we
proposed a search-based testing approach for generating bugs; 2)
we specially proposed an approach for detecting NaN errors, which
is not involved in CRADLE; 3) our source localization is more fine-
grained and can not only locate the buggy layers but identify buggy
parameters as well; and 4) we further proposed an empirical study
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to better understand the inconsistencies and bugs. TENsorFuzz [30]
proposed a fuzzing technique for detecting NaN bugs by generating
only “surprising” input data. By contrast, our search-based testing
tends to generate unbalanced distributed values, which is proved
to be more effective in triggering NaNs.

5.2 DL Model Testing

There are also many work focusing on the quality evaluation of DL
models. For example, DeepXplore [33] introduced the neuron cover-
age for systematically measuring corner case behaviours of DNNs.
DeepTest [50], DeepHunter [55], and DeepStellar [10] proposed the
coverage-guided testing techniques to evaluate the CNN and RNN
models. DiffChaser [56] adopted the genetic algorithm to identify
disagreements between two DNNs, but it could only generate mi-
nor disagreements which are usually caused by the optimization
differences. AUDEE aims at generating significant inconsistencies
which are more likely to be caused by the bugs. Zhang et al. [57]
characterized the inputs to DL models from the perspective of un-
certainty and leveraged the uncertainty metrics as guidance to
generate test inputs that are largely missed by existing techniques.
In addition, there are some work proposed to test the ML classi-
fiers [12, 38, 40] such as the KNN and NaiveBayes. It should be
noted that, above approaches are orthogonal to our work as they
mainly focus on evaluating the quality of DL models while AUDEE
focuses on detecting and localizing bugs in DL frameworks.

6 CONCLUSION

In this paper, we propose AUDEE to detect and localize inconsisten-
cies and bugs in DL frameworks. The generated test cases consist
of diverse DNNs and inputs, with diverse layers, layer parameters
and weights contained in these DNNs. After the inconsistencies
and bugs are detected, AUDEE adopts a fine-grained causal-testing
based method to localize the sources. We apply AUDEE in testing 4
widely used DL frameworks, where 26 unknown bugs are found
and 7 of them have been confirmed or fixed by the developers. We
further conduct an empirical study to understand the root causes
of the inconsistencies and bugs. We find that inconsistencies can be
caused by the implementation bugs, the slight precision differences,
and totally different algorithms. Although the latter two cases are
not considered as bugs, they can still lead to some quality issues
during the DNN migration between DL frameworks. The bugs are
usually caused by the non-robust handling for corner cases and the
incorrect code logic in the DL framework implementations.
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