
Planning as Model Checking Tasks

Yi Li 1 Jing Sun 2 Jin Song Dong 3 Yang Liu 3 Jun Sun 4

1University of Toronto

2The University of Auckland

3National University of Singapore

4Singapore University of Technology and Design

Oct 13, 2012

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 1 / 25



Outline

1 Introduction
Two Problems
Motivation

2 Experiments

3 PAT as Planning Service
Case Study: Transport4You
Route Planning Model Design

4 Future Work

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 2 / 25



Two Problems

Model Checking

Given a system model M, an initial state s0, and a formula ϕ which
specifies the property, Model Checking can be viewed as M, s0 |= ϕ.

Planning

Classical Planning is defined as a three-tuple (S0,G ,A) where S0

represents the initial state, G represents the set of goal states and A
represents a finite set of deterministic actions.

Intuition: construct a safety property G¬ϕ that requires the formula ϕ
never to hold.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 3 / 25



Motivation

Performance of model checkers are comparable to that of the
state-of-the-art planners.

Domain specific control knowledge can be exploited to improve the
performance of model checkers on planning problems.

Model checkers are good at handling large state spaces.

Model checking can be used as underlying planning service for upper
layer applications.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 4 / 25



Tools

PAT: Process Analysis Toolkit (demo)

NuSMV: an extension of the symbolic model checker SMV

Spin: established model checker, modeling language Promela similar
to CSP# of PAT

SatPlan: an award winning planner for optimal deterministic planning

Metric-FF: domain independent planning system

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 5 / 25



The sliding game problem

The 8-tiles problem is the largest puzzle of its
type that can be completely solved.

The game is simple, and yet obeys a
combinatorially large problem space of 9!/2
states.

The N × N extension of the problem is
NP-hard.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 6 / 25



The sliding game problem cont’d

(a) Hard1 (b) Hard2 (c) Most1

(d) Most2 (e) Rand1 (f) Rand2

Figure: Initial configurations of the sliding game problem instances

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 7 / 25



Experimental Results

Figure: Execution time comparison of PAT, NuSMV and SatPlan on the sliding
game problem, shown on a logarithm scale

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 8 / 25



Case Study: Transport4You

Transport4You won the Formal Methods Award in
SCORE contest out of 56 submissions

Presented at ICSE 2011 in Hawaii

Specifically designed municipal transportation
management solution

Simplify the fare collection process and provide
customized services to subscribers

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 9 / 25



Route Planning Module

Figure: System architecture diagram of the “Transport4You” IPTM system

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 10 / 25



Route Planning Module

Figure: Simulator architecture diagram

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 11 / 25



Why Using PAT?

The searching algorithms of PAT is highly efficient and ready to be
used out-of-box.

CSP# is a highly expressive language for modeling various kind of
systems.

PAT is constructed in a modularized fashion. Modules for specific
purposes can be built to give better support for the domains that are
considered.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 12 / 25



Definition

A Route Planning task is defined by a 5-tuple (S,B,t,c,L) with the
following components:

S: the set of bus stops

B: the set of bus lines

t : S → BS : a function mapping s to the set of available bus lines at
stop s

c : S → S : the stop one can get to by crossing the road at stop s.

L(s) is true when the current location of user is at stop s.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 13 / 25



Definition cont’d

A Route Planning problem is mapped to a classical planning problem as
follows:

States: Each state is represented as a literal s ∈ S , where L(s) holds.

Initial State: s0

Goal States: sg

Actions: 1. (TakeBus(bi , s),
PRECOND: bi ∈ t(s),
EFFECT: ¬L(s) ∧ L(bi (s)))
2. (Cross(s),
PRECOND: s ∈ dom(c),
EFFECT: ¬L(s) ∧ L(c(s)))

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 14 / 25



Basic Model

Environment Variables

enum{TerminalA, Stop5, Stop7, Stop9 ... Stop26, Stop11, Stop35,
Stop34};

var sLine1 = [TerminalA, Stop5, Stop7, Stop9, Stop58, Stop31, Stop33,
Stop53, Stop57, TerminalC];
var<BusLine> Line1 = new BusLine(sLine1,1);
var sLine2 = [TerminalC, Stop56, Stop52, Stop32, Stop30, Stop59,
Stop10, Stop8, Stop6, TerminalA];
var<BusLine> Line2 = new BusLine(sLine2,2);
...
var sLine14 = [TerminalC, Stop34, Stop32, Stop30, Stop16, TerminalB];
var<BusLine> Line14 = new BusLine(sLine14,14);

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 15 / 25



Basic Model cont’d

Initial State

var currentStop = Stop5;
var B0 = [-2];
var<BusLine> currentBus = new BusLine(B0,-1);

Transition Functions

takeBus()=case{
currentStop==TerminalA:BusLine1[]BusLine3[]BusLine5[]BusLine7
currentStop==Stop5:BusLine1[]BusLine5
currentStop==Stop7:BusLine1[]BusLine5
...
currentStop==Stop11:BusLine12
currentStop==Stop35:BusLine13
currentStop==Stop34:BusLine14
};

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 16 / 25



Basic Model cont’d

Transition Functions

BusLine1=
TakeBus.1{currentStop=Line1.NextStop(currentStop);
currentBus=Line1;} ->plan;
...
BusLine14=
TakeBus.14{currentStop=Line14.NextStop(currentStop);
currentBus=Line14;} ->plan;

crossRoad()=case{
currentStop==Stop5: crosscurrentStop=Stop6 ->plan
currentStop==Stop7: crosscurrentStop=Stop8 ->plan
...
currentStop==Stop35: crosscurrentStop=Stop34 ->plan
currentStop==Stop34: crosscurrentStop=Stop35 ->plan
};

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 17 / 25



Basic Model cont’d

Transition Functions

plan=takeBus()[]crossRoad();

Goal States

#define goal currentStop==Stop53;

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 18 / 25



Cost Function Approach

Modified Transition Functions

takeBus()=tau{cost = cost + 10}->case{...
crossRoad()=tau{cost = cost + 2}->case{...
BusLine1=tau{if (!currentBus.isEqual(LineX )){cost = cost + 5}}
->TakeBus.1...

New assertion: #assert plan reaches goal with min(cost);

cost = 10× ]takeBus + 5× ]crossRoad + 2× ]busChange

Original problem can be solved by a simple breadth-first search.

To find the goal state with minimum cost, the whole state space has
to be searched?

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 19 / 25



Cost Function Approach cont’d

Algorithm 1 newBFSVerification()

initialize queue: working ;
current ← InitialStep; τ ←∞;
repeat

value ← EvaluateExpression(current);
if current.ImplyCondition() then

if value < τ then
τ ← value;

end if
end if
if value > τ then

continue;
end if
for all step ∈ current.MakeOneMove() do

working .Enque(step);
end for

until working .Count() 6 0

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 20 / 25



Search Space Pruning

Figure: An example bus line configuration

Figure: A solution produced by the basic model

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 21 / 25



Search Space Pruning cont’d

Given the current bus line is bk , an action TakeBus(bi , sj) is not
redundant if one of the followings holds:

1 bi = bk

2 bi ∈ t(sj) ∧ bk ∈ t(sj) ∧ bi (sj) 6= bk(sj) ∧ ∃m ∈ N1,
bi (sj)

−m 6= bk(sj)
−m

3 1 and 2 do not hold and bi (sj) 6= bk(sj) ∧ b−1
i (sj) 6= b−1

k (sj)

Figure: Special pattern of two overlapping bus lines

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 22 / 25



Search Space Pruning cont’d

(a) Same Previous Stop

(b) Same Next Stop

Figure: Redundant bus changes

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 23 / 25



Future Work

Extend the comparisons to a larger range of model checking as well as
planning tools.

By fine tuning the way of modeling or exploiting domain specific
knowledge, some models can be further optimized.

An automated translator for the translation from PDDL to CSP# can
be implemented.

The applications of PAT as planning service should be extended to a
larger range on real problems in various fields.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 24 / 25



The End

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 25 / 25


	Introduction
	Two Problems
	Motivation

	Experiments
	PAT as Planning Service
	Case Study: Transport4You
	Route Planning Model Design

	Future Work

