Planning as Model Checking Tasks

YiLi! JingSun? Jin Song Dong 3 Yang Liu3 Jun Sun*

LUniversity of Toronto
2The University of Auckland
3National University of Singapore

4Singapore University of Technology and Design

Oct 13, 2012

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012

© Introduction
@ Two Problems
@ Motivation

© Experiments

© PAT as Planning Service
@ Case Study: Transport4You
@ Route Planning Model Design

@ Future Work

Oct 13, 2012 2/25

(SEW-35) Planning as Model Checking Tasks

Two Problems

Model Checking

Given a system model M, an initial state sp, and a formula ¢ which
specifies the property, Model Checking can be viewed as M, sy = .

Planning

Classical Planning is defined as a three-tuple (Sp, G, A) where Sy
represents the initial state, G represents the set of goal states and A
represents a finite set of deterministic actions.

Intuition: construct a safety property G— that requires the formula ¢
never to hold.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 3/25

@ Performance of model checkers are comparable to that of the
state-of-the-art planners.

@ Domain specific control knowledge can be exploited to improve the
performance of model checkers on planning problems.

@ Model checkers are good at handling large state spaces.

@ Model checking can be used as underlying planning service for upper
layer applications.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 4 /25

Tools

@ PAT: Process Analysis Toolkit (demo)
@ NuSMV: an extension of the symbolic model checker SMV

@ Spin: established model checker, modeling language Promela similar
to CSP# of PAT

@ SatPlan: an award winning planner for optimal deterministic planning

@ Metric-FF: domain independent planning system

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 5/25

The sliding game problem

@ The 8-tiles problem is the largest puzzle of its
type that can be completely solved.

@ The game is simple, and yet obeys a 0 L] 2
combinatorially large problem space of 9!/2 31415
states.

. : 6 | 7|8

@ The N x N extension of the problem is

NP-hard.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 6 /25

The sliding game problem cont'd

21110057562

(d) Most2 (e) Rand1 (f) Rand2

Figure: Initial configurations of the sliding game problem instances

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 7/25

Experimental Results

1000

100

®satPlan
PAT

10 HNusmv

Time taken in logrithmic scale (s)

Hard1 Hard2 Most1 Most2 Rand1 Rand2

Problem instances

Figure: Execution time comparison of PAT, NuSMV and SatPlan on the sliding
game problem, shown on a logarithm scale

Planning as Model Checking Tasks Oct 13, 2012

Case Study: Transport4You

With ICSE 2011 in Hawaii

(SEW-35)

@ Transport4You won the Formal Methods Award in
SCORE contest out of 56 submissions

@ Presented at ICSE 2011 in Hawaii

@ Specifically designed municipal transportation
management solution

@ Simplify the fare collection process and provide
customized services to subscribers

Planning as Model Checking Tasks Oct 13, 2012 9 /25

Route Planning Module

Bus Embedded System

[Detection Module]

| Fault Correction Module l
| Report Module |

Network — _ _._._.ﬂ._._._._.,._ S e

()]

Administrator

Central Mainframe

[User Notification Module] [Service Dispatching Module]

Bus Information

Mar

Module

p
Account
h 1ent Module

|

Server Management
Module

)

.

[User Behavior Analysis Module]

Route Planning Module
L —

Figure: System architecture diagram of the “Transport4You” IPTM system

Data Persistence

(SEW-3! Planning as Model Checking Tasks Oct 13, 2012 10 / 25

Route Planning Module

Simulator Presentation Layer

Road Condition
Representation

Display Control Logic

|

PAT Verification
<<El PAT CSP# Model

Results

Figure: Simulator architecture diagram

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 11 /25

Why Using PAT?

@ The searching algorithms of PAT is highly efficient and ready to be
used out-of-box.

o CSP+# is a highly expressive language for modeling various kind of
systems.

@ PAT is constructed in a modularized fashion. Modules for specific

purposes can be built to give better support for the domains that are
considered.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 12 /25

A Route Planning task is defined by a 5-tuple (S,B,t,c,L) with the
following components:

@ S: the set of bus stops
@ B: the set of bus lines

@ t: S — Bs: a function mapping s to the set of available bus lines at
stop s

c:S — §S: the stop one can get to by crossing the road at stop s.

L(s) is true when the current location of user is at stop s.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 13 /25

Definition cont'd

A Route Planning problem is mapped to a classical planning problem as
follows:

States: Each state is represented as a literal s € S, where L(s) holds.
Initial State: sg
Goal States: sg
Actions: 1. (TakeBus(bj,s),

PRECOND: b; € t(s),
EFFECT: —=L(s) A L(bi(s)))
2. (Cross(s),
PRECOND: s € dom(c),
EFFECT: =L(s) A L(c(s)))

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 14 / 25

Basic Model

Environment Variables

enum{ TerminalA, Stop5, Stop7, Stop9 ... Stop26, Stopll, Stop35,
Stop34};

var sLinel = [TerminalA, Stop5, Stop7, Stop9, Stop58, Stop31, Stop33,
Stop53, Stop57, TerminalC];

var<BusLine> Linel = new BusLine(sLinel,1);

var sLine2 = [TerminalC, Stop56, Stop52, Stop32, Stop30, Stop59,
Stopl0, Stop8, Stop6, TerminalA];

var<BusLine> Line2 = new BusLine(sLine2,2);

var sLinel4 = [TerminalC, Stop34, Stop32, Stop30, Stop16, TerminalBJ;
var<BusLine> Linel4 = new BusLine(sLinel4,14);

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 15 / 25

Basic Model cont'd

Initial State

var currentStop = Stop5;
var BO = [-2];
var<BusLine> currentBus = new BusLine(B0,-1);

Transition Functions

takeBus()=case{
currentStop==TerminalA:BusLinel[|BusLine3[|BusLine5[[BusLine7
currentStop==Stop5:BusLinel[[BusLine5
currentStop==_Stop7:BusLinel[[BusLine5

currentStop==Stop11:BuslLinel2
currentStop==Stop35:BusLinel3
currentStop==Stop34:BusLinel4

}'.

v

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 16 / 25

Basic Model cont'd

Transition Functions
Buslinel=

TakeBus.1{currentStop=Linel.NextStop(currentStop);
currentBus=Linel;} ->plan;

Busl inel4=
TakeBus.14{ currentStop=Linel4.NextStop(currentStop);
currentBus=Linel4;} ->plan;

crossRoad()=case{
currentStop==Stop5: crosscurrentStop=Stopb ->plan
currentStop==_Stop7: crosscurrentStop=Stop8 ->plan

currentStop==_Stop35: crosscurrentStop=Stop34 ->plan
currentStop==_Stop34: crosscurrentStop=Stop35 ->plan

},.

V.
(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 17 / 25

Basic Model cont'd

Transition Functions

plan=takeBus()[]crossRoad();

Goal States

#define goal currentStop==_Stop53;

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 18 / 25

Cost Function Approach

Modified Transition Functions

takeBus()=tau{cost = cost + 10}->case{...
crossRoad()=tau{cost = cost + 2}->case{...

BusLinel=tau{if ('currentBus.isEqual(LineX)){cost = cost + 5}}
->TakeBus.1...

New assertion: #assert plan reaches goal with min(cost);
cost = 10 x fitakeBus + 5 x tcrossRoad + 2 x gbusChange
Original problem can be solved by a simple breadth-first search.

To find the goal state with minimum cost, the whole state space has
to be searched?

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 19 / 25

Cost Function Approach cont'd

Algorithm 1 newBFSVerification()

initialize queue: working;
current < InitialStep; T < oc;
repeat
value < EvaluateExpression(current);
if current.ImplyCondition() then
if value < 7 then
T < value;
end if
end if
if value > 7 then
continue;
end if
for all step € current. MakeOneMove() do
working .Enque(step);
end for
until working.Count() <0

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 20 / 25

Search Space Pruning
TakeBus(by.s;) S~ TakeBus(by.s;)
O mw— O w—C)
UTakeBustons) =t TakeBus(bss)

Figure: A solution produced by the basic model

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 21 /25

Search Space Pruning cont'd

Given the current bus line is by, an action TakeBus(bj, s;) is not
redundant if one of the followings holds:

Q b = by

Q b€ t(Sj) A by € t(SJ) A b,(SJ) #* bk(Sj) A dm € Ny,
bi(sj)™" # bi(sj)™"

© 1 and 2 do not hold and b;(s;) # bk(s;) A b *(s;) # by (s;)

Figure: Special pattern of two overlapping bus lines

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 22 /25

Search Space Pruning con

TakeBus(by.s;) TakeBus(by.s;)

(a) Same Previous Stop

TakeBus(b,.s;) TakeBus(b,.s5)

E%) $3

R EammEEmEEEEE

o TakeBus(b;.s5)

(b) Same Next Stop

Figure: Redundant bus changes

(SEW-35)

Planning as Model Checking Tasks

Oct 13, 2012

@ Extend the comparisons to a larger range of model checking as well as
planning tools.

@ By fine tuning the way of modeling or exploiting domain specific
knowledge, some models can be further optimized.

@ An automated translator for the translation from PDDL to CSP# can
be implemented.

@ The applications of PAT as planning service should be extended to a
larger range on real problems in various fields.

(SEW-35) Planning as Model Checking Tasks Oct 13, 2012 24 / 25

The End

Planning as Model Checking Tasks Oct 13, 2012

	Introduction
	Two Problems
	Motivation

	Experiments
	PAT as Planning Service
	Case Study: Transport4You
	Route Planning Model Design

	Future Work

