
Semantic Slicing of Software Version Histories

Yi Li
University of Toronto
Toronto, ON, Canada
liyi@cs.toronto.edu

Julia Rubin
Massachusetts Institute of Technology

Cambridge, MA, USA
mjulia@csail.mit.edu

Marsha Chechik
University of Toronto
Toronto, ON, Canada

chechik@cs.toronto.edu

Abstract—Software developers often need to transfer func-
tionality, e.g., a set of commits implementing a new feature
or a bug fix, from one branch of a configuration management
system to another. That can be a challenging task as the existing
configuration management tools lack support for matching high-
level semantic functionality with low-level version histories. The
developer thus has to either manually identify the exact set of
semantically-related commits implementing the functionality of
interest or sequentially port a specific subset of the change history,
“inheriting” additional, unwanted functionality.

In this paper, we tackle this problem by providing automated
support for identifying the set of semantically-related commits
implementing a particular functionality, which is defined by a
set of tests. We refer to our approach, CSLICER, as semantic
slicing of version histories. We formally define the semantic
slicing problem, provide an algorithm for identifying a set of
commits that constitute a slice, and instantiate it in a specific
implementation for Java projects managed in Git. We evaluate
the correctness and effectiveness of our approach on a set of open-
source software repositories. We show that it allows to identify
subsets of change histories that maintain the functionality of
interest but are substantially smaller than the original ones.

Keywords—software changes; version history; dependency.

I. INTRODUCTION

Software configuration management systems (SCM), such
as Git [1], SVN [2] and Mercurial [3], are commonly used
for hosting software development artifacts. They allow the
developers to periodically submit their ongoing work, storing
it as an increment over previous version. Such an increment
is usually referred to as a commit (Git and SVN) or a change
set (Mercurial), and we use these two terms interchangeably.
Branching is another construct provided by most modern SCM
systems. Branches are used, for example, to store a still-in-
development prototype version of a project or to store multiple
project variants targeting different customers.

Occasionally, developers need to migrate a specific func-
tionality – e.g., a feature or a bug fix – from one branch
to another. Back-porting is one example of such a migration,
when changes made in a newer version of software are ported
to an earlier one in order to provide the updated functionality to
all users. Several SCM systems provide mechanism of “replay-
ing” commits on a different branch, e.g., the cherry-pick
command in Git. Yet, little support is provided for matching
high-level functionality with commits that implement it: SCM
systems only keep track of temporal and text-level dependen-
cies between the managed commits. The job of identifying the
exact set of commits implementing the functionality of interest
is left to the developers.

Even in very disciplined projects, when such commits can
be identified by browsing their associated log messages, the
functionality of interest might depend on another functionality
implemented in the same branch. To ensure correct execution,
that other functionality has to be identified and migrated to the
new branch as well, which is a tedious and error-prone manual
task [4]. For example, consider the feature “make Groovy
method blacklist truly append-only”, introduced in version
1.3.8 of the Elasticsearch project [5] – a real-time distributed
data search and analytics framework written in Java. This
feature and its corresponding test case are implemented in a
single commit (#647327f4). Yet, propagating this commit to
a different branch will fail because one of the added statements
makes use of a field whose declaration was introduced in an
earlier commit (#64d8e2ae).

In this paper, we look at this problem in detail. Borrowing
the program slicing [6] concept, we define a functionality-
specific semantic history slice as a subset of semantically
related commits from the original history that preserve the
functionality of interest. We assume that a functionality is
defined by a set of tests exercising it. We propose a system,
CSLICER, which enhances the support provided by current
SCM systems by mapping high-level functionalities to low-
level commits.

CSLICER has two main phases. The first phase is generic
and independent of any specific SCM system in use. It relies
on static and dynamic program analysis techniques to conser-
vatively identify all atomic changes in the given history that
contribute to the functional and compilation correctness of the
functionality of interest. The second phase adapts the output
produced in the first one to specifics of SCM systems. More
precisely, it maps the collected set of atomic changes back to
the commits in the original change history. It also takes care of
merge conflicts that can occur when cherry-picking commits
in text-based SCM systems, e.g., SVN or Git. This phase can
optionally be skipped when using language-aware merging
tools [7] or in semantic-based SCM systems [8]. However,
such systems are not dominant in practice yet.

The use case of the CSLICER system is not limited to
functionality porting only; it can also be used for refactoring
existing branches, e.g., by splitting them into functionality-
related ones. We instantiate CSLICER for Java projects hosted
in Git. To empirically evaluate the effectiveness and scalability
of our approach, we experiment with a set of open source
software projects. The results show that our approach allows
to identify functionality-relevant subsets of original histories
that (a) correctly capture the functionality of interest while
being (b) substantially smaller than the original ones.

v1.1

1 class Boo {
2 int boo1()
3 {return 0;}
4 }
5 class Bar {
6 static int bar1(int x)
7 {return x + 1;}
8 }

 class Boo {
+ // hunk deps
 int boo1()
 {return 0;}

 class Bar {
 static int bar1(int x) {
- {return x + 1;}
+ {return x - 1;}
 }

 // hunk deps
 int boo1() {
- {return 0;}
+ {return (new Bar()).y;}
 }
 class Bar {
+ int y = 0;
 static int bar1(int x)
 {return x - 1;}

 class Boo {
+ int b;
 // hunk deps
 int boo1()

 class Boo {
 int b;
+ int boo2()
+ {return Bar.bar1(b);}
 // hunk deps
 int boo1()

C5

C4

C3

C2

C1

v1.0

Fig. 1. Change history of Foo.java.

Contributions. We summarize our contributions as follows.

• We formally define the semantic slicing problem for
software version histories and propose a generic semantic
slicing algorithm that is independent of underlying SCM
infrastructures and tools.

• We extend the generic algorithm to bridge the gap be-
tween language semantic entities and text-based modifi-
cations, thus making it applicable to existing text-based
SCM systems.

• We instantiate the overall approach, CSLICER, by provid-
ing a fully-automatic semantic slicing tool applicable for
Git projects implemented in Java. The source code of the
tool, as well as binaries and examples used in this paper,
are available at https://bitbucket.org/liyistc/gitslice.

• We evaluate the tool on a number of real-world medium-
to large-scale software projects. Our experiments show
that CSLICER is able to correctly identify functionality-
relevant subsets of change histories that are substantially
smaller than the original ones.

Organization. We start with a simple example in Sec. II, illus-
trating CSLICER. In Sec. III, we provide the necessary back-
ground and definitions. In Sec. IV, we formalize the semantic
slicing approach and prove its correctness. In Sec. V, we
describe implementation details and report on our experimental
findings. Finally, in Sec. VI and VII, we compare CSLICER
with related work and conclude the paper, respectively.

II. CSLICER BY EXAMPLE

In this section, we illustrate CSLICER on a simple
schematic example inspired by the feature migration case in the
Elasticsearch project [5]. Fig. 1 shows a fragment of the change
history between versions v1.0 and v1.1 for the file Foo.java.

1 c l a s s Boo {
2 i n t b ;
3 i n t boo2 ()
4 { r e t u r n Bar . ba r1 (b) ;}
5 / / hunk deps
6 i n t boo1 ()
7 { r e t u r n (new Bar ()) . y ;}
8 }
9 c l a s s Bar {

10 i n t y = 0 ;
11 s t a t i c i n t ba r1 (i n t x)
12 { r e t u r n x − 1;}
13 }

c l a s s Boo {
i n t b ;
i n t boo2 ()
{ r e t u r n Bar . ba r1 (b) ;}
/ / hunk deps
i n t boo1 ()
{ r e t u r n 0;}

}
c l a s s Bar {

s t a t i c i n t ba r1 (i n t x)
{ r e t u r n x − 1;}

}

Fig. 2. Foo.java before and after slicing.

Initially, as shown in version v1.0, the file contains two classes,
Boo and Bar, each having a member method boo1 and
bar1, respectively.

Later, in change set C1, a line with a textual comment was
inserted right before the declaration of Boo.boo1. Then, in
change set C2, the body of Bar.bar1 was modified from
{return x+1;} to {return x-1;}. In change set C3,
the body of Boo.boo1 was updated to return the value of a
newly added field y in class Bar. In change set C4, a field
declaration was inserted in class Boo and, finally, in change
set C5, a new method boo2 was added in class Boo. The
resulting program in v1.1 is shown in Fig. 2 on the left.

Each dashed box in Fig. 1 encloses a commit written in the
unified format (the output of command diff -u). The lines
starting with “+” are inserted while those starting with “-”
are deleted. Each bundle of changed lines is called a hunk and
comes with a context – a certain number of lines of surrounding
text that stay unchanged. In Fig. 1, these are the lines which do
not start with “+” or “-”. The context that comes with a hunk
is useful for ensuring that it is applied at the correct location
even when the line numbers change. A conflict is reported if
the context cannot be matched. In the current example, the
maximum length of the contexts is four lines: up to two lines
before and after each change.

Suppose the functionality of interest is that the method
Boo.boo2 returns −1. This functionality was introduced in
C5 and now needs to be back-ported to v1.0. Simply cherry-
picking C5 would result in failure because (1) the body of
method Bar.bar1 was changed in C2 and the change is
required to produce the correct result; (2) the declaration of
field Boo.b was introduced in C4 but was missing in v1.0,
which would cause compilation errors; and (3) a merge conflict
would arise due to the missing context of C5 – the text that
appears immediately after the change. This text was introduced
in C1.

To produce a syntactically and semantically correct result,
CSLICER examines the program at version v1.1 by running
the test that triggers Boo.boo2 and verifies that it returns −1.
CSLICER identifies the set of elements that directly participate
in the test execution, i.e., methods Boo.boo2 and Bar.bar1
We call this set of elements a functional set. CSLICER then
collects elements referenced by the functional set, i.e., classes
Boo, Bar and the field declaration int b in Boo. We call
this set a compilation set. Next, the algorithm searches for
origins of the functional and compilation set elements in the
history, identifying commits {C2, C4, C5}. Finally, to calculate

P ::= L

L ::= class C extends C{C f; K M}
K ::= C(C f){super(f); this.f = f;}
M ::= C m(C x){return e;}
e ::= x | e.f | e.m(e) | new C(e) | (C)e

Fig. 3. Language syntax rules [9].

C <: C
C <: D D <: E

C <: E
class C extends D{...}

C <: D

Fig. 4. Subtyping rules [9].

the hunk set, for each of the identified commits, CSLICER
recursively searches for text-level dependencies. That process
identifies commit C1 since C5 depends on it. The algorithm
outputs the set of all identified commits that are required
for porting the functionality of interest to v1.0 successfully:
{C1, C2, C4, C5}. More precise details about this process are
given in Sec. IV.

Applying the identified set of commits in a sequence on top
of v1.0 produces a new program shown in Fig. 2 on the right.
It is easy to verify that the call to Boo.boo2 in both programs
returns the same value. Changes introduced in commit C3 – an
addition of the field Bar.y and a modification of the method
Boo.boo1 – do not affect the test results and are not part of
any other commit context. Thus, this commit can be omitted.

III. BACKGROUND

In this section, we provide the background needed in the
rest of the paper.

Language Syntax. To keep the presentation of our algorithm
concise, we step back from the complexities of the full Java
language and concentrate on the core object-oriented features.
We adopt a simple functional subset of Java from Feather-
weight Java [9], denoting it by P . The syntax rules of the
language P are given in Fig. 3. Many advanced Java features,
e.g., interfaces, abstract classes and reflection are stripped from
P , while the typing rules which are crucial for the compilation
correctness are retained [10]. We discuss additional language
features in Sec. V.

We say that p is a syntactically valid program of language
P , denoted by p ∈ P , if p follows the syntax rules. A program
p ∈ P consists of a list of class declarations (L), where
the overhead bar L stands for a (possibly empty) sequence
L1, . . . , Ln. We use 〈〉 to denote an empty sequence and
comma for sequence concatenation. Every class declaration has
members including fields (C f), methods (M) and constructors
(K). A method body consists of a single return statement; the
returned expression can be a variable, a field access, a method
lookup, an instance creation or a type cast.

The subtyping rules of P , shown in Fig. 4, are straight-
forward. We write C <: D when class C is a subtype of
D. As in full Java, subtyping is the reflexive and transitive
closure of the immediate subclass relation implied by the
extends keyword. The field and method lookup rules are
slightly different from the standard ones (see Fig. 5) – field
overshadowing and method overloading are not allowed while
method overriding is allowed in Featherweight Java [9].

FIELDS(Object) = 〈〉

class C extends D{C f; K M} FIELDS(D) = D g

FIELDS(C) = D g, C f

class C extends D{C f; K M} B m(B x){return e;}∈M
METHODS(m,C) = B → B

class C extends D{C f; K M} m /∈M
METHODS(m,C) = METHODS(m,D)

Fig. 5. Fields and methods lookup [9].

Foo

Boo.b:int Boo.boo1()

Boo

Boo.boo2()

Bar

Bar.y:int Bar.bar1(int)

Fig. 6. AST of Foo.java at v1.1.

Abstract Syntax Tree. A valid program p ∈ P can be parsed as
an abstract syntax tree (AST), denoted by AST(p). We adopt
a simplified AST model where the smallest entity nodes are
fields and methods. Formally, r = AST(p) is a rooted tree with
a set of nodes V (r). The root of r is denoted by ROOT(r)
which represents the compilation unit, i.e., the program p.
Each entity node x has an identifier and a value, denoted by
id(x) and ν(x), respectively. In a valid AST, the identifier
for each node is unique (e.g., fully qualified names in Java)
and the values are canonical textual representations of the
corresponding entities. We denote the parent of a node x by
PARENT(x). Fig. 6 shows an AST for the program Foo.java
at version v1.1.

Change, Change Set and History. Let Γ be the set of all ASTs.
An atomic change operation δ : Γ → Γ is either an insert,
delete or update (see Fig. 7). It transforms r ∈ Γ producing a
new AST r′ such that r′ = δ(r). An insertion INS((x, n, v), y)
inserts a node x with identifier n and value v as a child of
node y. A deletion DEL(x) removes node x from the AST.
An update UPD(x, v) replaces node x with node v. A change
operation is applicable on an AST if its preconditions are met.
For example, the insertion INS((x, n, v), y) is applicable on r
if and only if y ∈ V (r). Insertion of an existing node is treated
the same as an update.

Let r and r′ be two ASTs. A change set ∆ : Γ →
Γ is a sequence of atomic changes 〈δ1, . . . , δn〉 such that
∆(r) = (δn ◦ · · · ◦ δ1)(r) = r′, where ◦ is standard function
composition. A change set ∆ = ∆−1 ◦ δ1 is applicable to r if
δ1 is applicable to r and ∆−1 is applicable to δ1(r). Change
sets between two ASTs can be computed by tree differencing
algorithms [12].

A history of changes is a sequence of change sets H =
〈∆1, . . . ,∆k〉. A sub-history is a sub-sequence of a history, i.e.
a sequence derived by removing change sets from H without
altering the ordering. We write H ′ C H indicating H ′ is
a sub-history of H and refer to 〈∆i, . . . ,∆j〉 as Hi..j . The
applicability of a history is defined similar to that of change
sets.

y ∈ V (r)
INS((x, n, v), y)

V (r′)← V (r) ∪ {x} PARENT(x)← y

id(x)← n ν(x)← v

x ∈ V (r)
DEL(x)

V (r′)← V (r) \ {x}
x ∈ V (r)

UPD(x, v)
ν(x)← v

Fig. 7. Types of atomic changes [11].

Test Cases. We assume that semantic functionality can be
captured by test cases and the execution trace of a test case
is deterministic. Let T be a set of test cases {ti}. We write
p |= T if program p passes all tests in T , i.e., p |= t for all
t ∈ T .

IV. THE CSLICER SYSTEM

In this section, we define the semantic slicing problem and
present our CSLICER approach in detail.

A. Overview of CSLICER Workflow

Problem Definition. Consider a program p0 and its k subse-
quent versions p1, . . . , pk such that pi ∈ P and pi is well-typed
for all integers 0 ≤ i ≤ k. Let H be the change history from
p0 to pk, i.e., H1..i(p0) = pi for all integers 0 ≤ i ≤ k. Let
T be a set of tests passed by pk, i.e., pk |= T . Our goal is to
(conservatively) identify a sub-history H ′ C H such that the
following properties hold:

• H ′(p0) ∈ P ,
• H ′(p0) is well-typed,
• H ′(p0) |= T .

A trivial but uninteresting solution to this problem is the orig-
inal history H itself. Shorter slicing results are preferred over
longer ones, and the optimal slice is the shortest sub-history
that satisfies the above properties. However, the optimality of
the sliced history cannot always be guaranteed by polynomial-
time algorithms. Since the test case can be arbitrary, it is not
hard to see that for any program and history, there always
exists a worst case input test that requires enumerating all 2k

sub-histories to find the shortest one. The naive approach of
enumerating sub-histories is not feasible as the compilation
and running time of each version can be substantial. Even
if a compile and test run takes just one minute, enumerating
and building all sub-histories of only twenty commits would
take approximately two years. In fact, it can be shown that the
optimal semantic slicing problem is NP-complete by reduction
from the set cover problem. We omit the details of this
argument here.

As such, we devise an efficient algorithm which requires
only a one-time effort for compilation and test execution, but
may produce sub-optimal results. An optimal algorithm which
runs the test only once cannot exist in any case: in order to
determine whether to keep a change set or not, it needs to at
least be able to answer the decision problem, “given a fixed
program p and test t, for any arbitrary program p′, will the
outputs of t be different on both?” which has been shown to
be undecidable [13].

There are two main phases in our CSLICER approach:
semantic slicing and SCM adaptation. Fig. 8 illustrates the

 …

H

p0 pk

T
t1 … tm

Compute
Func. Set

Compute
Comp. set

AST Diff

pipi-1
Slicer

ΛΠ

∆i

∆1’, …, ∆k’

H’∆i’

Fig. 8. The semantic slicing phase workflow.

high-level workflow of the semantic slicing phase. First, the
functional set (Λ) and compilation set (Π) are computed based
on the latest version pk and the input tests T . The original
version history H is then distilled as a sequence of change sets
〈∆1, . . . ,∆k〉 through AST differencing. This step removes
cosmetic changes (e.g., formatting and comments) and only
keeps in ∆i atomic changes over code entities. Each such set
∆i then goes through the core slicer component which decides
whether to keep a particular atomic change. This component
outputs a sliced change set ∆′i, which is a subsequence of ∆i.
Finally, the sliced change sets are concatenated and returned
as a sub-history H ′. Below we describe each step in turn,
illustrating them through the example in Sec. II.

Compute Functional Set. First, CSLICER executes the test on
the latest version of the program (left-hand side of Fig. 2),
which triggers method Boo.boo2. It dynamically collects
the program statements traversed by this execution. These
include the method bodies of Boo.boo2 and Bar.bar1.
The set of source code entities (e.g., methods or classes)
containing the traversed statements is called the functional set,
denoted by Λ. The functional set in the current example is
{Boo.boo2,Bar.bar1}. Intuitively, if (a) the code entities
in the functional set and (b) the execution traces in the
program after slicing remain unchanged, then the test results
will be preserved. Special attention has to be paid to any
class hierarchy and method lookup changes that might alter
the execution traces, as discussed in more detail later.

Compute Compilation Set. To avoid causing any compilation
errors in the slicing process, we also need to ensure that
all code entities referenced by the functional set are defined
even if they are not traversed by the tests. Towards this end,
CSLICER statically analyzes all the reference relations based
on pk and transitively includes all referenced entities in the
compilation set, denoted by Π. The compilation set in our
case is {Boo,Boo.b,Bar}. Notice that the classes Boo and
Bar are included as well since the fields and methods require
their enclosing classes to be present.

Core Slicer Component. In the core slicing stage, CSLICER
iterates backwards from the newest change set ∆k to the oldest
one ∆1, collecting changes that are required to preserve the
“behavior” of the functional and compilation set elements.
Each change is divided into a set of atomic changes [14]. Hav-

ing computed the functional and compilation set (highlighted
in Fig. 2), CSLICER then goes through each atomic change and
decides whether it should be kept in the sliced history (H ′)
based on the entities changed and their change types. In our
example, C2 and C5 are kept in H ′ since all atomic changes
introduced by these commits – Bar.bar1 and Boo.boo2 –
are in the functional set. C4 contains an insertion of Boo.b
which is in the compilation set. Hence, this change is also kept
in H ′. C3 can be ignored since the changed entities are not in
either set.

During the slicing process, CSLICER ensures that all enti-
ties in the compilation set are present in the sliced program,
albeit their definitions may not be the most updated version.
Because the entities in the compilation set are not traversed
by the tests, differences in their definitions do not affect the
test results.

In the SCM adaptation phase, change sets in H ′ are mapped
back to the original commits. As some commits may contain
atomic changes that sliced away by the core slicing algorithm,
including these commits in full can introduce unwanted side-
effects and result in wrong execution of the sliced program.
We eliminate such side-effects by reverting unwanted changes.
That is, we automatically create an additional commit that
reverts the corresponding code entities back to their original
state. In addition, we compute hunk dependencies of all
included commits and add them to the final result as well.
For example, the comment line added in C1 forms a context
for C5. Therefore, C1 is required in the sliced history to avoid
merge conflicts when cherry-picking C5. The details of this
process are discussed in Sec. IV-C.

B. Semantic Slicing Algorithm

The main SEMANTICSLICE procedure is shown in Fig. 10.
It takes in the base version p0, the original history H =
〈∆1, . . . ,∆k〉 and a set of test cases T as the input. Then
it computes the functional and compilation set Λ and Π,
respectively (Lines 4 and 5).

FUNCDEP(pk, T). Based on the execution traces of running
T on pk, the procedure FUNCDEP returns the set of code
entities (AST nodes) traversed by the test execution. This set
(Λ) includes all fields explicitly initialized during declaration
and all methods (and constructors) called during runtime.

COMPDEP(pk,Λ). The procedure COMPDEP analyzes refer-
ence relations in pk and includes all referenced code entities
of Λ into the compilation set Π. We borrow the set of rules
for computing Π from [10], where the authors formally prove
that their set of rules is complete and ensures that no reference
without a target is ever present in a program. Applying these
rules, which are given in Fig. 9 and described below, allows
us to guarantee type safety of the sliced program.

L1 a class can only extends a class that is present;
L2 a field can only have type of a class that is present;
K1 a constructor can only have parameter types of classes

that are present and access to fields that are present;
M1 a method declaration can only have return type and

parameter types of classes that are present;
E1 a field access can only access fields that are present;

E2 a method invocation can only invoke methods that are
present;

E3 an instance creation can only create objects from classes
that are present;

E4 a cast operation can only cast an expression to a class
that is present;

P1 an entity is only present when the enclosing entities are
present;

T1 an entity is in the compilation set if it is in the functional
set.

We iterate backwards through all the change sets in the
history (Lines 6-20) and examine each atomic change in the
change set. An atomic change δ is included into the sliced
history if it is an insertion or an update to the functional set
entities, or an insertion of the compilation set entities. Updates
to the compilation set entities are ignored since they generally
do not affect the test results.

Our language P does not allow method overloading or
field overshadowing, which limits the effects of class hierarchy
changes. Exceptions are changes to subtyping relations or casts
which might alter method lookup (Line 9). Therefore we define
function LOOKUP to capture such changes,

LOOKUP(δ, p) , ∃m,C·
METHODS(m,C) 6= METHODS′(m,C),

where METHODS and METHODS′ are the method lookup
function for p and δ(p), respectively. Finally, the sliced history
H ′ is returned at Line 21.

Correctness. Assume that every intermediate version of the
program p is syntactically valid and well-typed. We show
that the sliced program p′ produced by the SEMANTICSLICE
procedure maintains such properties.

Lemma 1. Syntactic Correctness. H ′(p0) ∈ P .

Proof: From the assumption, every intermediate version
p0, . . . , pk is syntactically valid. As a result, their ASTs are
well-defined and every change operation δ ∈ H is applicable
given all preceding changes. Updates on tree nodes do not
affect the tree structure and, therefore, do not have effect on
the preconditions of the changes. We can safely ignore updates
when considering syntactic correctness.

We prove the lemma by induction on the loop counter i.
The base case is when i = k and H ′ = 〈〉. By definition,
H ′(pk) = pk is in P . Assume that H ′ ◦ H1..i(p0) ∈ P .
We must show that (H ′,∆′i) ◦ H1..i−1(p0) ∈ P . From the
condition on Line 10 and 13, we know that changes affecting
only the entities outside of Π are ignored. So for any change
δ ∈ H ′, we have id(δ) ∈ Π. Depending on the change type
of δ, the precondition of δ is either id(δ) itself or its parent
should present (Fig. 7). Because of the COMPDEP rule (P1),
i.e., x ∈ Π ⇒ PARENT(x) ∈ Π, changes to entities in Π and
their parents are kept. Therefore, any change δ ∈ H ′ stays
applicable.

Lemma 2. Type Safety. H ′(p0) is well-typed.

Proof: Entities outside of compilation set stay unchanged,
except for method lookup changes (which might be kept and
do not affect type soundness); and their referenced targets are

C <: D C ∈ Π [L.1]
D ∈ Π

f : C ∈ Π
[L.2]

C ∈ Π

C(D f){super(f);this.f = f;} ∈ Π
[K1]

C ∈ Π D ∈ Π f ∈ Π

C m(D x){return e;} ∈ Π
[M1]

C ∈ Π D ∈ Π

...{return e.f;} ∈ Π
[E1]

f ∈ Π

...{return e.m(e);} ∈ Π
[E2]

m ∈ Π

...{return new C(e);} ∈ Π
[E3]

C ∈ Π

...{return (C)e;} ∈ Π
[E4]

C ∈ Π

x ∈ Π [P1]
PARENT(x) ∈ Π

x ∈ Λ [T1]
x ∈ Π

Fig. 9. COMPDEP reference relation rules.

1: procedure SEMANTICSLICE(p0, H, T)
2: H ′, k ← 〈〉, |H| . initialization
3: pk ← H(p0) . pk is the latest version
4: Λ← FUNCDEP(pk, T) . functional set
5: Π← COMPDEP(pk,Λ) . compilation set
6: for i ∈ [k, 1] do . iterate backwards
7: ∆′i ← 〈〉 . initialize sliced change set
8: for δ ∈ ∆i do
9: if ¬LOOKUP(δ,H1..i(p0)) then . keep lookup

10: if δ is DEL ∨ id(δ) /∈ Π then
11: continue . skip non-comp and deletes
12: end if
13: if δ is UPD ∧ id(δ) /∈ Λ then
14: continue . skip non-test updates
15: end if
16: end if
17: ∆′i ← ∆′i, δ . concatenate the rest
18: end for
19: H ′ ← H ′,∆′i . grow H ′

20: end for
21: return H ′

22: end procedure
Fig. 10. The semantic slicing algorithm.

preserved since deletions are omitted. Thus, non-compilation
set entities remain well-typed. By similar inductive argument
as in Lemma 1 and the completeness of the COMPDEP rules,
we have that the compilation set entities also stay well-typed
after the slicing. Thus, H ′(p0) is well-typed.

Theorem 1. Soundness. Let 〈p1, . . . , pk〉 be k consecutive
subsequent versions of a program p0 such that pi ∈ P and pi
is well-typed for all indices 0 ≤ i ≤ k. Let H = 〈∆1, . . . ,∆k〉
such that ∆i(pi−1) = pi for all indices 1 ≤ i ≤ k.
Let T be a set of test cases such that pk |= T . Then
the following properties hold for the sliced history H ′ =
SEMANTICSLICE(p0, H, T):

1) H ′(p0) ∈ P ,

2) H ′(p0) is well-typed,

3) H ′(p0) |= T .

Proof: From Lemma 1 and Lemma 2 we know that (H ′ ◦
H1..i)(p0) satisfies (1) and (2) is an invariant for the outer
loop (Lines 6-20) of the algorithm. The original history H has
a finite length k, so upon termination we have H ′(p0) satisfies
(1) and (2). Since all functional set insertions and updates are
kept in H ′, any functional set entity that exists in H(p0) can
be found identical in H ′(p0). Because all changes that alter
method lookups are also kept (Line 9), the execution traces do
not change either. Due to that reason, and by the definition of
the functional set, (3) also holds. Thus, H ′(p0) satisfies (1),
(2) and (3).

pj-1 pi-1 pi

…

 Δi

-
-
-

+
+

Δj … Δi-1

+
+
+

δ2:insert

-
- δ3:delete

δ1:updateδ4

δ5

Fig. 11. Hunk dependency detection.

C. SCM Adaptation

Eliminating Side-Effects. The proposed algorithm operates
on the atomic change level and can directly be used with
semantic-based tools, such as SemanticMerge. Yet, to make the
integration with text-based SCM systems easier, each atomic
change has to be mapped back to a commit in the original
history. The sub-history H ′ = 〈∆′1, . . . ,∆′k〉 (∆′i is possibly
empty) returned by SEMANTICSLICE is a sequence of atomic
changes labeled by indices indicating their corresponding
original commits. A non-empty sliced change ∆′i can thus be
mapped to its counterpart in the original history, i.e., ∆i.

However, original commits may contain changes that are
sliced away by the code slicing algorithm. These changes
might create unwanted side-effects which break the type safety
of the compilation set entities. We deal with this issue by
restoring entities that are outside of the compilation set to their
original state as in the initial version of the program, thereby
“selectively” ignoring these unwanted changes and eliminating
the side-effects. We do that by creating an additional commit
that reverts the corresponding code entities back to their
original state.

Calculating Hunk Dependencies, HUNKDEP(H ′). The algo-
rithm so far treats changes between versions as tree edit
operations. Another view of changes used by text-based SCM
tools is called hunk. A hunk is a group of adjacent or nearby
line insertions or deletions with surrounding context lines
which stay unchanged. For simplicity, we reuse the notations of
tree change operations for hunk changes. For example, Fig. 11
shows an abstract view of the changes made between pi−1 and
pi, where blocks with “-” represent lines removed and blocks
with “+” represent lines inserted. Grey blocks surrounding the
changed lines represent the contexts. From the text-based view,
the difference between pi−1 and pi consists of three hunks,

1: procedure DIRECTHUNK(Bi, H1..i)
2: D ← ∅
3: Bi−1 ← Li

4: for δ ∈ ∆i−1 do
5: if δ is DEL ∧ right(δ) ∈ range(Bi) then
6: D ← D ∪∆i−1

7: else if δ is INS ∧ right(δ) ∩Bi 6= ∅ then
8: D ← D ∪∆i−1

9: Bi−1 ← Bi−1/right(δ)
10: end if
11: end for
12: D ← D ∪ DIRECTHUNK(Bi−1, H1..(i−1))
13: return D
14: end procedure

Fig. 12. The DIRECTHUNK procedure.

i.e., δ1, δ2 and δ3. We define two auxiliary functions, left(δ)
and right(δ), which return the lines before and after the hunk
change δ, respectively. Special cases are right(δ) when δ is a
deletion and left(δ) when δ is an insertion. In both cases, the
functions return a zero-length placeholder at the appropriate
positions.

In order to apply the sliced results with text-based SCM
tools where changes are represented as hunks, it is needed
to ensure that no conflict arises due to unmatched contexts.
Informally, a change set ∆i directly hunk-depends on another
change set ∆j , denoted by ∆i ∆j , if and only if ∆j

contributes to the hunks or their contexts in ∆i. In contrast,
if ∆i does not directly hunk-depend on ∆j , we say they
commute [15], i.e., reordering them in history does not cause
conflict. The procedure HUNKDEP(H ′) returns the transitive
hunk dependencies for all change set in H ′, i.e.,

HUNKDEP(H ′) ,
⋃

∆i∈H′

{∆j |∆j ∈ H/H ′ ∧∆i
∗ ∆j}.

Once a sub-history H ′ is computed based on the functional and
the compilation set, we augment H ′ with HUNKDEP(H ′) and
the result is guaranteed to apply to p0 without edit conflicts.

Given a change set ∆i, we collect a set of text lines
Bi which are required as the basis for applying ∆i. For
example, Bi for ∆i includes left(δ) for all δ ∈ ∆i and
their surrounding contexts (all shaded blocks under pi−1 in
Fig. 11). Fig. 12 describes the algorithm for computing the
set of direct hunk dependencies () by tracing back history
and locating the latest change sets that contribute to each
line of the basis. Starting from ∆i−1, we iterate backwards
through all preceding change sets. If a change set ∆ contains
a deletion that falls in the range of the basis (Line 5) or
an insertion that adds lines to the basis (Line 7), then ∆ is
added to the direct dependency set D. In Fig. 11, ∆i ∆j

because ∆j has both an insertion (δ4) and a deletion (δ5) that
directly contribute to the basis at pi−1. When the origin of
a line is located in the history, the line is removed from the
basis set (Line 9). The algorithm then recursively traces the
origin of the remaining lines in Bi−1. Upon termination, D
contains all direct hunk dependencies of ∆i. In the worst case,
HUNKDEP calls DIRECTHUNK for every change set in H ′.
Thus, the running time of HUNKDEP is bounded above by
O(|H ′| × |H| ×max∆∈H(|∆|)).

V. IMPLEMENTATION AND EVALUATION

In this section, we describe the implementation of our
tool, CSLICER, and report on the experiments evaluating its
effectiveness and scalability.

A. Implementation

We have implemented CSLICER in Java, using the JaCoCo
Java Code Coverage Library [16] for byte code instrumen-
tation and execution data collection, and a modified version
of the ChangeDistiller [17] for AST differencing as well
as change type classification. We also use the Apache Byte
Code Engineering Library (BCEL) [18] for entity reference
relation analysis. The hunk dependency detection component
HUNKDEP can also be used as a stand-alone tool for any
text-based SCM system, e.g., Git. For a given set of commits,
HUNKDEP generates a hunk dependency graph which can be
used to reorganize commit history without causing conflicts.

Our CSLICER implementation works with Java projects
hosted in Git repositories. The test-slice-verify process is
fully-automatic for projects built with Maven [19]. For other
build environments, user is required to manually build and
collect test execution data through Jacoco plugins. When the
analysis is finished, CSLICER automatically cherry-picks the
identified commits and verifies the test results. The source code
of CSLICER is made available online at https://bitbucket.org/
liyistc/gitslice.

Handling Advanced Java features. We presented our algo-
rithm based on the simplified language P . When dealing
with full Java, advanced language features including method
overloading, abstract class and exception handling need to be
taken into account. For example, various constructs such as
instanceof and exception catch blocks test the runtime
type of an object. Therefore, class hierarchy changes may alter
runtime behaviors of the test [14]. To address this, we treat
class hierarchy changes as an update of the methods that check
the corresponding runtime types to signal possible behavior
changes. Changes that may affect method overloading and field
overshadowing are detected and included in the sliced history
to keep our approach sound.

Handling Non-Java changes. Real software version histories
often contain changes to non-Java files, e.g., build scripts,
configuration files and binaries libraries. Sometimes changes
to non-Java files are mixed with Java changes in the same
commits. To avoid false hunk dependencies, we ignore non-
Java changes in the analysis and conservatively update all non-
Java files to their latest versions unless they are explicitly
marked irrelevant by the user. In extremely rare cases, this
may cause compilation issues, when older Java components
are incompatible with the updated non-Java files. Then the
components which cause the problem should be updated or
reverted accordingly. None of these affects test behaviors.

Optimizations. To make the technique more configurable, we
allow users to specify packages, files, classes and methods to
include or exclude during both the analysis and cherry-picking
processes. For example, all changes on test files (which are not
part of the target system) are ignored by default. Similarly,
changes on internal debugging code can also be discarded

TABLE I. CASE STUDY SUBJECTS.

Project #Files(Java) LOC #C Changed #Tf + -
Hadoop 6608(5861) 1291K 267 1197 111119 14064 58

Elasticsearch 4412(3865) 616K 51 75 1755 304 2
CSLICER 119(112) 16K 94 132 12640 2383 1

without affecting the observable system bahavior. We noticed
in the experiments that user domain knowledge about the
projects can enhance the precision of the computed results.
Another easy optimization is when a commit and its revert are
detected in the history, we can safely ignore the pair without
affecting the correctness of the approach.

B. Evaluation: Case Studies

We have conducted case studies and thoroughly investi-
gated the results produced by CSLICER, to better understand
its applicability, effectiveness, and limitations. In particular,
we looked at three software projects of varying sizes, different
version control workflows, and disparate committing styles –
the Apache Hadoop project [20], the Elasticsearch project and
our own tool, CSLICER. We chose one target functionality
from each project based on the criterion that the functionality
should be well-documented and accompanied by deterministic
unit tests. Statistics about the studied subjects,

1) a new feature “write to single replica in memory” (ticket
number HDFS-6581) added to Apache Hadoop;

2) a Groovy interface enhancement in Elasticsearch; and
3) a new feature that converts bytecode descriptors to fully

qualified class identifier in CSLICER

are given in Table I. The “#C” column lists the number of
commits within the chosen fragment of history. The “Changed”
column lists the number of files changed (f), lines added (+)
and lines deleted (-) for the chosen range. All of the following
studies were conducted on a computer running Linux with an
Intel i5 3.1GHz processor and 4GB of RAM. Now we describe
each case study in detail.

Hadoop. We applied CSLICER to Hadoop for branch refac-
toring. The feature “HDFS-6581” was developed in a feature
branch (also called a topic branch) which was separated from
the main development branch. However, when the development
cycle of a feature is long, sometimes it is reasonable to merge
changes from the main branch back to the feature branch
periodically in order to prevent divergence and resolve conflicts
early. And that is exactly the workflow followed by the Hadoop
team on their feature branches. As a result, not all commits on
the feature branch are logically related to the target feature
or required to pass the feature tests. That is, the branch
“origin/HDFS-6581” is mixed with both feature commits and
merge commits from the main branch. Using CSLICER, we
were able to re-group commits according to their semantic
functionality and reconstruct a new feature branch that is fully
functional and dedicated to the target feature.

We started with the original feature branch which consists
of 42 feature commits and 47 merge commits. There are 34
auto merges (“fast-forward merges” in Git terms) which are
simply combinations of commits from both branches without
conflicts or additional edits. The other 13 are conflict resolution

ch
err

y-
pic

kin
g

main feature main feature’

auto merge

Fig. 13. Illustration of expanding auto merges.

merges which contain additional edits to resolve conflicts. We
kept the resolution merges and expanded the auto merges by
replaying (cherry-picking) the corresponding commits from the
main branch onto the feature branch. Effectively, we converted
the branched history into a equivalent expanded linear history
(see Fig. 13). The expanded feature branch has 267 commits
in total.

We executed 58 feature-related unit tests specified in the
test plan, which took about 750 seconds to finish. CSLICER
identified 65 commits which are required for compilation
dependency as well as preserving the test behaviors, and
additional 26 commits for hunk dependency. Note that some
commits from the main branch are actually required by the tar-
get feature. The refactored feature branch contains 91 commits
in total, which achieves ∼66% reduction.

Elasticsearch. As discussed in Sec. IV, there is no efficient
algorithm that returns optimal solution in general. From our
experience, finding the shortest functionality preserving sub-
history for a given set of tests is a highly challenging task even
for programmers with expertise within the software projects.
Yet, we manually identified the optimal solutions for this and
the next subject.

We took a fragment of history between v1.3.6 to v1.3.8 of
Elasticsearch, which includes the total of 51 commits. There
are 2 unit tests clearly marked by the developers intending to
test the target functionality. CSLICER identified 17 commits
achieving a 67% reduction of the unrelated commits. However,
compared with the optimal solution which requires 4 commits,
CSLICER reports 13 false positives.

We examined all the false alarms and concluded that
the main reason causing them is that the actual test ex-
ecution exposes more behaviors of the system than what
are intended to be verified. For instance, the test case
“testDynamicBlacklist” invokes not only the compo-
nents implementing the “dynamic black list” but also those
that implement the logging functions for debug purposes.
Obviously, changes on the logging functions do not affect the
test results. But without prior knowledge, CSLICER would
conservatively classify them as possibly affecting changes.
This is one of the limitations of our current technique.

However, as mentioned earlier, it is not always possible
to decide whether an arbitrary change affects the test results
in a given program. Two possible options can help alleviate
this problem. The first one is allowing users with domain
knowledge to provide insights on which components (including

classes, methods, fields and statements) do not affect the
test results. Given accurate information, we can prune the
functional set and reduce false positives. The other option is to
analytically answer the question for some specific type of tests
through more sophisticated program analysis techniques, e.g.,
data-flow analysis [21], differential symbolic execution [22] or
differential static analysis [23]. We leave it for future work.

CSLICER. We repeated the similar study on the CSLICER
repository. With expertise on our own project, we were able to
exclude console output related methods from the functional set.
This single exclusion helped reduce the number of test- and
compilation-related commits from 5 down to 3. An interesting
observation is that many more commits are required for hunk
dependency in our repository (35/94 compared with 26/267 in
Hadoop and 0/51 in Elasticsearch), which makes the reduction
about 60%.

The two open source projects have much larger code bases
and are relatively better managed than the CSLICER repository.
In both Hadoop and Elasticsearch repositories, each commit
is required, by an external contribution guideline [24], to be
a stand-alone logical unit. For example, changes to differ-
ent software components are usually separated into multiple
commits; formatting, refactoring and documentation changes
are separated from functional ones. Pairs of commits are
more likely to depend on each other if the changes are less
disciplined. Thus, we conjecture that the reduction rate in
the CSLICER repository can be increased by the improved
committing style.

C. Evaluation: Applicability

We also empirically evaluated the applicability of CSLICER
by measuring its performance and the history reduction rate
achieved when applied on real-world software projects. Specif-
ically, we aimed to answer the following research questions:

RQ1: How efficient is CSLICER when applied on histories of
various scales?

RQ2: What is the history reduction rate, in terms of the ratio
of irrelevant commits, achieved by CSLICER?

Subjects and Methodology. We selected four open source
software projects written in Java: three projects described
above and, in addition, the Maven project. From each project,
we randomly chose three functionalities (e.g., a feature, an
enhancement and a bug fix) that are accompanied by good
documentations and unit tests. It is often possible to link
specific commits with on-line issue tracking documentations
via ticket numbers embedded in the commit messages. For
each functionality, we referred to the log messages and ticket
numbers to locate the target commits where the functionality
was introduced. The set of tests are either explicitly mentioned
in the accompanied test plan or implicitly enclosed within the
same commit as the functionality itself.

Then we took three sets of histories of length 50 (short),
100 (medium) and 150 (long) respectively, tracing back from
the target commits. We separated project source code from
test code and used CSLICER to perform the semantic slicing
on source code only. We then verified that the sliced sources
compile successfully and pass the same tests.

TABLE II. EXPERIMENTAL RESULTS.

F Reduction(%) Time(s) for Long
Short(H) Medium(H) Long(H) Slice Hunk

C1 94(62) 89(34) 91(28) <1 1.1
C2 36(14) 39(10) 42(12) <1 34.8
C3 82(20) 72(13) 71(14) <1 129.7
E1 72(72) 79(78) 81(79) 2677.5 11.6
E2 94(90) 96(92) 95(91) 2086.4 12.8
E3 94(94) 95(94) 96(94) 2041.0 12.4
H1 52(24) 61(25) 53(21) 852.0 60.5
H2 50(44) 56(50) 67(59) 766.1 53.2
H3 88(84) 87(75) 90(71) 734.4 23.3
M1 94(90) 97(64) 97(59) 11.1 38.3
M2 96(96) 97(80) 98(79) 8.4 11.5
M3 94(94) 93(89) 95(92) 7.1 1.0

Avg. 79(65) 80(59) 81(58) 765.6 32.5

Results. The experimental results are reported in Table II. The
column “F” lists the subject functionality where “C” stands for
CSLICER, “E” stands for Elasticsearch, “H” stands for Hadoop
HDFS (a sub-project of Hadoop) and “M” stands for Maven.
The history reduction rate is shown separately for each set of
histories. The numbers in brackets are the reduction with hunk
dependencies counted. The time taken (for the longest history)
by the main algorithm and the hunk dependency algorithm is
shown in the “Slice” and “Hunk” columns, respectively.

The table shows that CSLICER achieves good reduction
rate in most of the cases, especially for Elasticsearch. Interest-
ingly, Elasticsearch also has few hunk dependencies. Majority
of the analysis time was taken in the COMPDEP procedure
for detecting reference relations from the bytecode. There are
∼6500 and ∼4200 classes for Elasticsearch and Hadoop HDFS
respectively, which took long for processing. The computed
reference graphs can be cached for reuse. The time taken by
the HUNKDEP procedure is approximately linear to the number
of commits remained after slicing.

Threats to Validity. The reduction rate depends on many
factors – the committing styles, the complexities of the test
(how many components it invokes), and coding styles (how
closely the components are coupled), etc. While our results
are encouraging, we do not have enough data to conclude that
they will generalize to all software projects.

Summary. To summarize, we evaluated CSLICER through both
case studies and experiments. We demonstrated that apart
from assisting developers in porting functionality, CSLICER
can also be applied for branch refactoring. The comparison
with manually identified optimal sub-histories indicates that
the precision of our results is limited by how accurately we can
decide whether a change affects the test results. We proposed
some options for improving that. Yet, the results of quantitative
studies suggest that CSLICER is able to achieve good reduction
of commits in real world software repositories, which justifies
its value in practice.

VI. RELATED WORK

To the best of our knowledge, the software history semantic
slicing problem we defined in this paper is not previously
studied in the literature. However, our work does intersect with
different areas spanning code change classification, change

impact analysis, and software product line variants generation.
We compare CSLICER with these related work below.

Change Classification. The CSLICER algorithm relies on so-
phisticated structural differencing [12], [25], [26] and code
change classification [11], [17], [27] algorithms. We use the
former to compute an optimal sequence of atomic edit opera-
tions that can transform one AST into another, and the latter
to classify the atomic changes according to their change types.

The most established AST differencing algorithm is
ChangeDistiller [17]. It uses statement as the smallest AST
node and categorizes source code changes into four types of
elementary tree edit operations, namely, insert, delete, move
and update. We use a slightly different AST model in which
all entity nodes are unordered. For example, the ordering of
methods in a class does not matter while the ordering of
statements in a method does. Hence, move operation is no
longer needed and never reported in CSLICER. We also label
each AST node using a unique identifier to represent the fully
qualified name of a source code entity. The rename of an entity
is thus treated as a deletion followed by an insertion. This
modification helps avoid confusion in functional set matching
using identifiers. Finally, deletion is only defined over leaf
nodes in ChangeDistiller. In contrast, we lift this constraint
and allow deletion of a subtree to gain more flexibility and
ensure integrity of the resulting AST.

Change Impact Analysis. Change Impact Analysis [14], [28]–
[31] solves the problem of determining the effects of source
code modifications. It usually means selecting a subset of tests
from a regression test suite that might be affected by the given
change, or, given a test failure, deciding the changes that might
be causing it. The research on impact analysis can be roughly
divided into three categories: the static [28], [32], dynamic [29]
and combined [14], [31], [33] approaches.

The most related work in change impact analysis are
the combined approaches. Ren et. al [14] introduced a tool,
Chianti, for change impact analysis of Java programs. Chianti
takes two versions of a Java program and a set of tests as the
input. First, it builds dynamic call graphs for both versions
before and after the changes through test execution. Then it
compares the classified changes with the old call graph to
predict the affected tests; and it uses the new call graph to
select the affecting changes that might cause the test failures.
FaultTracer [31] improved Chianti by extending the standard
dynamic call graph with field access information.

CSLICER uses similar techniques to identify affecting
changes. However, the real challenge in our problem is to
process and analyze the identified affecting changes and ensure
that all related dependencies are included as well. Moreover,
we consider a sequence of program versions rather than only
two versions, and our algorithm can operate on both the atomic
change level and the text-based commit level.

The problem of finding a minimal subset of the his-
tory that contributes to a test failure also appeared in delta
debugging [34]. The high-level idea is similar to what is
implemented in the git-bisect [35] command, where a
divide-and-conquer approach is used to locate a problematic
commit through repeated test runs. Since the test result may
not be a monotonic property with respect to the length of

the history, such techniques cannot guarantee to find optimal
solution within O(log k) test runs. Nevertheless, they can still
be applied in conjunction with CSLICER to further reduce the
solution size.

Product Line Variant Generation. The software product line
(SPL) [36], [37] community faces similar challenges as we
do. An SPL is an efficient means for generating a family
of program variants from a common code base [10], [38].
Code fragments can be disabled or enabled based on user
requirements, e.g., using “#ifdef” statements in C, often
resulting in ill-formed programs. Therefore, variant generation
algorithms need to check the implementation of SPL to ensure
that the generated variants are well-formed.

Kästner et. al [38] introduced two basic rules for enforcing
syntactic correctness of product variants, namely, optional-
only and subtree. The optional-only rule prevents removal of
essential language constructs such as class name and only
allows optional entities, e.g., methods or fields, to be removed.
The subtree rule requires that when an AST node is removed,
all of its children are removed as well, Our field- and method-
level AST model and the syntactic correctness assumption
over intermediate versions together automatically guarantee the
satisfaction of the two rules. Kästner and Apel [10] proposed
an extended calculus for reasoning about the type-soundness
of product line variant programs written in Featherweight Java.
They formally proved that their annotation rules on SPL are
complete. Our COMPDEP reference relation rules are directly
inspired by theirs. We are able to discard some of the rules
since we only deal with field- and method-level granularity.

Despite the similarities in syntactic and type safety require-
ments on the final products, the inputs for both problems differ.
Unlike the SPL variant generation problem where a single
static artifact is given, the semantic slicing algorithm needs
to process a sequence of related yet distinct artifacts under
evolution. And on top of low-level requirements on program
well-formedness, semantic slices also need to satisfy high-level
semantic requirements, i.e., some functionality as captured by
test behaviors.

VII. CONCLUSION

We proposed CSLICER, an efficient semantic slicing al-
gorithm which lives on top of existing SCM systems. Given
a functionality exercised and verified by a set of test cases,
CSLICER is able to identify a subset of the history commits
such that applying it results in a syntactically correct and well-
typed program. The computed semantic slice also captures the
interested functional behaviors which guarantees the test to
pass. We have also implemented a novel hunk dependency al-
gorithm which fills the gap between language semantic entities
and text-based modifications. Our prototype tool demonstrates
its efficiency and achieves significant reduction when applied
to large scale software projects.

We see many avenues for future work. First, a natural next
step is to raise the precision of the functional set computation
using more sophisticated static analysis techniques. We believe
the reduction rate can be further improved with more accurate
test affecting analysis. Another interesting direction is to
integrate CSLICER algorithm with language-aware merge tools
and investigate possible tradeoffs.

REFERENCES

[1] Git version control system. [Online]. Available: https://git-scm.com/
[2] Apache Subversion (SVN) version control system. [Online]. Available:

http://subversion.apache.org/
[3] Mercurial source control management system. [Online]. Available:

http://mercurial.selenic.com/
[4] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing

Forked Product Variants,” in Proc. of SPLC’12, 2012, pp. 156–160.
[5] Elasticsearch: distributed, open source search and analytics engine.

[Online]. Available: https://github.com/elastic/elasticsearch
[6] F. Tip, “A Survey of Program Slicing Techniques,” J. of Programming

Languages, vol. 3, pp. 121–189, 1995.
[7] The diff and merge tool that understands your code – SemanticMerge.

[Online]. Available: https://www.semanticmerge.com
[8] Cow: Semantic Version Control. [Online]. Available: http://jelv.is/cow
[9] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A

Minimal Core Calculus for Java and GJ,” ACM Trans. Program. Lang.
Syst., vol. 23, no. 3, pp. 396–450, May 2001.

[10] C. Kästner and S. Apel, “Type-Checking Software Product Lines - A
Formal Approach,” in Proc. of ASE’08, 2008, pp. 258–267.

[11] B. Fluri and H. C. Gall, “Classifying Change Types for Qualifying
Change Couplings,” in Proc. of ICPC’06, 2006, pp. 35–45.

[12] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change Detection in Hierarchically Structured Information,” in Proc.
of SIGMOD’96, 1996, pp. 493–504.

[13] G. Rothermel and M. J. Harrold, “A Framework for Evaluating Re-
gression Test Selection Techniques,” in Proc. of ICSE’94, 1994, pp.
201–210.

[14] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A Tool
for Change Impact Analysis of Java Programs,” in Proc. of OOPSLA’04,
2004, pp. 432–448.

[15] Understanding Darcs/Patch Theory. [Online]. Available: http://en.
wikibooks.org/wiki/Understanding Darcs/Patch theory

[16] JaCoCo Java Code Coverage Library. [Online]. Available: http:
//www.eclemma.org/jacoco

[17] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change Distilling:
Tree Differencing for Fine-Grained Source Code Change Extraction,”
IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 725–743, Nov. 2007.

[18] Apache Byte Code Engineering Library. [Online]. Available: https:
//commons.apache.org/proper/commons-bcel

[19] Apache Maven Project. [Online]. Available: https://maven.apache.org
[20] Apache Hadoop Project. [Online]. Available: https://hadoop.apache.org

[21] M. Sagiv, T. Reps, and S. Horwitz, “Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation,” in Proc. of
TAPSOFT’95, 1996, pp. 131–170.

[22] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential
Symbolic Execution,” in Proc. of SIGSOFT FSE’08, 2008, pp. 226–237.

[23] S. K. Lahiri, K. Vaswani, and C. A. Hoare, “Differential Static Analysis:
Opportunities, Applications, and Challenges,” in Proc. of FOSER’00,
2010, pp. 201–204.

[24] How to Contribute to Hadoop Common. [Online]. Available:
https://wiki.apache.org/hadoop/HowToContribute

[25] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus,
“Fine-grained and Accurate Source Code Differencing,” in Proc. of
ASE’14, ser. ASE’14, 2014, pp. 313–324.

[26] P. Bille, “A Survey on Tree Edit Distance and Related Problems,” Theor.
Comput. Sci., vol. 337, no. 1-3, pp. 217–239, Jun. 2005.

[27] M. Hashimoto and A. Mori, “Diff/TS: A Tool for Fine-Grained Struc-
tural Change Analysis,” in Proc. of WCRE’08, 2008, pp. 279–288.

[28] R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1996.

[29] J. Law and G. Rothermel, “Whole Program Path-Based Dynamic Impact
Analysis,” in Proc. of ICSE’03, 2003, pp. 308–318.

[30] S. Zhang, Z. Gu, Y. Lin, and J. Zhao, “Change impact analysis for
AspectJ programs,” in Proc. of ICSM’08, Sept 2008, pp. 87–96.

[31] L. Zhang, M. Kim, and S. Khurshid, “Localizing Failure-inducing
Program Edits Based on Spectrum Information,” in Proc. of ICSM’01,
2011, pp. 23–32.

[32] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen,
“Change Impact Identification in Object Oriented Software Mainte-
nance,” in Proc. of ICSM’94, 1994, pp. 202–211.

[33] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging Field Data
for Impact Analysis and Regression Testing,” in Proc. of ESEC/FSE’11,
2003, pp. 128–137.

[34] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
inducing Input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200,
2002.

[35] git-bisect: Find by binary search the change that introduced a bug.
[Online]. Available: http://git-scm.com/docs/git-bisect

[36] P. C. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[37] K. Pohl, G. Boeckle, and F. van der Linden, Software Product Line
Engineering : Foundations, Principles, and Techniques. Springer, 2005.

[38] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory,
“Guaranteeing Syntactic Correctness for all Product Line Variants: A
Language-Independent Approach,” in Proc. of TOOLS EUROPE’09, ser.
LNBI, vol. 33, 2009, pp. 174–194.

