Symbolic Abstraction with SMT Solvers

 $\underbrace{ Yi \ Li}^1 \quad {\rm Aws} \ {\rm Albarghouthi}^1 \quad {\rm Arie} \ {\rm Gurfinkel}^2 \quad {\rm Zachary} \ {\rm Kincaid}^1 \quad {\rm Marsha} \\ {\rm Chechik}^1$

¹Department of Computer Science University of Toronto

²Software Engineering Institute Carnegie Mellon University

December 17, 2013

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

Symbolic Abstraction with SMT Solvers

▲ □ ► ▲ □ ►

Outline

Introduction

3 SYMBA Algorithm

4 Evaluation

(日) (四) (三) (三)

Outline

Introduction

Examples

3 SYMBA Algorithm

4 Evaluation

5 Conclusion and Future Work

・ロト ・四ト ・ヨト ・ヨト

Introduction

UFO

Figure: High level description of UFO.

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

Symbolic Abstraction with SMT Solvers

э

◆□▶ ◆□▶ ◆□▶ ◆□>

```
Intervals (BOX) domain
```

```
1:y=0; x=0;
2:while (x<100) {
    x=x+2;
    y=y+2;
  }
3:assert (y>=0);
```

```
1:y=0; x=0;

2:while (x<100) {

    x=x+2;

    y=y+2;

    }

3:assert (y>=0);
```

Intervals (BOX) domain

1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

2: $x = [0, 0], y = [0, 0]$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik () Sy

< □ > < □ > < □ > < □ > < □ >

1: y=0; x=0; 1: $x = (-\infty, \infty), y = (-\infty, \infty)$ 2: while (x<100) { x=x+2; y=y+2;} 2: x = [0,0], y = [0,0]2: x = [2,2], y = [2,2]3: assert (y>=0);

Intervals (BOX) domain

1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

2: $x = [0, 2], y = [0, 2]$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik () Syn

< □ > < □ > < □ > < □ > < □ >

Intervals (BOX) domain

1:y=0; x=0;
1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

2: while (x<100) {
 $x=x+2;$
 $y=y+2;$
}
3: assert (y>=0);

Imprecision due to join

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

э

・ロッ ・ 一 ・ ・ ・ ・

1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

2: $x = [0, 2], y = [0, 2]$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik () Syn

< □ > < □ > < □ > < □ > < □ >

1:y=0; x=0; 1: $x = (-\infty, \infty), y = (-\infty, \infty)$ 2: while (x<100) { x=x+2; y=y+2;} 3: assert (y>=0); 1: $x = (-\infty, \infty), y = (-\infty, \infty)$ 2: x = [0, 2], y = [0, 2]2: x = [2, 4], y = [2, 4]

Intervals (BOX) domain

Intervals (BOX) domain

1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

2: $x = [0, \infty), y = [0, \infty)$

(日)

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik () Sy

1:y=0; x=0; 1: 2:while (x<100) { x=x+2; y=y+2; } 3:assert (y>=0);

Intervals (BOX) domain

1:
$$x = (-\infty, \infty), y = (-\infty, \infty)$$

2: $x = [0, \infty), y = [0, \infty)$

Imprecision due to widening

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

1: y=0; x=0; 2: while (x<100) { x=x+2; y=y+2; } 3: assert (y>=0); 1: $x = (-\infty, \infty), y = (-\infty, \infty)$ 2: $x = [0, \infty), y = [0, \infty)$

Intervals (BOX) domain

Imprecision due to widening

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Join

• Avoids exploring exponentially many paths

-

Join

• Avoids exploring exponentially many paths

Widening

• Forces convergence

-

・ロト ・日 ・ ・ ヨ ・ ・

Join

• Avoids exploring exponentially many paths

Widening

• Forces convergence

Abstract post

• Imprecise interpretation of instructions, e.g. y=x<<2

Join

• Avoids exploring exponentially many paths

Widening

• Forces convergence

Abstract post

• Imprecise interpretation of instructions, e.g. y=x<<2

Abstract domain

• E.g., BOX cannot represent relation y=x+2

Symbolic Abstraction

・ロト ・四ト ・ヨト ・ヨト

Introduction

Symbolic Abstraction

. . .

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

Symbolic Abstraction with SMT Solvers

Itinerary

<ロ> (日) (日) (日) (日) (日)

Itinerary

Itinerary

1:
$$x = y + 1;$$

2: $y = x - y;$

3:
$$assert(y == 1);$$

$$x:(-\infty,\infty)$$
 $y:(-\infty,\infty)$

<ロ> (日) (日) (日) (日) (日)

Itinerary

Itinerary

Introduction

Symba

$$\varphi$$
 : QF_LRA

$$\begin{aligned} \varphi &\equiv x = 1 \\ \varphi &\equiv 1 \leqslant y \leqslant 3 \land (1 \leqslant x \leqslant 3 \lor x \geqslant 4) \end{aligned}$$

$$\widehat{\alpha}(\varphi)$$
 : TCM
 $T = \{x\}$
 $T = \{y, x + y\}$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

◆□▶ ◆□▶ ◆国▶ ◆国▶

Introduction

Symba

 φ : QF_LRA

 $\varphi \equiv x = 1$ $\varphi \equiv 1 \leqslant y \leqslant 3 \land (1 \leqslant x \leqslant 3 \lor x \geqslant 4)$

$$\widehat{\alpha}(\varphi)$$
 : TCM
 $T = \{x\}$
 $T = \{y, x + y\}$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

<ロ> (日) (日) (日) (日) (日)

Symba

templates

$$\widehat{\alpha}(\varphi) : \mathsf{TCM}$$
$$T = \{x\}$$
$$T = \{y, x + y\}$$

φ : QF_LRA

$$\varphi \equiv x = 1 \varphi \equiv 1 \leqslant y \leqslant 3 \land (1 \leqslant x \leqslant 3 \lor x \geqslant 4)$$

atoms

・ロト ・四ト ・ヨト ・ヨト

Symba

Introduction

atomstemplates $\varphi : QF_LRA$ $\widehat{\alpha}(\varphi) : TCM$ $\varphi \equiv x = 1$ $T = \{x\}$ $\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4)$ $T = \{y, x + y\}$

<ロ> (日) (日) (日) (日) (日)

- Novel symbolic abstraction algorithm using SMT solvers.
- Maintain both under- and over-approximation of $\widehat{\alpha}(\varphi)$.
- Avoid imprecision by symbolically enumerating program paths.
- Parameterized by the TCM abstract domain that subsumes intervals, octagons and octahedra.

Outline

Introduction

3 SYMBA Algorithm

4 Evaluation

5 Conclusion and Future Work

æ

<ロ> (日) (日) (日) (日) (日)

Equivalence Class: [p]

$$\varphi \equiv 0 \leqslant x \leqslant 3 \land 0 \leqslant z \leqslant 2 \land$$
$$(2y \leqslant -x + 4 \lor 4y = 3x + 3)$$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

æ

・ロト ・四ト ・ヨト ・ヨト

Equivalence Class: [p]

$$\varphi \equiv 0 \leqslant x \leqslant 3 \land 0 \leqslant z \leqslant 2 \land$$
$$(2y \leqslant -x + 4 \lor 4y = 3x + 3)$$

æ

・ロト ・日・ ・ ヨ・

Equivalence Class: [p]

$$\varphi \equiv 0 \leqslant x \leqslant 3 \land 0 \leqslant z \leqslant 2 \land$$
$$(2y \leqslant -x + 4 \lor 4y = 3x + 3)$$

a:
$$x = 0$$

b: $z = 2$
c: $x = 3$
d: $z = 0$
e: $x + 2y = 4$
f: $-3x + 4y = 3$

▲□▶ ▲□▶ ▲ □▶

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

æ

Equivalence Class: [p]

<ロ> (日) (日) (日) (日) (日)
Equivalence Class: [p]

Equivalence Class: [p]

э

(日) (四) (三) (三)

Equivalence Class: [p]

э

(日) (四) (三) (三)

Equivalence Class: [p]

э

Equivalence Class: [p]

Equivalence Class: [p]

$$\varphi \equiv 0 \leqslant x \leqslant 3 \land 0 \leqslant z \leqslant 2 \land$$
$$(2y \leqslant -x + 4 \lor 4y = 3x + 3$$

<ロ> (日) (日) (日) (日) (日)

э

Equivalence Class: [p]

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

Symbolic Abstraction with SMT Solvers

December 17, 2013 11 / 31

э

Equivalence Class: [p]

< ロ > < 同 > < 回 > < 回 >

cf) (cd

Equivalence Class: [p]

$$\varphi \equiv 0 \leqslant x \leqslant 3 \land 0 \leqslant z \leqslant 2 \land$$
$$(2y \leqslant -x + 4 \lor 4y = 3x + 3$$

(日)

э

Equivalence Class: [p]

Equivalence Class: [p]

A 3-dimensional Example

$\varphi \equiv 0 \leqslant x \leqslant 3 \land 0 \leqslant z \leqslant 2 \land (2y \leqslant -x + 4 \lor 4y = 3x + 3) \quad T = \{y\}$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

3

Outline

Introduction

2 Examples

3 SYMBA Algorithm

4 Evaluation

5 Conclusion and Future Work

æ

Symba Formalized

$$\frac{1}{\langle \emptyset, \bot, \top \rangle}$$
 Init

 $\frac{\textit{p} \models \varphi \land \neg \widehat{\gamma}(\textit{U})}{\langle \textit{M},\textit{U},\textit{O} \rangle \rightarrow \langle \textit{M} \cup \{\textit{p}\},\textit{U} \sqcup \widehat{\alpha}(\textit{p}),\textit{O} \rangle} \operatorname{GlobalPush}$

$$\begin{array}{c} U = (k_1, \dots, k_n) \quad p_2 \models \varphi \quad [p_2] = [p_1] \quad t_i(p_1) < t_i(p_2) \\ \\ \hline \# p_3 \models \varphi \land t_i(p_2) \leqslant t_i(p_3) \land [p_2] \subset [p_3] \\ \hline \langle M, U, O \rangle \to \langle M, U \sqcup (k_1, \dots, k_{i-1}, \infty, k_{i+1}, \dots, k_n), O \rangle \end{array}$$
 UNBOUNDED $(p_1 \in M, t_i \in T)$

$$\frac{p_2, p_3 \models \varphi \quad t_i(p_1) < t_i(p_2) \leqslant t_i(p_3) \quad [p_1] = [p_2] \subset [p_3]}{\langle M, U, O \rangle \rightarrow \langle M \cup \{p_3\}, U \sqcup \widehat{\alpha}(p_3), O \rangle} \text{ Unbounded-Fail}(p_1 \in M, t_i \in T)$$

$$\frac{O = (k_1, \dots, k_n) \quad m = \max\{t_i(p') \mid p' \in M\} \quad \varphi \Rightarrow t_i \leqslant m}{\langle M, U, O \rangle \Rightarrow \langle M, U, O \sqcap (k_1, \dots, k_{i-1}, m, k_{i+1}, \dots, k_n) \rangle} \text{BOUNDED}(t_i \in T)$$

Figure: Inference rules used by SYMBA.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

GLOBALPUSH

$$\frac{p\models \varphi \wedge \neg \widehat{\gamma}(U)}{\langle M, U, O\rangle \rightarrow \langle M \cup \{p\}, U \sqcup \widehat{\alpha}(p), O\rangle} \operatorname{GlobalPush}$$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

- 2

・ロト ・部ト ・モト ・モト

UNBOUNDED-FAIL

 $\frac{p_2, p_3 \models \varphi \quad t_i(p_1) < t_i(p_2) \leqslant t_i(p_3) \quad [p_1] = [p_2] \subset [p_3]}{\langle M, U, O \rangle \rightarrow \langle M \cup \{p_3\}, U \sqcup \widehat{\alpha}(p_3), O \rangle} \text{ Unbounded-Fail}(p_1 \in M, t_i \in T)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unbounded

$$\begin{array}{c} U = (k_1, \dots, k_n) \quad p_2 \models \varphi \quad [p_2] = [p_1] \quad t_i(p_1) < t_i(p_2) \\ \hline \# p_3 \models \varphi \land t_i(p_2) \leqslant t_i(p_3) \land [p_2] \subset [p_3] \\ \hline \langle M, U, O \rangle \to \langle M, U \sqcup (k_1, \dots, k_{i-1}, \infty, k_{i+1}, \dots, k_n), O \rangle \end{array}$$
 UNBOUNDED $(p_1 \in M, t_i \in T)$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

・ロト ・部ト ・モト ・モト

BOUNDED

 $\frac{O = (k_1, \dots, k_n) \quad m = \max\{t_i(p') \mid p' \in M\} \quad \varphi \Rightarrow t_i \leq m}{\langle M, U, O \rangle \rightarrow \langle M, U, O \sqcap (k_1, \dots, k_{i-1}, m, k_{i+1}, \dots, k_n) \rangle} \text{Bounded}(t_i \in T)$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

A 2-dimensional Example

$\varphi \equiv 1 \leqslant y \leqslant 3 \land (1 \leqslant x \leqslant 3 \lor x \geqslant 4) \quad T = \{y, x + y\}$

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

- 3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

UNBOUNDEDIMPL

1: function UNBOUNDIMPL($c \in \mathcal{P}(\mathcal{E}(\varphi)), t_i \in T$) 2: PUSH() ASSERT $(t_i > U[t_i])$ 3: if UNSAT then 4. $O[t_i] \leftarrow U[t_i]$; POP(); return 5: ASSERT($\land c$) 6: if UNSAT then 7. REMOVES TRONGER (L(t), c); POP(); return 8: ASSERT($\bigvee (\mathcal{E}(\varphi) \setminus c))$) g٠ if SAT then ▷ UNBOUNDED-FAIL 10: POP(); return GETMODEL() 11: ▷ UNBOUNDED 12. else $O[t_i] \leftarrow \infty$ 13: POP(); return 14.

UNBOUNDEDIMPL

1: function UNBOUNDIMPL($c \in \mathcal{P}(\mathcal{E}(\varphi)), t_i \in T$) 2: PUSH() ASSERT $(t_i > U[t_i])$ 3: if UNSAT then 4. $O[t_i] \leftarrow U[t_i]$; POP(); return 5: ASSERT($\land c$) 6: if UNSAT then 7. REMOVES TRONGER (L(t), c); POP(); return 8: ASSERT($\bigvee (\mathcal{E}(\varphi) \setminus c))$) g٠ if SAT then ▷ UNBOUNDED-FAIL 10: POP(); return GETMODEL() 11: ▷ UNBOUNDED 12. else $O[t_i] \leftarrow \infty$ 13: POP(); return 14.

UNBOUNDEDIMPL

1: function UNBOUNDIMPL $(c \in \mathcal{P}(\mathcal{E}(\varphi)), t_i \in T)$

- 2: PUSH()
- 3: ASSERT $(t_i > U[t_i])$
- 4: if UNSAT then

5:
$$O[t_i] \leftarrow U[t_i]; \text{POP}(); \text{ return}$$

- 6: ASSERT $(\bigwedge c)$
- 7: if UNSAT then
- 8: REMOVESTRONGER(L(t), c); POP(); return
- 9: ASSERT $(\bigvee (\mathcal{E}(\varphi) \setminus c)))$
- 10: if SAT then ▷ UNBOUNDED-FAIL
- 11: POP(); return GETMODEL()
- 12: else

13:
$$O[t_i] \leftarrow \infty$$

14: POP(); return

▷ UNBOUNDED

UNBOUNDEDIMPL

1: function UNBOUNDIMPL($c \in \mathcal{P}(\mathcal{E}(\varphi)), t_i \in T$)

- 2: PUSH()
- 3: ASSERT $(t_i > U[t_i])$
- if UNSAT then 4.

5:
$$O[t_i] \leftarrow U[t_i]; \text{POP}(); \text{ return}$$

- ASSERT($\land c$) 6:
- if UNSAT then 7.
- REMOVES TRONGER (L(t), c); POP(); return 8:
- ASSERT($\bigvee (\mathcal{E}(\varphi) \setminus c))$) 9:
- if SAT then 10:
- POP(); return GETMODEL() 11:
- else 12.

13:
$$O[t_i] \leftarrow \infty$$

POP(); return 14:

▷ UNBOUNDED-FAIL

< ロ > < 同 > < 回 > < 回 >

▷ UNBOUNDED

Soundness

Soundness of UNBOUNDED

Given a formula φ in logic \mathcal{L} and a linear expression t over the variables of φ , then $\nexists k \in \mathbb{R} \cdot \varphi \Rightarrow t \leq k$ (i.e., t is unbounded) if and only if there exist $p_1, p_2 \models \varphi$ such that

• $t(p_1) < t(p_2)$

$$[p_1] = [p_2]$$

Termination

Fair Scheduling

A fair scheduling is an infinite sequence of actions a_1, a_2, \ldots , where

 $a_i \in \{\text{GlobalPush}, \text{Unbounded}, \text{Unbounded-Fail}\},\$

and the following conditions apply:

- **1** GLOBALPUSH appears infinitely often, and
- **2** if a point p is added to M along the execution sequence, then both UNBOUNDED(p, t) and UNBOUNDED-FAIL(p, t) eventually appear.

Termination

Fair Scheduling

A fair scheduling is an infinite sequence of actions a_1, a_2, \ldots , where

 $a_i \in \{\text{GlobalPush}, \text{Unbounded}, \text{Unbounded-Fail}\},\$

and the following conditions apply:

- GLOBALPUSH appears infinitely often, and
- **2** if a point p is added to M along the execution sequence, then both UNBOUNDED(p, t) and UNBOUNDED-FAIL(p, t) eventually appear.

Termination

SYMBA terminates after a finite number of actions in any fair execution.

(日)

Outline

1 Introduction

2 Examples

3 SYMBA Algorithm

5) Conclusion and Future Work

æ

<ロ> <問> <問> < 回> < 回>

Optimizations

Integer Rounding

$$\frac{U = (k_1, \ldots, k_n) \quad k_i \in \mathbb{R} \quad p \models \varphi \quad t_i(p) = \lceil k_i \rceil}{\langle M, U, O \rangle \rightarrow \langle M \cup \{p\}, U \sqcup \widehat{\alpha}(p), O \rangle} \operatorname{IR}(t_i \in T)$$

æ

・ロト ・四ト ・ヨト ・ヨト

Optimizations

Integer Rounding

$$egin{aligned} & U = (k_1, \dots, k_n) \quad k_i \in \mathbb{R} \quad p \models arphi \quad t_i(p) = \left\lceil k_i
ight
ceil \ & \langle M, U, O
angle o \langle M \cup \{p\}, U \sqcup \widehat{lpha}(p), O
angle \end{aligned}$$
 $\operatorname{IR}(t_i \in T)$

Scheduling Policy

 $GlobalPush, \underline{UnboundedImpl}, \dots, \underline{UnboundedImpl}, GlobalPush$

forcePush

Li, Albarghouthi, Gurfinkel, Kincaid, Chechik ()

э

- - 4 🗇 ▶ - 4 🗎 ▶

SMT-LIB2 Benchmarks

Figure: Problem file for the 2-D example.

$$\varphi \equiv 1 \leqslant y \leqslant 3 \land (1 \leqslant x \leqslant 3 \lor x \geqslant 4) \quad T = \{y, x + y\}$$

3

Evaluation

- Evaluation of the effects of different optimizations on the efficiency of SYMBA.
- Comparison with other SMT-based symbolic abstraction algorithms.
- Precision comparison of invariants generated by SYMBA against traditional abstract transformers.

-

(日)

Evaluation

- $\bullet\,$ Evaluation of the effects of different optimizations on the efficiency of $_{\rm SYMBA}.$
- Comparison with other SMT-based symbolic abstraction algorithms.
- Precision comparison of invariants generated by SYMBA against traditional abstract transformers.

SYMBAIR(<i>forcePush</i>)	SYMBA with integer rounding. (forcePush) num-			
	ber of UNBOUNDEDIMPL calls are forced before			
	GLOBALPUSH is called.			
SymbairOff	$\mathrm{SymBAIR}(\infty)$ without integer rounding.			
DnfBound	Implemented a path-based algorithm described in			
	[Monniaux & Gonnord, 2011] using APRON.			
Z3Qelim	Applied Z3 quantifier elimination to compute the			
	stongest post-condition.			

-

(日)

SYMBA on SMT-LIB2 Benchmarks

CONFIGURATION	TIME(s)	# SMT	# Solve	# GP	# UB
SymbaIR(1)	1,707	136,766	295	69,321	32,948
SymbaIR(3)	560	74,217	295	16,138	30,861
SymbaIR(8)	562	65,185	295	6,734	31,948
SymbaIR(13)	538	65,019	295	5,502	32,603
SymbalR(∞)	569	69,785	295	5,491	34,978
SymbaIROFF	708	72,680	295	5,478	35,910
DNFBOUND	1,562	208	48		
Z3Qelim	669	-	39		

Table: Overall results on 295 SMT-LIB2 benchmarks.

э

SYMBA on SMT-LIB2 Benchmarks Cont'd

Figure: Number of benchmarks solved vs. timeout in seconds for several configurations of $\ensuremath{\mathrm{SYMBA}}$.

SYMBAIR(∞) vs. INTERVALS on Invariant Generation

AbsDom	# Completed	TIME(s)	# SAFETY PROOFS	Precision Gain(%)
SymbalR(∞)	592	4,024	47	73
INTERVALS	604	121	0	0

Table: Overall results for loop invariant generation on 604 C benchmarks.

Figure: Number of C files analyzed using $SYMBAIR(\infty)$ as the abstract transformer vs. timeout in seconds.

A - A - A - A

Observations

- Our set of benchmarks is non-trivial.
- **2** SYMBA is more efficient than path-based algorithm DNFBOUND.
- Integer rounding optimization and careful scheduling are important.
- SYMBA brings a significant precision gain (73%).
- It is fast in general.

3
Outline

1 Introduction

2 Examples

3 SYMBA Algorithm

Evaluation

5 Conclusion and Future Work

<ロ> <問> <問> < 回> < 回>

Conclusion

- Numerical invariant generation is important.
- Ø Abstract interpretation with numerical domains is not perfect.
 - In-precise operations
 - O Trade-off between expressiveness and efficiency
- SYMBA utilizes the power of SMT solvers and compute precise abstract post operator.
- SYMBA enables invariant generation in the general TCM domain.
- Experimental results show that SYMBA is efficient in practice compare to other symbolic abstraction approaches.

Future Work

- Heuristics on scheduling policies.
- **2** Parallelize the implementation of SYMBA.
- Extends to more SMT theories.

э

(日)

Thank You!

æ

< □ > < □ > < □ > < □ > < □ >