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Abstract Model checking provides a way to automatically explore the state
space of a finite state system based on desired properties, whereas planning is
to produce a sequence of actions that leads from the initial state to the target
goal states. Previous research in this field proposed a number of approaches for
connecting model checking with planning problem solving. In this paper, we
investigate the feasibility of using an established model checking framework,
Process Analysis Toolkit (PAT), as a planning solution provider for upper
layer applications. To achieve this, we first carry out a number of experiments
on different model checking tools in order to compare their performance and
capabilities on planning problem solving. Our experimental results suggest
that solving planning problems using model checkers is not only possible but
also practical. We then propose a formal semantic mapping from the standard
Planning Domain Description Language (PDDL) to the Labeled Transition
System (LTS), based on which a planning module was implemented as a part
of the PAT framework. Lastly, we demonstrate and evaluate the approach of
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using PAT as planning service via a case study on a public transportation
management system.

Keywords Model Checking · Deterministic Planning · Formal Specification
& Verification

1 Introduction

Model checking [26] has emerged as a powerful automatic technique for ver-
ifying models of software and hardware systems against their specifications.
The system model is exhaustively explored and checked by model checkers
to ensure that the desired properties are guaranteed in all cases. In general,
what we care the most about the system models is whether some safety or
liveness properties, usually described in temporal logics such as Linear Tem-
poral Logic (LTL) and Computation Tree Logic (CTL), are satisfied. Given
a system model M, an initial state s, and a formula ϕ which specifies the
property, the model checking process can be viewed as computing an answer
to the question of whether M, s |= ϕ holds. Invariant which can be expressed
using LTL formula (G¬p) is an example of safety properties, where G reads
as always. Typically, a counterexample is given by model checkers when the
property is found to be violated, which represents a finite path π that leads
to the violation state from the initial state s. Some model checkers are able
to provide shortest counterexamples. A shortest counterexample is defined as
the minimal size path π∗ that leads to a state s ′ where the safety property is
violated.

Related Works. Since late 90s, several pieces of work indicated that model
checking can also be applied to the planning domain. Cimatti et al. [5] pre-
sented a decision procedure for planning problems written in a high level action
language called AR in 1997. The decision procedure was implemented as a tool
MBP using the symbolic model checking technique [24]. They translated ac-
tion descriptions to propositional formulas in order to apply model checking
on them. This is one of the earliest attempt in the stream of planning as model
checking and the results are encouraging. Nevertheless, AR is no longer at the
forefront of domain description language. Many advanced features like plan
metrics and preferences which are very common nowadays cannot be repre-
sented using propositional logic.

Berardi and Giuseppe [2] compared the performance of the two well-known
model checkers, Spin [13] and SMV [24], with some well established planners
(IPP [16], which was one of the best performers in AIPS’98 competition; FF
[12], which was among the best performers in AIPS’00; and TLPLAN [1],
which accepts temporally extended goals used as control knowledge to prune
the search space). The experiment results suggest that the two model checkers
are comparable to IPP in terms of performance, instead that FF performs
much better than both. In other words, Spin and SMV used as planners are
competitive with the best performing planners at the AIPS’98 competition.
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Hörne and Poll [14] investigated the feasibility of using two different model
checking techniques for solving a number of classical AI planning problems.
ProB [17] is based on mathematical set theory and first order logic. It is
specifically designed for the verification of program specifications written in the
B specification language. The other model checker used is NuSMV [4], which
represents models using Binary Decision Diagrams (BDDs) [3]. For both model
checkers, the state space is explored exhaustively: if there exists a plan, it will
be found, and they always terminate. However, they do not provide all possible
plans but terminate after one is found, if it exists. The experiment results
suggest that several options are suitable to solve the type of planning problems
considered in the paper. These are the Constraint Logic Programming (CLP)
based ProB, running in either temporal model checking mode or performing
a breadth-first search, and the tableaux-based NuSMV using an invariant.

Clearly, a classical planning problem can be easily converted into a model
checking problem. The fact that this approach is feasible is supported by [8]. In
that paper, the authors suggest that planning should be done by semantically
checking the truth of a formula. Planning as model checking is conceptually
similar to planning as propositional satisfiability. Given a planning problem
(S0,G ,A), one can construct a system model M by translating every action
a ∈ A into a corresponding state transition function first. The initial state S0

can also be mapped to the initial state s of model M by assigning value to
each variable accordingly. Then for the goal state G , which can be expressed
using a propositional formula ϕ, we can construct a safety property G¬ϕ that
requires the formula ϕ never to hold, such that the model checker is able
to search for a counterexample path that leads to a state where ϕ holds. The
resulting plan is optimal in terms of make-span when the counterexample path
is the shortest.

After all these successful attempts, the natural next step would have been
serious tool development, but that requires considerable effort in the imple-
mentation. Indeed, there is no serious tool developed in the recent years. The
biggest problem remaining of using model checkers for planning purposes is
that there does not exist a good automatic translation from the planning
domain to the required model checking domains. All prior works mentioned
previously relied on manual translation in their experiments, while this pro-
cess is error-prone and valuable information in the original planning models
are often lost along the way. Depending on the underlying algorithms, the
encoding of the problems usually has huge effects on the performance and
even the quality of the solutions produced. For example, the type information
in planning models can be very complicated in some cases and most of the
model checkers lack direct support for types. Fig. 1 shows the type declara-
tion written in the Planning Domain Definition Language (PDDL) [23]. In
this example, a type hierarchy is declared using the basic syntax construct
obj0 · · · objn − type specifying that place and locatable belong to object ; lo-
catable has two kinds, namely soldier and torch, and so on. There is no easy
way to encode such information (at least it requires careful thinking and smart
manipulation if done by hand) which unfortunately has a direct impact on the
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(:types place locatable - object

soldier torch - locatable

north south - place

soldier0 soldier1 - soldier)

Fig. 1: Illustration of the type hierarchy in PDDL.

problem search space. Typing information places constraints on the param-
eters of action schemas which effectively limit the number of possible state
transitions one needs to consider. Furthermore, some advanced features of
PDDL are tightly integrated with the language syntax and semantics. For in-
stance, quantifier keywords forall and exists used in goal and action effect
descriptions cannot be implemented without typing. Therefore, we would like
to propose a formal operational semantics for PDDL in terms of the Labeled
Transition System (LTS) such that planning problems can be automatically
and precisely recognized and solved by model checkers. We hope that this
effort can help create more possibilities and revive the interest in this area.

Another source of interest for this topic is that with the capability of solv-
ing planning problems, model checkers can be used as an underlying service
provider to provide planning solutions for upper layer applications. Modern
model checkers have sophisticated techniques for handling large state spaces,
which are critical in the real world setting. Therefore, using model checking as
service should work well for real world planning problems, such as trip plan-
ning, scheduling, etc. In this paper, we further explore the synergy between the
two separate domains, namely model checking and planning. They are both
important techniques used in system designs. For example, one can obtain a
workable design under the environment and resource constraints via planning
and verify that the required properties are all satisfied by model checking. Our
goal is to find a way to connect them together such that the tools that support
model checking can also be used to find solutions for planning problems.

Contributions. This research is divided into two stages, corresponding to the
two closely related problems that we consider, i.e., planning via model check-
ing and PAT as planning service. We conduct a number of experiments on
different planning domains in order to compare the performance and capabil-
ities of various tools. Our experimental results indicate that the performance
of some model checkers is comparable to that of some sophisticated planners
for certain categories of problems and the performance of model checkers can
even be further improved by exploiting domain specific knowledge. We define
the formal semantics of PDDL in terms of LTS and implement an automatic
verification tool as a sub-module in the Process Analysis Toolkit (PAT) [32].
The planning module takes a subset of the PDDL 2.1 language as input and is
able to produce both sequential and optimal plans. We further investigate the
possibility of using the planning module with specifically designed searching
algorithms to serve as a planning solution provider for upper layer applications.
The case study on a public transportation management system demonstrates
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that the planning as model checking approach is not only possible but also
practical.

Paper Organization. The rest of the paper is organized as follows. Sect. 2
reviews and compares the performance of different planning tools. In Sect. 3,
we define the formal operational semantics of PDDL as LTS. Sect. 4 presents
a case study in which we implement the planning as model checking service
approach within a real application. We compare and analyze different modeling
techniques with concrete evaluation results. Sect. 5 concludes the paper and
maps out the future directions.

2 Review of Tools

In this section, we conduct a performance review on three commonly used
model checkers together with two well-known planners as benchmarks in solv-
ing planning problems. A background description of the tools investigated are
listed as follows.

2.1 Tools and Techniques

NuSMV. NuSMV is an extension of the symbolic model checker SMV [24]
developed at the Carnegie Mellon University known as CMU SMV. NuSMV is
written in ANSI C and is a joint project between the Embedded Systems Unit
in the Center for Information Technology at FBK-IRST, the Model Check-
ing group at Carnegie Mellon University, the Mechanized Reasoning Group
at University of Genova and the Mechanized Reasoning Group at University
of Trento. The latest version NuSMV2 is distributed under an OpenSource
license [4]. Models of NuSMV are described as a hierarchy of modules which
can be instantiated semantically similar to call-by-reference. NuSMV allows
for Boolean, integer and enumerated types for state variables [4]. However, ar-
ray indices in NuSMV must be statically evaluated to integer constants. This
constraint largely limits the expressiveness of the model. The modeling for
common operations on a list of objects is sometimes cumbersome in NuSMV.
In general, such operations have to be manually coded by enumerating all the
possible cases.

The descriptions of transition relations between the current and next state
pairs can be done by either using the TRANS constraint, or the ASSIGN con-
straint where a system of equations labeled as next(identifier):=expression
describes how the underlying finite state machine evolves over time [4]. Spec-
ifications can be expressed in both CTL and LTL. NuSMV supports several
kinds of model checking modes, including CTL checking, LTL checking and
invariant checking. We will compare the performance of using different model
checking modes for planning in Sect. 2.2.
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Spin. Spin is an established explicit state model checker developed at Bell
Labs in the original Unix group of the Computing Sciences Research Center,
starting in 1980. Spin models are described in the modeling language called
“Promela” (Process Meta Language). The language allows for dynamic cre-
ation of concurrent processes. Communication via message channels can be
defined to be synchronous or asynchronous [13]. Promela loosely follows the
Communicating Sequential Process (CSP) [10] and hence models in CSP# [30]
can be converted to it with minimal efforts. Guarded expressions are well sup-
ported, therefore preconditions for actions can be easily enforced in the model.
Promela also allows C-style macro definitions, which reduces the code length
and facilitates the generalization of the model.

Spin has a number of run-time options for simulation and verification that
can be explored. Spin allows users to prune the search space using “never-
claims” which are equivalent to safety properties. With this method it be-
comes possible to quickly verify whether a given safety property holds in the
context of the model, even when a complete verification is considered to be
infeasible [13]. After verification is finished, Spin is able to perform a simula-
tion guided by the error trail. In the simulation mode, step-by-step display of
the counterexample trace is better supported compared with NuSMV.

The specifications of properties can also be written in LTL. Spin translates
LTL formulas into “never-claims” and perform the verification. However, the
counterexamples produced by Spin are not guaranteed to be in the minimum
length, so we are not able to produce shortest plans using Spin.

PAT. Process Analysis Toolkit (PAT) [20,32,22,21] is a self-contained frame-
work for specification, simulation and verification of concurrent and real-time
systems developed in School of Computing, National University of Singapore.
It supports efficient trace refinement checking, LTL model checking with vari-
ous fairness assumptions. PAT is designed to verify event-based compositional
models specified using CSP# [30,31], which is an extension to Communicat-
ing Sequential Process (CSP) [10] by embedding data operations. CSP# com-
bines high-level compositional operators from process algebra with program-
like codes, which makes the language much more expressive. Other supported
modeling languages in PAT include Stateful Timed CSP [36] for real time sys-
tems, PCSP [39] for modeling probabilistic behaviors and PRTS [38] for model-
ing of current, real-time and probabilistic systems with hierarchical structures.

Most importantly, PAT supports the verification of trace refinement check-
ing [29,40], linear temporal logic verification with fairness assumption [35],
bounded model checking [33,34], fair model checking of parameterized sys-
tems [37], BDD-based discrete analysis of timed systems [25] and assume-
guarantee model checking [18,19].

One of the unique features of PAT is that it allows users to define static
functions and data types as C# libraries [28]. These user defined C# libraries
are built as DLL files and are loaded during execution. This makes up for the
common deficiencies of model checkers on complex data operations and data
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types. For instance, priority queue and set can be implemented to meet the
need in the modeling of some special algorithms.

Metric-FF. Metric-FF [11] is a domain independent planning system devel-
oped by Jörg Hoffmann. It is an extension of FF that supports numerical
plan metrics. The system has participated in the numerical domains of the 3rd

International Planning Competition, demonstrating very competitive perfor-
mance. Two input files, namely the domain file and problem file are needed
to run Metric-FF. Metric-FF accepts domain and problem specifications writ-
ten in PDDL 2.1 level 2. Metric-FF accepts two searching parameters g and
h for assigning different weights to plan metrics optimization and heuristic
functions respectively. By increasing the value of g, the system will assign a
higher priority to the minimization of the given plan metrics, despite that the
returned solutions are not guaranteed optimal.

SatPlan. SatPlan [15] is an award winning planner for optimal planning cre-
ated by Henry Kautz, Jörg Hoffmann and Shane Neph. SatPlan2004 took the
first place for optimal deterministic planning at the International Planning
Competition at the 14th International Conference on Automated Planning &
Scheduling. SatPlan accepts the STRIPS subset of Planning Domain Defini-
tion Language (PDDL) and finds plans with the shortest make-span. It encodes
the planning problem into a SAT formulation with length k and checks the
satisfiability using SAT solvers. If the searching times out, then k is increased
by one and the process is repeated.

In SatPlan, the optimality of plan is restricted to its length (or make-
span). However, in many cases, especially real life applications, the length
of the solution is not the only criterion to be considered. The quality of the
plan also depends on other factors. For instance, the quality of the suggested
routes produced by a route planning system should be judged by the users’
preferences, the total distance of the trip, the total cost of time and money,
etc. This kind of problems are often solved by adding non-negative cost to
actions, and the goal becomes finding a plan with the minimum total action
cost.

2.2 Performance Comparison

In this subsection, we compare the performance of NuSMV (pre-compiled ver-
sion 2.5.2), Spin (pre-compiled version 6.0.1) and PAT (version 3.3.0) on solv-
ing two classical planning problems: the bridge crossing problem and the slid-
ing game problem. SatPlan2006 and Metric-FF are also used as benchmarks in
the experiments. The two problems selected can be regarded as puzzle solving
problems and the optimal solutions are not trivial. The descriptions of the
problems are as follows.

– The bridge crossing problem: Four wounded soldiers find themselves behind
enemy lines and try to flee to their home land. The enemy is chasing them
and in the middle of the night. They arrive at a bridge that spans a river
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Fig. 2: Goal setting of the sliding game problem.

which is the border between the two countries at war. The bridge has been
damaged and can only carry two soldiers at a time. Furthermore, several
land mines have been placed on the bridge where a torch is needed to
sidestep all the mines. The enemy is on their tail, so the soldiers know that
they have only 60 minutes to cross the bridge. The soldiers only have a
single torch and they are not equally injured. The extent of their wounds
have an effect on the time it takes to get across. So the time needed for
each soldier are 5, 10, 20, 25 minutes respectively. The goal is to find a
solution to get all the soldiers to cross the bridge to safety in 60 minutes
or less.

– The sliding game problem, is sometimes also referred as the eight-tiles prob-
lem. There are eight tiles, that are numbered from 1 to 8 and arranged in
a 3 × 3 matrix. The first tile, which is at the top-left corner is empty
and marked by 0. A tile can only be shifted horizontally or vertically into
the empty space. The goal of this puzzle is to arrange the eight tiles into
increasing order as shown in Fig. 2.

Note that the bridge crossing problem is a plan existence problem with
constraints on the total time. The goal is to find a feasible plan that can be
executed within 60 minutes. There is no plan optimization involved in this
problem. PAT is able to find the shortest witness trace by using the breadth-
first search algorithm, i.e., the returned counterexample trace is guaranteed to
be the shortest one. Otherwise, if a depth-first search is performed then the
first counterexample trace encountered is reported. Therefore, for the bridge
crossing problem where shortest witness trace is not required, we use the depth-
first search mode. For the sliding game problem, where an optimal solution is
expected, we use the shortest witness trace option instead. The counterexam-
ples provided by NuSMV are always the shortest, while this is not the case
for Spin. We use NuSMV to generate optimal solutions for the sliding game
problem, and collect the performance data of Spin only for reference.

To measure execution time more accurately, we performed each experiment
three times and calculated the average to avoid possible fluctuations caused
by the overhead imposed by operating systems. All the experimental results
were collected on an Dell desktop with an Intel Core 2 Duo E6550 2.33GHz
processor and 3.25GB RAM. Spin, PAT and NuSMV were tested in Windows
XP SP3, while SatPlan and Metric-FF were tested in Ubuntu 10.04 environ-
ment. Except for NuSMV, all other tools provide accurate statistics including
the execution time at the end of each session. For NuSMV, we made use of
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Soldier 1 2 3 4 5 6 7 8 9

Time Cost 5 10 20 25 30 45 60 80 100

Table 1: Time cost of each soldier.

the source command to invoke the time command right before and after the
model checking sessions to record the execution time. Unfortunately, the time
command in NuSMV provides time data that is accurate to only one decimal
place. In contrast, execution time obtained from other tools was rounded to
two decimal places.

The experimental results are presented in the following two subsections,
where INVAR denotes using invariant mode of NuSMV, LTL/CTL denotes
using LTL/CTL model checking mode of NuSMV, RW indicates that PAT
is under the reachability-with mode, and DFS and BFS denote PAT using
depth-first and breadth-first model checking algorithms respectively. Time is
measured in seconds unless otherwise indicated.

2.2.1 The Bridge Crossing Problem

To generalize the problem and obtain experimental results in a broader range,
we expanded the original bridge crossing problem to versions with up to 9
soldiers. Apart from the breadth-first and depth-first search algorithms, PAT
also supports reachability-with checking, which is a reachability test with some
state variables reaching their maximum/minimum values. Hence PAT can be
used to find the minimum amount of time needed to finish the bridge crossing.
The time limits were first calculated by PAT using the reachability-with mode.
Other model checkers were then tested taken the time limits as given. Of
course, for fair comparison, we recorded the time taken by PAT under the
depth-first search mode. We ran Metric-FF on the bridge crossing problem
with parameters g = 100 and h = 1, which emphasis the plan quality over the
performance to increase the possibility of getting an solution within the time
limit.

This set of experiments are tailored to show how the model checkers com-
pete on plan existence problems that deal with numerical constraints. The
time cost of each soldier is listed in Table 1 and the experiment results are
summarized in Table 2. In the table, the column “Soldiers” indicates the num-
ber of soldiers in the problem instance and the column “Time” indicates the
time limit used in that test. Symbol m in the table means that the particular
tool (mode) ran out of memory and did not find a solution. Although the con-
figurations for Metric-FF (g = 100 and h = 1) have put a much higher weight
on plan quality, the optimality of the results obtained from Metric-FF is still
not guaranteed. So the Metric-FF column is only for reference.

When the number of soldiers reaches 8, NuSMV is not able to build a
model according to the model descriptions due to memory shortage. This is
likely to be related to the inefficient encoding that we have to use in the models
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#Soldiers Time* Metric-FF
PAT NuSMV

Spin
RW DFS INVAR CTL LTL

4 60 0.00 0.05 0.04 0.0 0.1 0.1 0.02
5 90 0.00 0.19 0.04 0.1 0.9 0.4 0.02
6 130 0.03 1.12 0.22 0.2 14.4 2.5 0.06
7 175 0.16 6.18 0.25 0.5 330.8 71.3 0.11
8 235 0.94 33.19 10.26 m m m 10.50
9 300 5.30 145.51 16.40 m m m 19.50

Table 2: Experimental results for the bridge crossing problem.

because of the restrictions on array indices. The invariant checking mode per-
forms generally better than CTL and LTL checking modes, because CTL and
LTL model checking algorithms have to explore a search space that involves
both the model and the properties. But invariant (reachability) checking only
explore the model’s space1.

4 6 8 10

Number of soldiers

0

10

20

T
im

e
(s
)

Metric-FF
PAT
Spin

Time vs. Number of Soldiers

Fig. 3: Execution time comparison of PAT, Spin and Metric-FF on the bridge
crossing problem.

Fig. 3 shows that the time needed for the bridge crossing problem increases
rapidly when the number of soldiers increases. For example, the execution time
for Spin increases by nearly 100 times when the number of soldiers increases
from 7 to 8. It is clear that the state space expands in a very fast speed.
Planners such as Metric-FF handle this kind of problem in a very different
way from model checkers. Metric-FF performs a standard weighted A* search
which exploits the power of heuristics and sacrifices the optimality to speed up

1 PAT will automatically detect the safety LTL properties and convert them into reachabil-
ity problems. Hence, we do not include the LTL checking model for PAT in this experiment.
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8 0 6

5 4 7
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(b) Hard2

8 5 6

7 2 3

4 1 0

(c) Most1

8 5 4

7 6 3

2 1 0

(d) Most2

8 2 1

3 6 4

0 5 7

(e) Rand1

4 1 7

8 0 3

5 6 2

(f) Rand2

Fig. 4: Initial configurations of the sliding game problem instances.

the searching. That is the reason why Metric-FF performs much better than
the other two.

The performance of PAT and Spin is similar on this problem. For smaller
instances, for example, when the number of soldiers ranges from 4 to 7, Spin
performs better than PAT, although the difference is relatively small. For
larger problem instances, e.g., 8 and 9 soldiers, PAT starts to perform better
that Spin.

2.2.2 The Sliding Game Problem

Optimal AI planning is a PSPACE-complete problem in general. For many
problems studied in the planning literature, the plan optimization problem
has been shown to be NP-hard [9]. The sliding game problem is the largest
puzzle of its type that can be completely solved. It is simple, and yet obeys
a combinatorially large problem space of 9!/2 states. The N × N extension
of the sliding game problem is NP-hard [27]. The difficulties of the problem
instances are measured by the lengths of their optimal solutions. There is also
an approximated measurement called the Manhattan distance (MD), which is
defined as | x1 − x2 | + | y1 − y2 | where (x1, y1) and (x2, y2) are two points
on a plane. The MD of a problem instance is the sum of the MDs of all eight
tiles to their positions in the goal setting. We have experimented on 6 problem
instances in total. Two of them (“Hard1” and “Hard2”) are the hardest with
an optimal solution of 31 steps. Two of them (“Most1” and “Most2”) have the
largest number of optimal solutions and a slightly shorter solution length of 30
steps. The last two problem instances (“Rand1” and “Rand2”) are randomly
generated with optimal solutions of length 24 and 20 steps respectively.

This set of experiments are designed to show how different model checkers
perform on optimal deterministic planning problems. The results obtained
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Problem L* MD SatPlan
PAT NuSMV

Spin
BFS INVAR CTL LTL

1 Hard1 31 21 444.42 9.60 45.2 > 600 > 600 2.25
2 Hard2 31 21 438.34 10.05 41.6 > 600 > 600 2.06
3 Most1 30 20 152.76 9.84 42.8 > 600 > 600 1.99
4 Most2 30 20 152.24 10.01 42.0 > 600 > 600 2.47
5 Rand1 24 12 33.70 7.00 30.0 > 600 > 600 2.63
6 Rand2 20 16 2.89 3.54 16.8 505.6 > 600 2.13

Table 3: Experimental results for the sliding game problem.

Hard1 Hard2 Most1 Most2 Rand1 Rand2

Problem instances
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Fig. 5: Execution time comparison of PAT, NuSMV and SatPlan on the sliding
game problem shown on a logarithm scale.

from SatPlan are used only as reference. The initial configurations of all the
six problem instances are shown in Fig. 4.

The results are summarized in Table 3. In the table, “> 600” indicates
that no solution was found after 10 minutes. The column “L*” and “MD”
show the length of the optimal solutions and the Manhattan distance of the
problem instance respectively. Also note that the solutions found by Spin are
not optimal.

The CTL and LTL checking mode of NuSMV can hardly find a solution
within the given 10 minutes. Similarly as in the previous example, the invariant
checking mode performs much better compared to the other two modes. From
Fig. 5 we can clearly see that the execution time of SatPlan for different
problem instances varies significantly. The performance of SatPlan depends
largely on the length of the optimal solutions. “Hard1” and “Hard2” which
take only 1 step more than “Most1” and “Most2”, spend nearly 3 times longer
to find a solution. For simpler instances, SatPlan performs the best among the
three tools. However, when the length of the optimal plans increases, the size
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of the SAT instances created by SatPlan grows fast. The resulting execution
time increases quickly as well.

The performance of PAT and NuSMV is relatively stable. PAT using breadth-
first search mode takes shorter time for all the problems. This comparison
indicates that PAT performs better than NuSMV and SatPlan on plan opti-
mization problems with our best effort in modeling the same problems with
different domain languages. Although we cannot generalize the argument with-
out further experiments and justifications, this empirical finding still proves
the feasibility of applying PAT to the optimal deterministic planning domain.

3 Operational Semantics of PDDL

Manual encoding of planning problems in the respective model description
languages is cumbersome and error-prone. Considering planning problems in
more realistic environment, the variables and parameters in the model descrip-
tions are usually subject to change over time. In some cases, the goals and
cost/reward functions can also be different when the environment changes.
This is where the concept of replan comes into play. Using model checkers
as service enables real-time replanning by generating problem descriptions at
runtime, and modifying models with the latest environment variables. The
idea of using model checkers as planning service is only possible if there exists
an automatic tool that connects planning and model checking domains.

To achieve this goal, we define a formal operational semantics of the plan-
ning language in terms of executable systems, which can be understood di-
rectly by model checkers. Essentially, we change the planning problem to a
verification problem.

In this section, we describe the operational semantics of PDDL in terms of
LTS. Our goal is to provide a guide for implementing an automatic translator
from PDDL to model description languages recognized by model checkers. We
make two basic assumptions on the input language:

– The PDDL domain descriptions are written in the subset of PDDL 2.1
that includes STRIPS-like operators with literals having typed arguments
and numerical plan metrics. The typing can be easily done by hand or a
tool such as TIM [6] when the original model is written without typed
arguments.

– Durative actions are absent (referred as simple planning instance in [7]).

3.1 PDDL Formalization

PDDL is the standard language for describing classical planning problems and
is widely used by many planners. Essentially following [7], a PDDL simple
planning instance consists of two types of files, i.e., the domain and the prob-
lem.
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(:action TakeBus

:parameters (?p - passenger ?b - bus

?from - stop ?to - stop)

:precondition (and (At ?b ?from) (At ?p ?from))

:effect (and (not (At ?p ?from)) (not (At ?b ?from))

(At ?b ?to) (At ?p ?to)

(increase (time-cost) 10)

(increase (money-cost) 2)))

Fig. 6: PDDL action schema for taking bus.

Definition 1 (Simple Planning Instance) A simple planning instance is
defined to be a pair I = (Dom,Prob), where Dom = (Fs,Rs,As, arity) is a
4-tuple consisting of (finite sets of) function symbols, relation symbols, actions
(non-durative), and a function mapping all of the symbols to their respective
arities. Prob = (Os, Init ,G) is a triple consisting of the objects in the domain,
the initial state specification and the goal state specification.

Actions are grouped as a set of action schemas. The schema consists of the
action name, a list of parameters, a precondition and effects. The PDDL code
in Fig. 6 is an example of an action schema for taking a bus from a bus stop
from to another bus stop to. The precondition for the action schema is that
both the bus and the passenger are at from and the effect is that they are trans-
ferred to a new location to. The type that follows each parameter constraints
the type of objects that the variable can be instantiated to. In the following
sections, we only consider flattened and fully grounded actions, meaning that
the actions in As do not contain conditional effects and quantifiers. There are
standard ways to get rid of conditional effects and instantiate action schemas
using proper objects as described in [7]. PDDL 2.1 also allows for numeri-
cal optimization criteria to be specified. In the TakeBus example, the values
of time-cost and money-cost are increased in the effects. The optimization
criterion, also known as the plan metric, consists of numerical expressions to
be maximized or minimized, e.g., (:metric minimize(time-cost)) requires
that the value of the function time-cost to be minimized.

3.2 Operational Semantic

The primitive numeric expressions of a planning instance, PNEs, are the terms
constructed by applying the function symbols in Fs to the objects drawn from
Os. Similarly, the atoms of a planning instance, denoted by Atoms, are the
expressions formed by applying the relation symbols in Rs to the objects (with
respect to arities and type constraints).

Definition 2 (System State) A system state is composed of two compo-
nents (F ,R) where F ∈ PNEs × R⊥ maps primitive numeric expressions to
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their values (⊥ denotes undefined value) and R ∈ Atoms × {true, false} maps
atoms to Boolean values.

We refer to F and R as the valuation functions. A system transition is of
the form (F ,R)

a−→ (F ′,R′) where a is an action in As. For each flattened
and grounded action a,

– Prea denotes the precondition of a, which is a propositional expression over
Atoms, e.g., (and (At b from) (At p from));

– Adda is the positive effect of a, which is the set of ground atoms that are
asserted as positive literals, e.g., (At b to);

– Dela is the negative effect of a, which is the set of ground atoms that are
asserted as negative literals, e.g., (not (At b from));

– NEa is the numeric effect of a, which is the set of assignment propositions,
e.g., (assign time 0).

The set of all effects of action a is written as Effa . We use the notation

(F ,R)
Effa

� (F ′,R′) for a pseudo system transition caused by the effects of
action a. A pseudo transition by Effa can be understood as a system transition
caused by an action a ′ such that Effa′ = Effa and Prea′ = true. A group
of pseudo transitions can be aggregated to form a real state transition by
following the action semantics.

The operational semantics is systematically defined by associating a set of
firing rules with each PDDL language construct. Fig. 7 illustrates the firing
rules related to actions. We omit the rules for initializing initial states here,
since they are very similar to what we have for actions. The semantics of Adda

and Dela can be mapped to the rewriting of the corresponding values of atoms
(PosEffect and NegEffect in Fig. 7). Positive effects update atom values to true
while negative effects update them to false. There are five kinds of numeric
effects, i.e., assignment, increase, decrease, scale up, and scale down. We have
shown the semantics for the assignment effect as in Rule AssignEffect . The rest
simply correspond to the shorthand operators +=,-+,*= and /=. Sometimes a
number of effects are grouped by the keyword and. For any valid action, the
effects in a group should be consistent with each other. Therefore, we are able
to define the combined effects of two sub-effects as the function rewriting of one
over the other (Rule And). Rule Precond captures how applicability of action
is checked, i.e., the state transition is executed if and only if the precondition
for the corresponding action holds.

Example 1 Recall the action schema TakeBus in Fig. 6, a corresponding state
transition in LTS would be,

(F ,R)
TakeBus−→ (F ⊕ { tcost ′ 7→ tcost + 10, R ⊕ { At(b, from) 7→ true,

mcost ′ 7→ mcost + 2} At(b, to) 7→ true,
At(p, to) 7→ true,
At(p, from) 7→ false},

where the valuation functions in F and R are updated according to EffTakeBus .
This transition is enabled if and only if (F ,R) |= PreTakeBus .
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r ∈ Atoms
[ PosEffect ]

(F ,R)
r
� (F ,R ⊕ {r 7→ true})

r ∈ Atoms
[ NegEffect ]

(F ,R)
(not r)
� (F ,R ⊕ {r 7→ false})

f ∈ PNEs, e evaluates to R⊥
[ AssignEffect ]

(F ,R)
(assign f e)

� (F ⊕ {f 7→ Eval(e,F )},R)

e1 ∈ Effa , e2 ∈ Effa , (F ,R)
e1
� (F ′,R′), (F ,R)

e2
� (F ′′,R′′)

[ And ]

(F ,R)
(and e1 e2)

� (F ′ ⊕ F ′′,R′ ⊕ R′′)

(F ,R) |= Prea , (F ,R)
Effa
� (F ′,R′)

[ Precond ]

(F ,R)
a−→ (F ′,R′)

Fig. 7: Operational semantics for PDDL actions where a ∈ As, ⊕ is function
rewriting operator, Eval evaluates an assignment proposition.

Theorem 1 (Correctness of Action Mapping) Let a ∈ As be a fully flat-

tened and grounded action, (F ,R) and (F ′,R′) be two system states, (F ,R)
a→

(F ′,R′) appears in the labeled transition relationship if and only if (F ,R) satis-
fies the precondition of a and executing a updates the system states to (F ′,R′).

Let the initial state be Init = (F0,R0), goal state be G = (Fn+1,Rn+1),
the transition system of a simple planning instance is a LTS LF

R = (S , Init ,→)
where S is the set of reachable system states and → is a labeled transition
relationship conforming to the operational semantics presented in Fig. 7. A
solution to the instance is a finite sequence of system states conforming to the
transition relations in LF

R.

Theorem 2 (Correctness of Plan Mapping) Sequence 〈a0, . . . , an〉 is a
solution to the planning problem I if and only if there exists a sequence π =
〈s0, . . . , sn+1〉 where s0 = Init, sn+1 ∈ G, si ∈ S and si

ai→ si+1 for all
0 ≤ i ≤ n.
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Fig. 8: Illustration of the LTS state transitions in the TakeBus example.

Proof

According to Thm. 1, executing action ai changes the system
state from si to si+1. By simple induction, executing the a fi-
nite sequence of actions 〈a0, . . . , an〉 updates the system state
from s0 = Init to sn+1 ∈ G , which corresponds exactly to the
definition of a plan to I (sketch).

A plan is optimal if and only if there does not exist another such sequence π′

such that | π′ |<| π |. A plan maximizes a numerical expression e if and only if
there does not exist another sequence π′′ such that Eval(e, sn) < Eval(e, s ′′m),
where sn and s ′′m are the last state in π and π′′ respectively.

Example 2 Consider the TakeBus example with two buses b1 and b2, two pas-
sengers p1 and p2 and two stops A and B . Ignore functions at the moment for
simplicity. Fig. 8 shows a part of the state transition for the example. In the
diagram, each node is labeled with the objects (buses and passengers) at stop
A. The objects that do not appear in the node are at stop B . Every arrow is
labeled with the parameters for the action TakeBus(?p, ?b, ?from, ?to), where
?p is a passenger, ?b is a bus; ?from and ?to are the source and destination
stops.

3.3 Implementation

We have implemented a planning tool that supports PDDL as a module of
the PAT model checking framework. The tool is available for download at
http://www.comp.nus.edu.sg/~pat/plan. Fig. 9 demonstrates the architec-
tural design of the planning module. The editor is featured with powerful
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Editor
Domain Models Problem Specifications

Parser

Language Parser LTS Translator

Internal Domain 
Representation

Simulator

Graphic Viewer

Verifier

Reachability Model 
Checking

Symbolic Model 
Checking

Refinement 
Checking

Counterexamples

Fig. 9: Architecture of the planning module in PAT

text editing and syntax highlighting. Multiple domain and problem files can
be edited as a group. The parser transforms the PDDL models as well as
the problem instances into the internal domain representation. The simulator
allows users to perform various simulation tasks on the input models, includ-
ing complete state graph generation, automatic simulation, user interactive
simulation and trace replay. The module relies on various underlying model
checking techniques provided by the PAT verifier. The counterexample found
by the verifier can be displayed as a planning solution.

We have tested the tool on a number of planning problems including the
sliding game and bridge crossing problems and receive good results. The formal
operational semantics we defined earlier enables the automatic mapping from
the planning domain to the model checking domain. We are one step closer
to the goal of model checking as planning service. The prototype we have
built could serve as a platform for experimenting on variate heuristics and
algorithms in the future. We hope our efforts in implementing the tool can
help revive the interests in this research area.

4 Case Study – Transport4You

In this section, we present a case study on “Transport4You” which was sub-
mitted to the 33rd International Conference on Software Engineering (ICSE)
- Student Contest on Software Engineering (SCORE). The project won the
“Formal Methods Award”2 out of 56 submissions, which was presented for the
final round of the competition at ICSE 2011 in Hawaii. The “Transport4You”
Intelligent Public Transportation Manager (IPTM) is a specifically designed
municipal transportation management solution which is able to simplify the

2 The awards page of the 33rd International Conference on Software Engineering (ICSE
2011) in Hawaii, USA – http://2011.icse-conferences.org/content/awards.
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fare collection process and provide customized services to each subscriber. To
be specific, a system that is able to provide customized trip information and
timely responses to each subscriber is to be built to satisfy the increasing
needs. In other words, the new system should not only play the role of a bus
conductor, but also be a trip advisor who informs the users of changes in the
lines and possibly suggests optimized routes for them. The architectural design
of the IPTM system is shown in Fig. 10.

Bus Embedded System

Detection Module

Fault Correction Module

Report Module

Central Mainframe

User Notification Service Dispatching

Account 

Management

Bus Information 

Management
Server Management

User Behaviour Analysis Route Planning

Data Storage

Passengers Administrator

Network

Fig. 10: System architecture diagram of the “Transport4You” IPTM system.

The “Transport4You” IPTM system consists of two sub systems, namely
the bus embedded system (BES) and the central mainframe (CM). The bus
system is responsible for passenger detection, part of the fault correction and
report detection results to the central server. In contrast, the server system
deals with all kinds of service requests from users and administrators, infor-
mation management, as well as user notification. The two sub systems com-
municate via TCP connections and at the same time interact with users and
administrators. A significant component of the “Transport4You” IPTM system
is the Route Plannig module which makes use of the model checking capability
of PAT as a planning service. This function provides a guide for users who are
not familiar with the bus routes and need suggestions for choosing bus lines.
This can also be applied to suggest alternative optimal routes to subscribers,
based on the behavioural data analysed in the User Behavior Analysis mod-
ule. To further illustrate the idea of using PAT as planning service, we have
built a simulator for the IPTM system.
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Road Condition 
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PAT Planning 

Model

Optimized 

Solutions

Fig. 11: Simulator architecture
diagram.

Fig. 12: Simulator screen shot of route
planning results.

As is shown in Fig. 11, the simulator generates a new planning domain
model according to the latest road conditions and bus line configurations,
whenever the environment changes. Users choose their starting positions and
destination stations on the simulator interface. By clicking the “Plan” button,
the system generates a problem instance according to what have been cho-
sen and pass it to the PAT planning module. After interpreting the returned
results, the simulator is able to display the planned route and detailed instruc-
tions to users through the display interface, as is shown in Fig. 12. The route
planning module works correctly even when there are real time changes on road
conditions. When interruptions of bus lines are detected, the administrator up-
dates the road condition database immediately (automatically or manually).
The planning results are, therefore, guaranteed to be accurate based on the
most updated data.

4.1 Route Planning Model Design

In this subsection, we discuss the design of the route planning CSP# model.
We will look at two different approaches for improving the solution quality
and compare the performance of them. To construct a CSP# model for route
planning, we have to first formally define the problem. There are 14 bus lines
travelling among 61 bus stops on our simulated city map. In addition, each
bus line has a sequence of bus stops that it must reach one by one.

Definition 3 (Route Planning Task) A Route Planning task is defined by
a 5-tuple (S ,B , t , c,L) with the following components,

– S is a finite, non-empty set of bus stops. Terminal stops include start ter-
minals sstart ⊆ S , and end terminals send ⊆ S , where sstart ∩ send = ∅.

– B is a finite set of bus lines, and for every bus line bi ∈ B , bi : S →
S is a partial function. bi(s) is the next stop taking bus i from stop s.
∀ s ∈ sstart ∀ b ∈ B , s ∈ dom(b) −→ b−1(s) = α. ∀ s ∈ send ∀ b ∈ B , s ∈
dom(b) −→ b(s) = β. ∀ b ∈ B , b−1(α) = α ∧ b(β) = β.
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– t : S → BS is a function where BS ⊆ B . t(s) is the set of available bus
lines at stop s, i.e., BS = {bi ∈ B | s ∈ dom(bi)}.

– c : S → S is a partial function. c(s) is the stop one can get to by crossing
the road at stop s.

– L is a unary predicate on S . L(s) is true when the current location of the
passenger is stop s.

The definition is intuitive enough and require little additional explanation.
The tuple can be constructed from the evaluation of the bus line and road
configurations that are stored in the ITPM central mainframe. Now we can
define the Route Planning domain.

Definition 4 (Route Planning Domain) Given initial location s0 and des-
tination sg , a Route Planning domain maps a Route Planning task to a clas-
sical planning problem with close-world assumption as follows,

States: Each state is represented as an atom s ∈ S , where L(s) holds.
Initial State: s0
Goal States: sg

Actions:
1. (TakeBus(bi , s), PRECOND: bi ∈ t(s),

EFFECT: ¬L(s) ∧ L(bi(s)))
2. (Cross(s), PRECOND: s ∈ dom(c),

EFFECT: ¬L(s) ∧ L(c(s)))

After defining the problem, we shall look at a basic CSP# model that
solves the route planning problem. According to the problem definitions, the
model includes four parts, namely the environment variables (bus stops and
bus lines), the initial state, the state transition functions (actions) and the
goal states. The design of each part will be discussed as follows.

4.1.1 Environment Variables

In the description of the environment variables, we first declare an enumeration
that lists all the bus stops for later use:

enum{TerminalA, Stop5, Stop7, Stop9 ... Stop26, Stop11, Stop35, Stop34};

Then we use a self-defined data type 〈BusLine〉 to keep track of the bus
line configurations and provide useful helper methods.

var sLine1 = [TerminalA,Stop5,Stop7,Stop9,Stop58,Stop31,Stop33,
Stop53,Stop57,TerminalC ];

var〈BusLine〉Line1 = new BusLine(sLine1, 1);
var sLine2 = [TerminalC ,Stop56,Stop52,Stop32,Stop30,Stop59,

Stop10,Stop8,Stop6,TerminalA];
var〈BusLine〉Line2 = new BusLine(sLine2, 2);
...
var sLine14 = [TerminalC ,Stop34,Stop32,Stop30,Stop16,TerminalB ];
var〈BusLine〉Line14 = new BusLine(sLine14, 14);
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In the above code, the instantiation of 〈BusLine〉 takes in two parameters,
including a sequence of bus stops and an integer that indicates the bus line
number. After declaration, we are able to use the bus line variable to look up
useful information of a particular bus line including the previous stop and the
next stop with respect to the current stop.

4.1.2 Initial State

In the description of the initial states, we declare two variables, currentStop
and currentBus. The variable currentStop corresponds to the state variable s
mentioned before (which is the current location of the passenger), while cur-
rentBus is a temporary variable storing the enabled bus line in the execution
of the current action.

var currentStop = Stop5;
var B0 = [−2];
var〈BusLine〉currentBus = new BusLine(B0,−1);

The initial value of currentStop is set to be Stop5 in this example. The
currentBus is also a variable of type 〈BusLine〉 and it is initialized with some
negative integer to avoid confusion.

4.1.3 State Transition Functions

Now we translate the action schema mentioned before to a state transition
function that can be further converted to CSP# processes with the help of
the “case” statement (a switch-case like conditional branch). The description
of transition functions can be further divided into two parts. In the first part, a
process named takeBus() is defined to capture the state transitions caused by
taking bus. The second part deals with a process crossRoad() which is defined
to capture the state transitions caused by walking to the opposite side of the
road.

takeBus() = case{
currentStop == TerminalA : BusLine1[]BusLine3[]

BusLine5[]BusLine7
currentStop == Stop5 : BusLine1[]BusLine5
currentStop == Stop7 : BusLine1[]BusLine5
currentStop == Stop9 : BusLine1
...
currentStop == Stop11 : BusLine12
currentStop == Stop35 : BusLine13
currentStop == Stop34 : BusLine14

};

The process takeBus() chooses one of the bus lines that available in the
current bus stop and hands over control to it. For example, at Stop5, there
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are two bus lines available, namely BusLine1 and BusLine5. Then we define
processes that describe the behaviours of bus lines (BusLine1 to BusLine14 ).

BusLine1 = TakeBus.1{
currentStop = Line1.NextStop(currentStop);
currentBus = Line1; } → takeBus();

...
BusLine14 = TakeBus.14{

currentStop = Line14.NextStop(currentStop);
currentBus = Line14; } → takeBus();

This is where the actual state transitions happen. Each bus line process
invokes TakeBus.n event, and at the same time, updates the value of cur-
rentStop and currentBus. Finally, the bus line process returns control to the
process takeBus(). Notice that there is another version of this process that
also allows road crossing at any bus stop. We shall look at it later after the
discussion of the crossRoad() process.

crossRoad() = case{
currentStop == Stop5 : cross{currentStop = Stop6} → takeBus()
currentStop == Stop7 : cross{currentStop = Stop8} → takeBus()
...
currentStop == Stop35 : cross{currentStop = Stop34} → takeBus()
currentStop == Stop34 : cross{currentStop = Stop35} → takeBus()

};

Depending on the value of currentStop, a common event cross will be
evoked and the hidden effect is the update of currentStop to the stop opposite
to it. For instance, when the user is at Stop5, event cross can happen and the
user’s location is changed to Stop6. After a state transition, the process also
hands over its control to takeBus(). Combining two processes by an external
choice operator gives us the final transition function:

plan = takeBus()[]crossRoad();

As mentioned before, to enable road crossing, we have to modify the bus
line process. Instead of returning the control to takeBus(), we have to return
to plan which may also invoke the process crossRoad(). This could increase
the search space of the model, however the increase of verification time is not
significant.

4.1.4 Goal States

The goal states of the model are fairly easy to define. Very similar to the
initial state description, we only need to specify the goal to be that the value
of currentStop equals to the destination stop chosen by the user. It is Stop53
in this example.

#define goal currentStop == Stop53;
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4.2 The Cost Function Approach

The basic model we discussed earlier is able to solve the Route Planning prob-
lem. It even provides optimal plans in terms of make-span if the “BFS” mode
is used. However, the quality of the plan is not always guaranteed. The plan
quality depends on several factors, including the length of the suggested route,
the total walking distance, the number of buses changed, etc. To measure the
plan quality, we introduce cost function into the model. It is fairly intuitive
to assign a non-negative integer value to each action. For instance, we assign
a cost of 10 for TakeBus(bi , s) and a cost of 2 for Cross(s). In addition, we
also assign a cost of 5 for two consecutive TakeBus actions with different bi ,
which implies there is a bus change occurring. The plans produced by the ba-
sic model are sometimes suboptimal in terms of the total cost. There are two
causes for the inefficiency:

– The basic model treats action Cross and TakeBus as the same. However,
in real life, different subscribers may have their own preferences on the
minimization of the number of bus stops or the walking distance.

– The basic model does not have penalties on bus changes when producing
the route plan. The number of bus changes is considered a critical factor
when judging the quality of the plan.

To ensure high plan quality in our new model, we use a cost function to
measure the cost incurred with the execution of an action. The implementation
of the cost function in our established basic model can be done with very little
effort. For takeBus() and crossRoad() process, we can add a hidden event:
tau{cost = cost + x}, where x is 10 or 2. For bus changes, we can add another
hidden event with a conditional branch:

tau{if (!currentBus.isEqual(LineX )){cost = cost + 5}}

where LineX is the bus line to be taken next.
However, the introduction of cost function also increases the complexity

of the problem. The original optimal planning problem can be solved by a
simple breadth-first search. As the size of optimal solutions in this context is
usually small, the execution time is also relatively short. Unfortunately, the
default reachability-with checking algorithm in PAT searches the whole state
space for a maximum/minimum value of a given variable. The execution time
is considerably long for this kind of searching according to our experiments. To
resolve the problem, we design a new searching algorithm with the assumption
that all cost values are non-negative integers. Once a solution is found in
the searching, we update the threshold τ with its cost value (line 8). In the
following search, if the cost of the current partial plan exceeds τ , we consider
it a dead-end since no further transitions could make the cost lower. This
pruning of the search space largely reduces the execution time and memory
usage to a satisfactory level and still preserves the optimality of the solutions.
The new algorithm newBFSVerification() is given in Fig. 13, where working is
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1: working ← ∅
2: current ← InitialStep
3: τ ←∞
4: repeat
5: value ← EvaluateExpression(current)
6: if current .SatisfyGoal() then
7: if value < τ then
8: τ ← value
9: end if

10: end if
11: if value > τ then
12: continue
13: end if
14: for all step ∈ current .MakeOneMove() do
15: working.Enque(step)
16: end for
17: until working.Count() 6 0

Fig. 13: The newBFSVerification() algorithm.

the task queue used in the BFS; τ is the temporary variable to store the current
best value explored so far; value stores the cost valuation of the current state;
current .SatisfyGoal returns true if the goal is satisfied for the current state;
current .MakeOneMove returns the set of all possible outgoing transitions from
the current state. The state pruning happens if value is greater than τ (line 12).

4.3 Search Space Pruning

As mentioned in the previous subsection, one of the reasons for producing
suboptimal solutions is that the number of bus changes is uncontrolled. Taking
an example shown in Fig. 14, bus line b1 and b2 both travel along the path
〈s1, s2, s3〉. The route of b1 is shown in solid lines while the route of b2 is
shown in dashed lines. We refer to a particular edge between two stops by the
corresponding action name. For instance, TakeBus(b1, s1) refers to the solid
edge between s1 and s2.

S2S1 S3

TakeBus(b1,s1) TakeBus(b1,s2)

TakeBus(b2,s1) TakeBus(b2,s2)

Fig. 14: An example of bus line configuration.

As illustrated in Fig. 15, the basic model produces unsatisfactory solu-
tions when there exists better ones. The partial solution “TakeBus(b1, s1) ⇒
TakeBus(b2, s2)” introduces a redundant bus change from b1 to b2. To prune
the search space and speed up the verification, we restrict that a user is not
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going to change a bus if it is not necessary. This constraint can be easily
captured by adding a new method “bool IsRedundent(BusLine CurrentBus,int
CurrentStop)” to the defined type 〈BusLine〉. In the guard condition of pro-
cess BusLine2, we can define a contraint !Line2.IsRedundent(currentBus, cur-
rentStop) to avoid this transition if the change to Line2 is considered redun-
dant.

S2S1 S3

TakeBus(b1,s1)

TakeBus(b2,s2)

Fig. 15: A unsatisfactory solution produced by the basic model.

The criteria for deciding whether an action TakeBus(bi , sj ) is redundant
or not given the current bus line is bk can be formulated as follows.

Definition 5 (Redundant Action) An action TakeBus(bi , sj ) is not redun-
dant if one of the followings holds:

1. bi = bk

2. bi ∈ t(sj ) ∧ bk ∈ t(sj ) ∧ bi(sj ) 6= bk (sj ) ∧ ∃m ∈ N1, bi(sj )−m 6= bk (sj )−m

3. 1 and 2 do not hold and bi(sj ) 6= bk (sj ) ∧ b−1i (sj ) 6= b−1k (sj )

Definition 5 can be casually interpreted as, “when a user is going to change
to a different bus that does not form a special pattern with the current bus
as shown in Fig. 16 and shares the same previous stop or next stop with the
current bus, the change is considered redundant.

S
2

S
1

S
3

Fig. 16: Special pattern of two overlapping bus lines.

The basic idea is to stay on one bus as long as possible. This can be enforced
by simply ignoring the transitions to a bus having the same previous stop as
the current one, because the transition to that bus should happen earlier (not
necessarily from the current bus) or does not happen at all. As is shown in
Fig. 17a, the partial solution “TakeBus(b2, s1)⇒ TakeBus(b1, s2)” is not sat-
isfactory as at s2, b1 and b2 have the same previous stop s1. A good path is
“TakeBus(b1, s1) ⇒ TakeBus(b1, s2)”. Similarly, the transitions to a bus hav-
ing the same next stop as the current one should also be avoided, because the
transition can happen later (not necessarily from the current bus) or does not
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happen at all. As shown in Fig. 17b, the partial solution “TakeBus(b1, s1) ⇒
TakeBus(b2, s2)” is not satisfactory as at s2, b1 and b2 have the same next
stop s3. A good path in this case is “TakeBus(b1, s1)⇒ TakeBus(b1, s2)”.

S2S1 S3

TakeBus(b1,s2)TakeBus(b1,s1)

TakeBus(b2,s1)

(a) Same Previous Stop

S2S1 S3

TakeBus(b1,s2)TakeBus(b1,s1)

TakeBus(b2,s2)

(b) Same Next Stop

Fig. 17: Redundant bus changes.

However, after enforcing these two basic rules, the transition can never
happen between two lines forming the special pattern illustrated in Fig. 16.
When two bus lines form such a overlapping pattern, a bus change at the end of
the overlapping segment, which is s3 in this case, is not considered redundant.
The reason that we force the bus change to occur at the end of the overlapping
segment is that this ensures that a necessary bus change only happens once
within the overlapping range.

4.4 Performance Evaluation

In this subsection, we evaluate the performance as well as the solution quality
of the two modified planning models discussed previously. We tested all (3660)
starting stop and destination stop combinations on the three models. The
length of the shortest solution was calculated by solving the shortest path
problem using Dijkstra algorithm after we converted the original map to a
directed graph with path cost 1 for each edge. Table 4 shows the comparison
results.

States
Time(s) Memory(KB)

Cost Length
Avg. Max Mean Avg. Max Mean

Basic 1029 0.045 0.596 0.028 11120 31521 10088 58.23 5.51
Cost 1125 0.048 0.599 0.030 11282 34704 10191 56.02 5.59
Prune 158 0.018 0.050 0.017 9198 10568 9118 56.79 5.51

Table 4: Comparison results of three route planning models.
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Fig. 18: No. of instances solved vs. time for three route planning models.

In the table, column under “States” is the average number of states searched
when finding the plan among the 3660 test cases. Column “Time” and “Mem-
ory” list the statistics for three models including the average, maximum and
median values of time as well as memory consumption. From the comparison,
we can easily see that the Prune model performs the best in terms of exe-
cution time and memory consumption. In fact, a large portion of redundant
transitions are pruned and the search space is reduced to a minimal. In Fig. 18,
it is clear that the Prune model solved all instances in a very short time (less
than 0.05 seconds) while the other two spent more time on the harder prob-
lems. But still, most of the instances (82%) were solved in less than 0.075
seconds.

Meanwhile, the Prune model also preserves the make-span optimality
while maintaining low total costs. The Prune model produced plans with
an average total cost of 56.79 which is slightly higher than the optimal value
56.02 achieved by the Cost model. The average cost for the Basic model
is 58.23, which is much higher than the other two. Note that 89.6% of the
solutions from the Prune model are cost-optimal compared with 65.7% from
the Basic model. We believe that this is a strong indication that the control
knowledge is helpful in not only expediting the searching but also maintaining
lower action costs. The cost function model guarantees the lowest total cost as
it is designed to do so. However, it is a little inefficient on the memory usage,
as the plan metric optimization requires exploration of a larger state space.
Some solutions are not the shortest because the Cross actions have less cost
but are still counted towards the total length of the plans.

To summarize, the Prune model is very efficient in solving the route
planning problem and the experimental results indicate that the algorithm
effectively controls the search space while maintain high plan qualities. We
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believe that this approach can be applied to larger systems and the combina-
tion with the Cost model can help produce cost-optimal plans if needed. The
prototype used in the experiment and more detailed results can be found at
http://www.comp.nus.edu.sg/~pat/plan.

5 Conclusion

In this paper, we explored the use of model checking techniques in the AI plan-
ning domain. We believe our work has established a good starting point in this
direction towards more practical applications. We first examined the feasibil-
ity of using different model checkers in solving classical planning problems. In
our experiments, we compared the performance and capabilities of different
model checking tools including PAT, Spin and NuSMV. PAT is proved to be
most suitable for solving a larger range of planning problems. The experimen-
tal results also indicate that some model checkers, for example PAT, can even
compete with sophisticated planners in certain domains.

Based on the performance evaluation, we suggested the approach of us-
ing PAT as planning service. Lack of automatic tool support for translating
planning domain languages into models that can be recognized and solved
by model checkers has long been a critical problem in the planning as model
checking stream. Manual translation is often inaccurate and error-prone. We
presented a formal semantic mapping from PDDL to LTS which enables model
checkers to solve planning problems. A planning module that directly works on
PDDL was implemented in the PAT framework. We also applied our approach
to a case study on the “Tranport4You” IPTM system. We started with a ba-
sic model based on the system specifications and further improved the model
in two ways. One of them introduces cost functions to optimize plan quality,
while the other exploits domain specific control knowledge for search space
pruning. Finally, we compared different approaches based on their execution
time, memory efficiency and plan quality. The case study project won the
“Formal Methods Award” at the Student Contest on Software Engineering of
the 33rd International Conference on Software Engineering (ICSE) in Hawaii,
USA in May 2011.

Experiments have been carried out on three model checkers and two plan-
ners so far, we would like to extend the comparisons to a larger range of model
checking as well as planning tools to get a more general view of the subject.
In addition, we are interested in extending the planning module in PAT to
support a more recent version of PDDL, version 3.1 with durative actions and
action preferences. We would also like to explore more heuristics and imple-
ment a mechanism to automatically exploit domain specific knowledge. Last
but not least, we recommend that more research should be done on applying
model checking as planning services. The applications of this technique can be
extended to a larger range on real-life problems appeared in various fields.
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archical Real-time Systems using Stateful Rimed CSP. ACM Transactions on Software
Engineering and Methodology 22(1), 3:1–3:29 (2013)

32. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: The 21th International Conference on Computer Aided Verification (CAV 2009), pp.
709–714. Springer, Grenoble (2009)

33. Sun, J., Liu, Y., Dong, J.S., Sun, J.: Bounded Model Checking of Compositional Pro-
cesses. In: 2nd IEEE Theoretical Aspects of Software Engineering Conference (TASE
2008), pp. 23–30. IEEE Computer Society (2008)

34. Sun, J., Liu, Y., Dong, J.S., Sun, J.: Compositional Encoding for Bounded Model Check-
ing. Frontiers of Computer Science in China 2(4), 368–379 (2008)

35. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and Verifying Event-based Fairness
Enhanced Systems. In: Proceedings of the 10th International Conference on Formal
Engineering Methods (ICFEM 2008), pp. 318–337. Springer (2008)

36. Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP using Implicit
Clocks and Zone Abstraction. In: The 11th International Conference on Formal Engi-
neering Methods (ICFEM 2009), pp. 581–600 (2009)

37. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair Model Checking of Pa-
rameterized Systems. In: Proceedings of the 6th International Symposium on Formal
Methods (FM 2009), pp. 123–139 (2009)

38. Sun, J., Liu, Y., Song, S., Dong, J.S., Li, X.: PRTS: An Approach for Model Checking
Probabilistic Real-Time Hierarchical Systems. In: S. Qin, Z. Qiu (eds.) Formal Methods
and Software Engineering, LNCS, vol. 6991, pp. 147–162. Springer Berlin Heidelberg
(2011)

39. Sun, J., Song, S.Z., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In:
J. Dong, H. Zhu (eds.) Formal Methods and Software Engineering, LNCS, vol. 6447,
pp. 388–403. Springer Berlin Heidelberg (2010)



32 Yi Li et al.

40. Wang, T., Song, S., Sun, J., Liu, Y., Dong, J.S., Wang, X., Li, S.: More Anti-chain Based
Refinement Checking. In: T. Aoki, K. Taguchi (eds.) Formal Methods and Software
Engineering, LNCS, vol. 7635, pp. 364–380. Springer Berlin Heidelberg (2012)


