
Precise Semantic History Slicing through Dynamic Delta
Refinement

Yi Li
University of Toronto
Toronto, ON, Canada

liyi@cs.toronto.edu

Chenguang Zhu
University of Toronto
Toronto, ON, Canada

czhu@cs.toronto.edu

Julia Rubin
MIT

Cambridge, MA, USA
mjulia@csail.mit.edu

Marsha Chechik
University of Toronto
Toronto, ON, Canada

chechik@cs.toronto.edu

ABSTRACT
Semantic history slicing solves the problem of extracting
changes related to a particular high-level functionality from
the software version histories. State-of-the-art techniques
combine static program analysis and dynamic execution trac-
ing to infer an over-approximated set of changes that can
preserve the functional behaviors captured by a test suite.
However, due to the conservative nature of such techniques,
the sliced histories may contain irrelevant changes. In this
paper, we propose a divide-and-conquer-style partitioning
approach enhanced by dynamic delta refinement to produce
minimal semantic history slices. We utilize deltas in dynamic
invariants generated from successive test executions to learn
significance of changes with respect to the target function-
ality. Empirical results indicate that these measurements
accurately rank changes according to their relevance to the
desired test behaviors and thus partition history slices in an
efficient and effective manner.

CCS Concepts
•Software and its engineering → Software configura-
tion management and version control systems; Dy-
namic analysis; Software evolution;

Keywords
Semantic history slicing, program analysis, dynamic invari-
ants, software configuration management.

1. INTRODUCTION
Software Configuration Management systems (SCMs) are

widely used in software development practices. These sys-
tems, e.g., Git [8], SVN [5], Mercurial [10], are useful for cap-
turing incremental changes made by developers, examining

or reverting changes, identifying developers responsible for
a specific change, creating development streams, and more.
Incremental changes are manually grouped by developers
to form commits (a.k.a. change sets). Commits are stored
sequentially and ordered by their time stamps, so that it is
convenient to trace back to any version in the history.

Yet, the sequential organization of changes is inflexible
and lacks support for many tasks that require high-level,
semantic understanding of program functionality [36, 29].
For example, developers often need to locate and transfer
functionality from one branch to another: either for porting
bug fixes or for splitting large chunk commits into multiple
functionally-independent pull requests. Identifying failure-
inducing changes in version histories is another challenge
that developers face in their work.

Semantic History Slicing. Semantic history slicing iden-
tifies a set of commits in a change history that relate to each
other based on a certain criterion. For example, CSlicer [27]
identifies and extracts a set of functionally-related commits
that correspond to a specific high-level functionality. The
functionality is defined by a test suite, and the sliced his-
tory has to be perfectly functional and pass all the tests
in the suite. Git-bisect [7] and delta debugging [42] isolate
failure-inducing changes in version histories using a divide-
and-conquer-style refinement approach, where a set of com-
mits is partitioned and tested separately until a minimal
subset that exposes the test failures is found.

The biggest challenge for precisely solving the semantic
slicing problem lies in the very large number of possible
programs in the search space, i.e., those that are induced by
all subsets of commits in the history. A valid semantic history
slice has to be efficiently discovered from the exponential
number of candidates.

Existing solutions approach this problem from two different
angles. CSlicer [27] analyzes the latest program version
to collect test coverage information and then computes an
over-approximated set of commits that include changes to
the covered elements. CSlicer trades accuracy for efficiency:
it executes the test suite only once, but it conservatively
assumes that all changes traversed by the test execution can
potentially alter the test results. This assumption results in
potential inclusion of unnecessary or irrelevant changes into
the history slice.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...

http://dx.doi.org/10.1145/2970276.2970336

495

Partition

Execute Learn

History

Tests

Minimal
Slice

Sub-history Change

Significance

Dynamic Invariants

Signals✔

Figure 1: Dynamic delta refinement loop.

Divide-and-conquer-style techniques, such as delta debug-
ging, guarantee accuracy of the result. Yet, they can be very
expensive to run as they execute the test suite multiple times,
depending on the way history is partitioned and on the order
in which partitions are tested.

Dynamic Delta Refinement. In this paper, we propose a
precise semantic history slicing technique based on iterative
refinement and change significance ranking. We discover
relevance of changes to the target tests through successive
test runs and utilize this information to guide the history
partition and speed up the refinement process. We refer to
this technique as dynamic delta refinement. Its key insight
is that by comparing the runtime executions of two program
versions – before and after a change, we can extract infor-
mation about the precise impact of the changes at various
program points. By combining impact information with test
outcomes (pass or fail), we are able to accurately infer the
significance of changes with respect to the target tests. In
particular, if the tests still pass after removal of a change,
then the removed change and its family of related changes
are insignificant to the tested functionalities. We give more
details on how such families of changes can be detected using
dynamic program invariants generated by Daikon [16] in
Sec. 4.

Fig. 1 shows an overview of the delta refinement loop.
Using the significance measurements of changes, dynamic
delta refinement is able to efficiently find minimal seman-
tic history slices through well informed partition schemes.
With much higher confidence, changes of less significance
are removed first and, upon success, the analysis scope is
reduced and the refinement continues recursively. The re-
sults of test executions, either success or failure, are used to
update significance ranking of the remaining changes. The
ranking accuracy is improved with each execution, and the
refinement loop terminates when the minimality condition
is met. Note that the algorithm maintains a valid semantic
slice throughout this process, so it can be interrupted at any
time and return a valid best-effort result.

Contributions.

1. We show how dynamic delta refinement can learn sig-
nificance of changes with respect to a specific high-level
functionality.

2. We define minimal semantic slices and describe an
algorithm for computing them based on dynamic delta
refinement.

3. We report on an implementation of a fully-automated
precise semantic history slicing tool that operates on
Java projects hosted in Git repositories.

4. We compare our technique with previous work in terms
of precision and efficiency. Based on empirical evalu-
ation, our technique achieves ∼46% improvement in
accuracy compared with CSlicer. We also demon-
strate the advantage of using change significance to
speed up the basic partition scheme used by delta de-
bugging.

Organization. The rest of this paper is organized as follows.
Sec. 2 illustrates how dynamic invariants are used for learning
change significance and how significance ranking is used
to guide history partition. Sec. 3 provides the necessary
background for the rest of the paper. In Sec. 4, we formalize
the delta refinement algorithm for finding minimal semantic
slices and prove its correctness. In Sec. 5, we describe our
implementation and experimental results. Finally, we discuss
related work and conclude in Sec. 6 and 7, respectively.

2. OVERVIEW OF THE APPROACH
In this section, we illustrate our approach on two simple

examples.

2.1 Changes and Dependencies
Example 1. Fig. 2a shows two versions of a Java program
Foo.java: “base” and “final”. The “final” version introduces
a few modifications to the class B through a series of atomic
changes. Atomic changes are defined over the abstract syntax
trees (ASTs) of the program as insertions (Ins), deletions
(Del), or updates (Upd) of AST nodes (e.g., fields, methods,
etc.) Specifically, there are six atomic changes between the
“base” and the “final” versions (listed in no particular order),

1 : an update to the field B.x; 2 : an insertion of a new
field y into the class B; 3 : an update to the field B.s; 4 :
an update to the method B.g(), which adds an additional
statement “z = lib(*) ? z : m()”, conditionally assign-
ing the returned value of m() to the local variable z; 5 : an
update to method B.h(), which replaces “==” by “!=”; and
6 : an insertion of a new method m() into the class B.

The lib(*) method called in g() represents an external
library whose returned value is only known during runtime.
We do know that the library method behaves deterministi-
cally but cannot predict its return value without executing
it. The desired functionality of the program is captured by a
unit test for Foo.java which asserts that the returned value
of the method A.f() should be equal to 3 (see Fig. 2b). We
denote this test by T . Note that the test assertion holds in
the final version of the program but fails in the base one.

A semantic history slice is a subset of the changes which
produces a well-formed and fully functional program that can
still pass the test. Since we only care about a subset of the
program behaviors captured by the test, some atomic changes
are unnecessary. In our example, the minimal set of changes
which qualifies as a valid semantic slice is { 2 , 4 , 6 }. The
test T fails when any of these three changes is missing and
passes whenever all of them are present. Other changes are
either never executed or do not alter the asserted values.
Interestingly, the test passing property is not monotone, i.e.,
adding modifications may change the tests from passing to
failing.

Change Dependencies. Atomic changes are not com-
pletely independent from each other. In order to construct
a well-formed program, some changes have to be applied

496

Final:Base:

class A {

 int f() {return (new B).g();}

}

class B {

 int x = 1;

 String s = null;

 int g() {

 int z = h(s, x);

 return z;

 }

 int h(String v, int t) {

 return v == null ? 0 : t;

 }

}

1: UPD(B.x)

class A {

 int f() {return (new B).g();}

}

class B {

 int x = 2;

 int y = 2;

 String s = "abc";

 int g() {

 int z = h(s, x);

 z = lib(*) ? z : m();

 return z;

 }

 int h(String v, int t) {

 return v != null ? 0 : t;

 }

 int m() {return ++y;}

}

3: UPD(B.s)

2: INS(B.y)

4: UPD(B.g)

5: UPD(B.h)

6: INS(B.m)

(a) Atomic changes.

Test:

class TestFoo {

 @Test

 void test() {

 A a = new A();

 assertEquals(3, a.f());

 }

}

(b) Target test.

62

51 3

4 ✔

(c) Change dependencies.

Figure 2: Atomic changes between the “base” and “final” versions of Foo.java.

as prerequisites for others [35, 27]. For example, Ins(B.m)
depends on Ins(B.y) since the method B.m() accesses the
field B.y and requires the declaration of the field in order to
compile; and Upd(B.g) depends on Ins(B.m) since the new
version of the method B.g() invokes B.m() (see Fig. 2c).

We are only interested in producing well-formed programs.
The partition of changes thus has to obey the dependency
relations. That is, reverting a subset of atomic changes results
in a well-formed program only if the remaining changes have
all their dependencies satisfied. The change dependencies
can be computed systematically, as we describe in Sec. 5.1.

2.2 Learning Change Significance
We now show how delta information observed from suc-

cessive test runs can be used to learn significance of atomic
changes with respect to a target test suite.

In Example 1, the target test T passes in the final ver-
sion. We can use this information to establish facts about
the program variables at various program points by generat-
ing dynamic invariants [16]: likely invariants that may not
generalize but that hold for the exercised test executions.
For simplicity, we refer to them as invariants from now on.
For instance, “B::x == 2” is a field invariant which indicates
that the value of the field B.x equals to 2 during the initial
execution. Another example is “A.f()::return == 3” which
is a method post-condition asserting that the return value of
A.f() is 3.

We denote by H− the set of reverted changes, I the initial
set of invariants for the final version of the program, and
I ′ the invariants after changes are reverted. The row H−

of Fig. 3 shows four possible cases of reverted changes in
Example 1. The deltas in the generated invariants before and
after reverting changes is shown in row “I \ I ′” of the table.
The rows “T (H+)” and “Signals” show the test outcomes and
significance signals learned for each case, respectively. We
discuss each case in turn below.

Case 1: Test Passing without Extra Signal. Suppose a
singleton atomic change set H− = { 1 } is reverted during the
first partition step, and the new program is now equivalent to
applying H+ = { 2 , 3 , 4 , 5 , 6 } to the base version. The
declarations and initializations of x are reverted to the base
version: x initialized to 1 instead of 2.

Static analysis is unable to determine whether this change
would affect the test results due to the undetermined returns
of lib(*). But we are able to precisely detect the impact
of reverting 1 by comparing the new set of invariants I ′

generated during the actual execution of the new program to
the original invariants I. In this case, we observe that only
one invariant disappears after reverting 1 , namely, “B::x
== 2” (see row “I \ I ′” in Fig. 3). This indicates that the
impact of reverting 1 is local to the change itself and does
not flow into other program points.

In fact, lib(*) returns false at runtime and thus the
change on B.x does not propagate through – the returned
value from h(s,x) is overwritten by m() which is independent
of the change. The test outcome is unchanged and therefore
the value of B.x is considered insignificant. We decrease the
significance score of 1 (denoted by ↓ in Fig. 3 row “Signals”).

Case 2: Test Passing with Extra Signals. Now sup-
pose that two atomic changes, H− = { 1 , 3 }, are reverted
together. The initial values of both x and s are affected: x

taking value 1 instead of 2 and s being initialized to null

instead of "abc". This time, we observe three invariants
disappearing after the revert: “B::x == 2”, “B::s != null”
and “B.h(I,S)::return == 0”, which involve an additional
method h(I,S) whose return value is affected by the revert.

Since the test passes again, none of the three invariants
in I \ I ′ is consequential for the target functionality. These
include the return of B.h(I,S). Apart from 1 and 3 which
are obviously insignificant, we could also infer that 5 is in-
significant – a local impact analysis shows that 5 only affects
the return of B.h(I,S), At this point, we have determined
that the change set { 1 , 3 , 5 } is insignificant for the target
test. This information can be used to guide the partition in
the next iteration by prioritizing reverting 5 over the rest.

Case 3: Test Failing by Determined Causes. When
4 is reverted, the conditional assignment statement “z =

lib(*) ? z : m()” in g() is removed. The test fails be-
cause now the value from h(s,x) flows through, which is
different from the old value from m(). Since an atomic change
is already the smallest unit in our analysis, we can pinpoint
4 as the definite cause of the test failure.

All invariants violated by the revert are directly impacted
by the change and most likely cause the failure. They are

497

Case 1 Case 2 Case 3 Case 4

H− 1 1 3 4 3 4

I \ I ′ B::x == 2
B::x == 2

B::s != null

B.h(I,S)::return == 0

B::y one of {2, 3}

B.g()::return == 3

B.m()::return == 3

A.f()::return == 3

B::s != null

B.h(I,S)::return == 0

B::y one of {2, 3}

B.g()::return == 3

B.m()::return == 3

A.f()::return == 3

T (H+) 4 4 8 8

Signals 1 ↓ 1 ↓ 3 ↓ 5 ↓ 2 ↑ 4 ↑ 6 ↑

Figure 3: Change significance learning case by case.

as follows: “B::y one of 2, 3” which asserts that the field
y used to take both 2 and 3 (now y can only be 2), and
“B.m()::return == 3” which asserts that the return of m()

used to be 3 (now m() does not return at all). Therefore, we
consider both 2 and 6 , which are associated with B.y and
B.m(), respectively, significant for the test.

Case 4: Test Failing by Undetermined Causes. When
the test fails after reverting multiple atomic changes, as
happens in this case, the causes for the failure are undeter-
mined. The actual cause can be any one in the reverted
changes or their arbitrary combination. For example, when
H− = { 3 , 4 } is reverted, the test fails only due to the ab-
sence of 3 but we cannot infer useful significance information
in this case.

2.3 History Partition by Significance Ranking
The basic idea of history partition is inspired by delta

debugging [42]. In the first iteration, the history is split
into two halves which are then tested individually. If one
of the partitions passes the test, then the process continues
recursively on the successful partition. Otherwise, less ag-
gressive partitions are produced by reverting fewer changes
and keeping more. For example, we can split the history
into four similar-size change sets and revert each of them,
one at a time. If none of the attempts are successful, then
finer-grained partitions are produced until we reach a point
where only a single atomic change is reverted at a time. Then
we are able to classify the change precisely according to the
test results. The process terminates when a 1-minimal [42]
history slice is found: reverting any single change in the slice
fails the test.

In this paper, we make two enhancements to the basic
partition scheme: (1) before attempting basic partitions,
we prioritize removal of low significance changes whenever
possible, and (2) by precisely analyzing dependencies between
changes, we predict compilation errors without needing to
compile the program.

Example 2. We use another example with a slightly more
complex change history to illustrate our enhanced history
partition scheme. In this example, there are eight atomic
changes { 1 , . . . , 8 }, adding two non-essential changes 7

and 8 on top of the history in Example 1. The set of essential
changes is still { 2 , 4 , 6 }. Due to space limitations, we omit
the details of the additional changes1.

The actual steps taken when analyzing this example are
shown in Fig. 4. During the first step (n = 1), the history

1The code and detailed changes for Example 2 can be found
at: bitbucket.org/liyistc/gitslice/wiki/ase16-e2.

n Partition (H+, H−) T Signals

1
1 2 3 4 5 6 7 8 -

1 2 3 4 5 6 7 8 -

2

1 2 3 4 5 6 7 8 -

1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 -

1 2 3 4 5 6 7 8 4 3 ↓ 5 ↓ 7 ↓ 8 ↓
3 1 2 3 4 5 6 ∗ ∗ 4 3 ↓ 5 ↓

4
1 2 ∗ 4 ∗ 6 ∗ ∗ -

1 2 ∗ 4 ∗ 6 ∗ ∗ 8

5 1 2 ∗ 4 ∗ 6 ∗ ∗ 4 1 ↓

6
∗ 2 ∗ 4 ∗ 6 ∗ ∗ -

∗ 2 ∗ 4 ∗ 6 ∗ ∗ 8 2 ↑ 4 ↑ 6 ↑
∗ 2 ∗ 4 ∗ 6 ∗ ∗ -

Figure 4: Enhanced history partition scheme.

is partitioned into two equal halves, i.e., { 1 , 2 , 3 , 4 } and
{ 5 , 6 , 7 , 8 }. We keep one set and revert the other but
only to find that the dependencies 6 → 2 and 4 → 6

are violated. In Fig. 4, change dependency violations are
represented by “-” in column “T”. No test run is needed so
far.

During the second step (n = 2), we increase the partition
granularity and revert two changes at a time. Reverting
{ 3 , 4 } produces a well-formed program, but the test fails
(8) since 4 is an essential change. No significance signal is
learned since the cause of the failure is not determined. The
test passes (4) when { 7 , 8 } is reverted. The extra signals
for 3 and 5 that we learn from the passing test allow us to
lower their significance as well.

During the third step (n = 3), we revert { 3 , 5 } as sug-
gested by their significance measurements and successfully
reduce the scope down to only four atomic changes. Simi-
larly to the first step, neither half of the partition produced
during Step 4 is a valid semantic slice. Therefore, we increase
the partition granularity again in Step 5, reverting a single
change at a time. This time, 1 can be reverted which leaves
a valid 1-minimal history semantic slice { 2 , 4 , 6 }. During
the final step (n = 6), the delta refinement loop terminates
because none of the changes can be successfully reverted.

For this example, six test runs are needed for finding
the minimal solution using the enhanced partition scheme.
In contrast, the basic partition scheme from [42], without
significance learning or change dependency analysis, requires
thirteen test runs and twelve additional (failed) compilations.

498

P ::= L

L ::= class C extends C{C f; K M}

K ::= C(C f){super(f); this.f = f;}
M ::= C m(C x){return e;}
e ::= x | e.f | e.m(e) | new C(e) | (C)e

Figure 5: Language syntax rules [22].

y ∈ V (r)
Ins((x, n, v), y)

V (r′)← V (r) ∪ {x} Parent(x)← y

id(x)← n ν(x)← v

x ∈ V (r)
Del(x)

V (r′)← V (r) \ {x}
x ∈ V (r)

Upd(x, v)
ν(x)← v

Figure 6: Types of atomic changes [17].

3. PRELIMINARIES
In this section, we provide background and definitions for

the rest of the paper.

Language Syntax. To keep the presentation concise, we
step back from the complexities of the full Java language and
concentrate on the core object-oriented features. We adopt a
simple functional subset of Java from Featherweight Java [22],
denoting it by P . The syntax rules of the language P are
given in Fig. 5. Many advanced Java features, e.g., interfaces,
abstract classes and reflection, are removed from P , while the
typing rules which are crucial for the compilation correctness
are retained [24].

A syntactically correct program p ∈ P consists of a list
of class declarations (L), where the overhead bar L stands
for a (possibly empty) sequence L1, . . . , Ln. We use 〈〉 to
denote an empty sequence and “,” for sequence concatenation.
Every class declaration has members including fields (C f),
methods (M) and constructors (K). A method body consists
of a single return statement; the returned expression can be
a variable, a field access, a method invocation, an instance
creation or a type cast.

Abstract Syntax Tree. A valid program p ∈ P can be
parsed as an abstract syntax tree (AST), denoted by Ast(p).
We adopt a simplified AST model where the smallest entity
nodes are fields and methods. Formally, r = Ast(p) is a
rooted tree with a set of nodes V (r). The root of r is denoted
by Root(r) which represents the compilation unit, i.e., the
program p. Each entity node x has an identifier and a value,
denoted by id(x) and ν(x), respectively. In a valid AST, the
identifier for each node is unique (e.g., fully qualified names
in Java), and the values are canonical textual representations
of the corresponding entities. We denote the parent of a
node x by Parent(x). Fig. 7 shows an AST for the base
version of the program Foo.java from Fig. 2a.

Change and Change History. Let Γ be the set of all
ASTs. An atomic change operation δ : Γ → Γ is either an
insert, delete or update (see Fig. 6). It transforms r ∈ Γ
producing a new AST r′ such that r′ = δ(r). An insertion
Ins((x, n, v), y) inserts a node x with an identifier n and a
value v as a child of a node y. A deletion Del(x) removes
the node x from the AST. An update Upd(x, v) replaces the
node x with the node v. A change operation is applicable
on an AST if its preconditions are met. For example, the
insertion Ins((x, n, v), y) is applicable on r if and only if
y ∈ V (r). Insertion of an existing node is treated the same
as an update. ∆ denotes the set of all atomic changes.

foo

BA

f() x:I s:S g() h(I,S)

Figure 7: AST of Foo.java at the base version.

A history is a sequence of changes H = 〈δ1, . . . , δk〉. A
sub-history is a sub-sequence of a history, i.e., a sequence
derived by removing changes from H without altering the
ordering. We write H ′ ⊆ H indicating that H ′ is a sub-
history of H and refer to 〈δi, . . . , δj〉 as Hi..j . A change
history H = H−1 ◦ δ1 is applicable to r if δ1 is applicable to
r and H−1 is applicable to δ1(r).

Test Cases. We assume that semantic functionalities can
be captured by test cases and the execution trace of a test
case is deterministic. A test case t is a function t : P → B
such that for a given program p ∈ P , t(p) is true if and only
if the test succeeds, and false otherwise. A test suite is a
collection of unit tests that can exercise and demonstrate
the functionality of interest. Let test suite T be a set of test
cases {ti}. We write p |= T if and only if program p passes
all tests in T , i.e., ∀t ∈ T · t(p).
Dynamic Invariants. Dynamic invariants [34] are likely
invariants that are discovered from program executions. They
assert predicates that hold during the execution at specific
program points including procedure entries and exits, and
aggregate program points of multiple class instances. We
are particularly interested in three types of predicates: (1)
method preconditions asserting values of input parameters,
(2) method postconditions asserting returned values, and (3)
all values taken by fields throughout the execution.

A wide range of dynamic invariants is detected and re-
ported by Daikon [16], but not all of them are useful for
inferring change significance. In particular, a failing invari-
ant which depends on two or more variables has ambiguous
causes: altering either one of them can break the invariant.
Therefore, we only consider a subset of the invariants which
involve a single program variable, including comparisons
with constants (e.g., x == K, x == K1 (mod K2), K1 <= x

<= K2, x != null), single-valuedness (e.g., x has only one

value), and value range (e.g., x one of {a,b}).
Given two invariant sets I and I ′, the invariant delta, I \I ′,

consists of all invariants in I that are not implied by any
invariant in I ′. Formally, I \ I ′ = {i ∈ I|¬(∃i′ ∈ I ′ · i′ ⇒ i)}.
Precise Semantics-preserving Slice. Consider a pro-
gram p0 ∈ P and its k subsequent versions p1, . . . , pk such
that they are all well-formed. Let H be the original change
history from p0 to pk, i.e., H1..i(p0) = pi for all integers
0 ≤ i ≤ k. Let T be a set of tests passed by pk, i.e., pk |= T .

Definition 1. (Semantics-preserving slice [27]). A se-
mantics-preserving slice of history H with respect to T , de-
noted by H∗ ⊆T H, is a sub-history H ′ ⊆ H such that
H ′(p0) |= T .

Of course, H is a semantics-preserving slice of itself. Shorter
slicing results are preferred over longer ones, and the optimal
slice is the shortest sub-history that satisfies the above prop-

499

H

T

Execute

H
+ I’

H
* I

H
- I \ I’

Learn

(H
+, H

-)

H
*
← H

+

I ← I’

I \ I’ ↓

: I \ I’ ↑

H*
!1 !2 !n-1 !n!i !i+1

… …

H
+ H

-Partition

!1 !2 !n-1 !n

…

I \ I’

signals

(+/-)

S

✔:

Figure 8: Dynamic delta refinement overview.

erties. However, the optimality of the sliced history cannot
always be guaranteed by polynomial-time algorithms [27]:

finding it requires 2|H| − 1 tests in general.
Therefore, we aim at computing an approximation of the

optimal solution which still has good practical precision
guarantees. We say that a sub-history H∗ of H is a 1-
minimal semantic slice if H∗ is semantics-preserving, and
reverting any single change in H∗ would break the semantic
properties.

Definition 2. (1-Minimal Semantic Slice). Let H∗ be
semantics-preserving, i.e., H∗ ⊆T H. H∗ is a 1-minimal
semantic slice of H if ∀δ ∈ H∗ · (H∗ \ {δ}) 6|= T .

4. ALGORITHM
In this section, we present the dynamic delta refinement

algorithm for precise semantic history slicing in detail.

4.1 Algorithm Description
Given a history H and a test suite T , to compute a 1-

minimal semantic slice H∗, our algorithm iteratively goes
through three phases: partition, execution and learning, as
shown in Fig. 8. To implement each phase, the delta refine-
ment algorithm maintains three data structures: (1) H∗, the
current minimal semantics-preserving history slice, which is
always an over-approximation of the 1-minimal solution and
can be returned as a sub-optimal solution if the refinement
process terminates prematurely; (2) I, the set of dynamic
invariants generated from the last successful test execution
and updated after every successful run; (3) S : ∆→ R, the
change significance ranking – a function from atomic changes
to real numbers, updated according to the outcomes from
the execution phase. The algorithm is presented in Fig. 9 as
a set of generic rules specifying the minimal requirements
for each phase.

Initialization. The Init rule executes tests on the final
version H(p0) and collects dynamic invariants I = Inv(H,T).
It also initializes H∗ to be the input history H, and initializes
significance scores for all atomic changes in H to zero.

Partition. This phase receives a history H and splits it
into two non-empty sub-histories, H+ and H−. The split
can be either random or guided by a significance ranking of
atomic changes. The two rules for this phase, Par-Rand
and Par-Sig, govern the behaviors of two different partition
schemes.

Initialization:

Init(H,T)
H∗ ← H ∀δ ∈ H · S(δ)← 0 I ← Inv(H,T)

Partition:

|H∗| > 1
Par-Rand(H∗)

H+ 6= ∅ H− 6= ∅ H+ ∪H− = H∗

H+ ∩H− = ∅

∃δi, δj ∈ H∗ · S(δi) > S(δj)
Par-Sig(H∗,S)

H+ ←
⋃
S(δ)≥S(δi) δ H− ← H∗ \H+

Execution and Learning:

H+ |= T I ′ = Inv(H+, T)
Pass((H+, H−), T)

(I \ I ′) ↓ H∗ ← H+ I ← I ′

H+ 6|= T I ′ = Inv(H+, T) |H−| = 1
Fail-1((H+, H−), T)

(I \ I ′) ↑ H∗ ← H∗ I ← I

H+ 6|= T |H−| > 1
Fail-2((H+, H−), T)

H∗ ← H∗ I ← I

Figure 9: The dynamic delta refinement algorithm.

The random partition splits the current minimal semantic
slice H∗ into two non-empty sub-histories, H+ and H−,
randomly, when the length of H∗ is greater than one. Then
H+ is kept while H− is reverted. We adjust the relative
sizes of H+ and H− to balance between progressions upon
test success and chances of successes. For example, a smaller
H+ can reduce a larger chunk of non-essential changes if
the tests pass, but it usually has a lower chance of success
assuming essential changes are uniformly distributed. In the
actual implementation, we gradually increase the size of H+

when test fails and decrease it otherwise.
The significance-guided partition scheme splits the history

according to significance ranking of changes, such that all
changes in H+ have higher or equal significance score than
those in H−. With accurate significance ranking, reverting
non-essential changes can be very effective. In practice, we
apply Par-Sig first whenever possible, as it has a higher
chance to produce more accurate splits.

Execution. The execution phase receives a valid partition
(H+,H−) and executes tests T on H+(p0) (written as H+

afterwards). The dynamic invariants I ′ generated from the
execution are compared with I which is generated from the
last successful test run. An invariant delta I \ I ′ and a test
signal (4 / 8) are passed on to the learning phase.

Learning. The learning phase infers significance of indi-
vidual atomic changes according to the invariant deltas and
the test signals. There are three rules for this phase: Pass,
Fail-1 and Fail-2 controlling how the significance ranking
is updated under different circumstances.

When H+ passes T , the Pass rule applies. We use the
invariant deltas to match each affected variable and pro-
gram point involved with atomic changes that might be the
cause. This matching step is performed using a simple local
static change impact analysis [11]. For each affected method
postcondition, we collect all statements within the method
body that have potential impacts on the method return
(e.g., changed value flows into the return). For instance,
using a simple backward data-flow analysis, the invariant
“B.g()::return == 3” in Example 1 is matched to 4 which

500

directly updates the returned variable z. Similarly, for each
method precondition, we consider every call site and collect
statements preceding the method invocation which poten-
tially impacts the corresponding input parameters. Finally,
for invariants on fields, we analyze all field access sites and
perform a similar backward analysis. The significance of
each matched change is decreased. We update H∗ to H+

and recursively apply partition rules on H∗.
When H+ fails T , either Fail-1 or Fail-2 applies, de-

pending on the size of H−. If |H−| is greater than one, as
discussed before, the cause of test failure is not determined.
We do not infer change significance in this case (Fail-2). Oth-
erwise, we perform a similar analysis as in Pass and increase
the significance scores of the related changes (Fail-1).

Termination Condition. The algorithm never attempts
the same partition (H+) twice and it terminates whenever
H∗ becomes empty or the 1-minimal condition defined in
Definition 2 is met – ∀δ ∈ H∗ · (H∗ \ {δ}) 6|= T .

4.2 Soundness and Completeness
The following theorem states that the algorithm is sound.

Theorem 1. (Soundness). Given a history H and a test
suite T , if the delta refinement algorithm terminates, then H∗

is a 1-minimal semantics-preserving slice of H with respect
to T .

The soundness of the algorithm is straightforward. Since H∗

is only updated when T is passed, H∗ is always a valid seman-
tics-preserving slice. The termination condition guarantees
that it is also 1-minimal.

As presented, the generic partition rules are non-determin-
istic. To ensure termination, we impose a notion of fairness
on partition schemes. A fair partition scheme guarantees
that a singleton partition for every atomic change in H∗ is
eventually reverted after very update of H∗. The following
theorem states completeness of the algorithm.

Theorem 2. (Completeness). Given a history H and a
test suite T , the algorithm using fair partition schemes always
terminates with finitely many rule applications.

To see this, suppose the algorithm does no terminate. Since
H∗ has finite number of changes initially and its length
is monotonically decreasing, |H∗| has to eventually stay
constant. Because of the fairness condition, every atomic
change in H∗ is eventually reverted and tested. If none of
the tests pass, then the 1-minimal condition is met. If one of
the tests passes, then |H∗| should decrease. Both cases lead
to contradictions.

5. EVALUATION
In this section, we describe our implementation of a mini-

mal semantic slicing tool based on dynamic delta refinement
algorithm. We evaluate our implementation w.r.t. both its
precision and performance using a benchmark suite obtained
from real open source software repositories.

5.1 Implementation
We implemented the delta refinement algorithm as a fully-

automated precise semantic history slicing tool, Definer,
for Java projects hosted in Git repositories. We describe
the implementation and some of the applied optimizations
below.

p0 :

p1 :

p2 :

p3 :

A.f() A.g() B.h() B.g()

4: DEL

3: UPD

2: INS1: UPD

Figure 10: Analyzing change dependencies.

Change Dependency Analysis. To avoid running into
compilation errors, we perform a pre-analysis for each ver-
sion in the history and compute direct dependencies for all
changed AST nodes. This analysis produces a multi-version
change dependency graph as shown in Fig. 10.

In this example, there are four program versions, i.e., p0,
p1, p2 and p3, all of which are well-formed. There are three
changed nodes, i.e., methods A.f() and A.g() which belong
to class A, as well as B.g() which belongs to class B. There is
also a fixed node B.h() which stays unchanged. Class B is a
sub-class of A. Each node has a separate time-line on which
its changes are labeled. In particular, A.f() has an update
between p1 and p2; A.g() is inserted between p1 and p2; and
B.g() is updated after p0 but deleted after p2. In Fig. 10,
solid arrows represent necessary dependencies while empty
arrows represent sufficient dependencies. For instance, a
method invocation of g() in B.h() makes B.h() necessarily
depend on B.g() before p2. But when g() is introduced in
the super-class A in version p2, both definitions of g() are
sufficient dependencies of B.h(), i.e., existence of either one
of them would satisfy the compilation requirement due to
method inheritance.

This graph is useful for predicting compilation failures
without actually compiling the program, as long as atomic
changes for an AST node are reverted sequentially. For
example, 2 cannot be reverted from p3 alone because both
A.f() and B.h() necessarily depend on it. But { 1 , 2 , 4 }
can be reverted together since A.f() no longer depends on
A.g() and the recovered B.g() substitutes the dependency
for B.h().

We build the multi-version dependency graph incremen-
tally. A complete dependency graph is built by first analyzing
the base version, and for subsequent versions it suffices to
analyze only the changed classes.

Git Adaptation. The generic algorithm discussed in Sec. 4
operates on the level of atomic changes. To work with Git, we
treat the set of atomic changes belonging to the same commit
as a bundled group. The partition algorithm is adjusted such
that changes in the same group always stay together and
the significance score for a group is computed as the sum of
the scores of its members. Apart from dependencies between
atomic changes, we also analyze dependencies between com-
mits which are also known as the hunk dependencies [27].
Hunk dependencies for a commit are prerequisites which
have to be in place so that the target commit can be ap-
plied without causing a Git merge conflict. Partitions of
commits which do not comply with the hunk dependencies
are discarded immediately without running any tests.

Lazy Dynamic Tracing. The software projects we experi-
mented with are relatively large in size (30 to 190 KLOC).
Instrumenting the entire project and tracing test execution

501

Table 1: Statistics of tested software projects.
Projects #Files LOC #C-1y #C-4m

io 227 29,173 127 42.3
collections 525 61,548 151 50.3

math 1,410 187,711 407 135.7

end-to-end is often impractical. But since we are only in-
terested in the local direct impacts of changes, which give
clearer signals for significance, we can simply trace classes
that have changed during the input history.

Tooling. We use JGit [9], a Java implementation of Git,
for repository manipulation and commit-level hunk depen-
dency analysis [27]. We use a modified version of ChangeDis-
tiller [18] for extracting AST-level atomic changes from Git
commits. We also use the Apache Byte Code Engineering
Library (BCEL) [1] to analyze dependencies among atomic
changes, Daikon [16] for dynamic invariant detection, and
Soot [39] for performing local change impact analysis.
Definer is written in Java and yields fully-automated

analysis of projects built with Maven [4]. The source code
of Definer and all benchmarks used in our experiments are
available online: bitbucket.org/liyistc/gitslice.

5.2 Experiments
The goal of our empirical evaluation of Definer is to

answer the following research questions:

RQ1 How does the precision of history slices produced by
Definer compare with those produced by CSlicer?

RQ2 How effective is change significance ranking for guid-
ing history partitions when compared with the basic
partition scheme used by delta debugging?

RQ3 How do different partition schemes affect the perfor-
mance of Definer?

5.2.1 Subjects
We tested Definer on a benchmark consisting of eight tar-

get functionalities selected from three open source projects,
namely Apache Commons IO Library (io) [3], Apache Com-
mons Collections Library (collections) [2], and Apache
Commons Mathematics Library (math) [6]. These projects
are all written in Java and their development histories are
freely accessible online. They are also actively developed and
maintained so that there are an abundance of new function-
alities (e.g., features, bug fixes and improvements) to choose
from. Statistics about each project is shown in Table 1.
Columns “#Files” and “LOC” show the number of Java files
and the total lines of code, respectively. Column “#C-1y”
shows the number of commits between 2015-1-1 and 2016-
1-1 for each project. Column “#C-4m” shows the average
number of commits over a 4-month period.

In order to test the history slicing capabilities of Definer,
all of the experiments require an original history segment
(H) and target test suite (T) designated for certain high-level
functionality. We randomly selected target functionalities
and corresponding history segments based on commit mes-
sages and testing documents. In particular, we looked for
commits which are accompanied by test suites intending to
validate a functionality and selected such commits as the end
points of the history analysis scope.

According to our experience, the lifetime of a functionality
typically spans around 100 commits which correspond to a
period of 1-4 months for a project under active development.

I1 I2 I3 C1 C2 M1 M2 M3

0

5

10

15

20

25

30

35

R
el
at
iv
e
sl
ic
e
si
ze
s
(%

) Definer-Default

CSlicer

Figure 11: Sizes of slices: Definer vs. CSlicer.

Therefore, the length of H was decided based on two factors:
(1) each program version in the chosen history should be well-
formed and compilable as assumed by our change dependency
analysis, and (2) the average history length of a subject
matches the average number of commits during a 4-month
development period (∼76.1 commits).

Surprisingly enough, many versions in math and collec-

tions did not compile. Even though non-compilable code
does not affect the the correctness of Definer, it could affect
the soundness of the change dependency analysis and, thus,
Definer’s efficiency. Because of that, we test Definer un-
der the well-formedness assumption and merge problematic
commits with their children whenever possible to form a
larger commit that lead to compilable versions.

The details about each experimental subject are given in
Table 2. Column “ID” lists the subject identifiers. Column
“End Point” shows the target commits which correspond to
the final version in our analysis scope. Columns “|H|” and
“|T |” show the length of the original history segments and
the sizes of the target test suites, respectively. Column “|H∗|”
shows the length of the verified 1-minimal history slice.

5.2.2 Results
We conducted three experiments to address our research

questions. The experiments were conducted on a desktop
computer running Linux with an Intel i7 3.4GHz proces-
sor and 16GB of RAM. The results of the experiments are
described below.

Experiment 1. The first experiment aims to compare
Definer with CSlicer in terms of the precision of the
produced history slices. We use the default configuration of
Definer (Default) which adopts a simple partition scheme
that reverts negative scored commits first whenever possible.
The relative slice size for each subject is computed as the
length of the produced history slice divided by the original
history length, i.e., |H∗|/|H|. The results of the comparison
are shown in Fig. 11.

The history slices found by Definer are always shorter
or equal to those computed by CSlicer (on average 45.6%
shorter). In fact, all slices produced by Definer are verified
to be 1-minimal while CSlicer does not guarantee mini-
mality. For example, out of 100 commits from the subject
C2, Definer finds a slice of length 5 which is much shorter
than 31 reported by CSlicer. CSlicer took 51.6s to finish
on average, while Definer took 1,161.7s. We consider this
performance overhead to be reasonable since history slicing
is often performed as an off-line maintenance task.

Experiment 2. The second experiment evaluates the ef-
fectiveness of using change significance ranking and change

502

Table 2: Experimental subject details and descriptions.
Projects ID Functionality Descriptions End Point |H| |T | |H∗|

io

I1 byte array output stream 89608628 150 3 28
I2 identifies broken symlink files b9d4976 50 1 3
I3 file name utilities 63cbfe70 100 37 2

collections
C1 “index of” function in iterable utilities 90509ce8 100 1 12
C2 “union” function in set utilities 9314193c 100 1 5

math

M1 error conditions in continuous output field model 6e4265d6 50 1 13
M2 construct median with specific estimation type afff37e0 50 1 2
M3 large samples in polynomial fitter b07ecae3 100 1 2

50 100 150 200 250
0

50

100

150

I1
10 20 30 40 50

0

10

20

30

40

50

I2
20 40 60 80 100

0

25

50

75

100

I3
50 100 150

0

25

50

75

100

C1

20 40 60
0

25

50

75

100

C2
25 50 75 100

0

10

20

30

40

50

M1
5 10 15 20

0

10

20

30

40

50

M2
5 10 15 20 25 30 35

0

25

50

75

100

M3

Basic Learn Default

Figure 12: History reduction per test run.

dependency analysis in speeding up the delta refinement loop.
We compared three configurations of Definer in terms of the
number of test runs needed to achieve 1-minimal solutions:
(1) Default as described before, (2) Learn which only en-
ables change significance learning and disables compilation
failure prediction based on change dependency analysis, and
(3) Basic which also disables significance learning and thus
is effectively equivalent to delta debugging which applies the
basic (random) partition scheme2. All configurations still
apply hunk dependency analysis which predicts Git merge
failures without actually picking the commits.

The results of the comparisons are shown in Fig. 12 where
the length of H∗ (y-axis) is plotted as a function of the
number of test runs (x-axis) used so far. In general, Default
and Learn require fewer test runs than Basic to reach the
minimal solution. In most of the cases, the advantage of
significance learning is obvious, especially for cases such as
I1, M1 and M2 where Learn requires on average only about
33% of test runs compared with Basic. In addition, change
dependency analysis which prevents test from running on non-
compilable programs helped extend this advantage further –
it only takes about 14% of test runs.

There is only a single case I3 for which the basic partition
scheme performed much better: it was able to reduce a large
chunk of commits quickly at the 17th test while the other
two configurations did not reach minimal solution until the
88th test run. A closer look at I3 reveals that the minimal
slice contains only 2 out of 100 commits, and most of the
random partitions ended up being successful. In contrast,
the Default partition scheme is more conservative and
progresses more slowly in this case. Yet when the minimal
slice is relatively large, for example in I1 (28 out of 150) and
M1 (13 out of 50), the significance-guided partition is much
more effective.

2We could not directly compare with the original implemen-
tation in [41] which does not work with Git repositories.

Table 3: Comparisons of different partition schemes.
ID Neg NonPos Low-3 Combined

I1 258 258 168 168
I2 33 33 25 25
I3 89 60 89 89
C1 176 176 176 172
C2 72 72 57 57
M1 27 32 36 28
M2 7 8 11 7
M3 31 23 35 35

Experiment 3. We also experimented with three different
partition schemes, namely Neg, NonPos, Low-3 and their
combination, Combined. Recall that commits with positive
significance scores are likely relevant to the target tests and
vice versa; commits which do not have a score assigned cannot
be classified until new signals become available.

All schemes follow the general steps described in Sec. 2.3
with different partition priorities at the beginning of each
iteration. The Neg scheme only reverts commits which have
negative scores. It is the most conservative one among the
three. NonPos is the most aggressive one which reverts all
commits with non-positive scores. Low-3 always reverts the
lowest one third of the commits according to their significance
ranking. Combined attempts all three partitions whenever
possible. The results of this experiment can be seen in Table 3,
where each column lists the number of test runs required to
reach the minimal solution and the best configurations for
each row are in bold. All three partition schemes perform
well on some of the subjects. For example, Low-3 required
the smallest number of test runs for I1, I2 and C2. The
combined scheme achieved the best overall performance by
winning in 5 out of 8 examples.

5.2.3 Summary
To summarize, we evaluated the precision and performance

of Definer empirically on a benchmark set of real-world

503

software projects. We demonstrated that Definer produces
more precise history slices than existing state-of-the-art tech-
niques, such as CSlicer. Moreover, in the majority of cases,
it outperforms the basic partition scheme used by delta de-
bugging, thanks to the change significance ranking learned
during the refinement process. With all optimizations com-
bined, Definer achieves precise slicing results in an efficient
manner.

6. RELATED WORK
Our work intersects with different areas of research. In this

section, we compare our dynamic delta refinement algorithm
with related work.

History Understanding and Manipulation. There is
a large body of work on analyzing and understanding soft-
ware histories. The basic research goals are retrieving useful
information from change histories to help understand devel-
opment practices [27, 29, 30, 13, 37], localize bugs [41, 42],
and support predictions [45, 21].

Li et. al [27] defined the problem of semantic history slic-
ing and proposed an algorithm CSlicer which conservatively
computes a sub-history that preserves the desired test prop-
erties. The advantage of CSlicer is its efficiency – it only
executes the tests once and assumes all code entities touched
by the tests can potentially affect the test results. Our al-
gorithm has stronger guarantees on slice quality and always
returns 1-minimal solutions within a reasonable amount of
time. In fact, the two techniques can be combined together
so that the output from CSlicer is used as an input to
Definer to achieve both precision and efficiency.

The goal of delta debugging [42, 28] is to simplify and
isolate a small test case from a large set of changes which
can still manifest the target failures. This problem can be
considered as semantic slicing with respect to the failure-
inducing properties. Our delta refinement techniques use
a similar divide-and-conquer partition process but improve
its performance with the significance ranking inferred from
previous iterations.

Another interesting take on history analysis is to create
flexible views of the change history at various granularities
instead of using the fixed revision centric representation.
Some notable approaches include history slicing [37, 38] and
history transformation [20, 29]. The promise of these tech-
niques is to provide users the most convenient and effective
ways of interacting with change histories and better facilitate
the specific software evolution tasks at hand. For example,
Muşlu et. al [29] introduced the concept of semantics sum-
marization view which clusters original sequence of commits
into semantically related high-level logical groups. Such his-
tory transformation operators can be instantiated with our
techniques to produce high quality history visualization and
understanding tools.

Dynamic Behavioral Analysis. Through program in-
strumentation and execution tracing, dynamic analysis tech-
niques [19, 34, 32] allow the comparison of precise runtime
program behaviors. Daikon [16] is one example of such tech-
niques which discover likely program invariants from runtime
executions. Daikon instruments the target program, traces
variables of interest, and infers likely invariants for them. It
has been widely used for many software developing tasks
including debugging [12, 14], regression testing [40, 33], bug
prevention [15] and more.

DIDUCE [19] is another tool for dynamic invariant detec-
tion. It trains a model for the target program by formulating
hypotheses of invariants obeyed by the program and refining
hypotheses dynamically through “presumably-good” runs.
The produced model can be used to check for potential er-
rors in other test runs. We use a similar idea of forming and
updating hypotheses dynamically with multiple test execu-
tions. The key difference is that our goal is to infer change
significance rather than program invariants. Therefore, we
can exploit useful information from both passing and failing
runs to improve the accuracy of our significance model.

Our work is also related to behavioral regression testing [32,
23] w.r.t. the usage of test executions for exposing behav-
ioral differences across program versions. We differ in how
the differences are used: [32, 23] report comparison results
to users in order to help them complete and improve the
quality of existing regression test suites, whereas our goal is
to identify significant changes with the guidance from the
behavioral differences.

Change Impact Analysis. Change Impact Analysis (IA)
[11, 35, 26, 44, 43] solves the problem of determining the ef-
fects of source code modifications. It usually means selecting
a subset of tests from a regression test suite that might be
affected by a given change, or, given a test failure, deciding
which changes might be causing it.

Research on IA can be roughly divided into three categories:
the static [25, 11], dynamic [26] and combined [31, 35, 43]
approaches. The work most related to ours is on the combined
approaches to IA. Ren et al. [35] introduced a tool called
Chianti for IA of Java programs. Chianti takes two versions
of a Java program and a set of tests as the input. First
by tracing test executions, it builds dynamic call graphs
for both versions before and after the changes. Then it
compares the classified changes with the old call graph to
predict the affected tests; and it uses the new call graph to
select the affecting changes that might cause the test failures.
FaultTracer [43] improved Chianti by extending the standard
dynamic call graph with field access information.

The invariant deltas we used for locating precise impacts
of changes can be viewed as a dynamic IA technique. In fact,
we are not limited to using Daikon for this purpose. The
performance of Definer can be further improved with a
custom lighter-weight runtime tracing technique. Moreover,
the backward analysis which matches affected program points
to other related changes belongs to the static IA technique
category. A whole range of static analyses with different
levels of precision can be integrated into our algorithm to
trade-off between ranking accuracy and performance.

7. CONCLUSION
We proposed the dynamic delta refinement algorithm for

finding minimal semantic history slices. We have imple-
mented the algorithm as a prototype tool, Definer, which
operates on Java projects hosted in Git. Definer largely im-
proves the precision of the history slices over state-of-the-art
techniques. The change significance learning techniques are
also shown to be effective in speeding up the slicing process
when applied to large scale software projects.

For future work, we would like to explore the possibility of
applying delta refinement to debugging and fault localization.
We also see room for improvement in terms of performance
by combining different slicing approaches and parallelizing
test executions as much as possible.

504

8. REFERENCES

[1] Apache Byte Code Engineering Library.
https://commons.apache.org/proper/commons-bcel.

[2] Apache Commons Collections.
https://commons.apache.org/proper/commons-
collections.

[3] Apache Commons IO.
https://commons.apache.org/proper/commons-io.

[4] Apache Maven Project. https://maven.apache.org.

[5] Apache Subversion (SVN) version control system.
http://subversion.apache.org/.

[6] Commons Math: The Apache Commons Mathematics
Library.
https://commons.apache.org/proper/commons-math.

[7] git-bisect: Find by binary search the change that
introduced a bug. http://git-scm.com/docs/git-bisect.

[8] Git version control system. https://git-scm.com/.

[9] JGit: A Lightweight, Pure Java Library Implementing
the Git Version Control System.
https://eclipse.org/jgit.

[10] Mercurial source control management system.
http://mercurial.selenic.com/.

[11] R. S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[12] Y. Brun and M. D. Ernst. Finding Latent Code Errors
via Machine Learning over Program Executions. In
Proc. of ICSE’04, pages 480–490, 2004.

[13] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Early
Detection of Collaboration Conflicts and Risks. IEEE
Trans. Softw. Eng., 39(10):1358–1375, Oct. 2013.

[14] N. Dodoo, L. Lin, and M. D. Ernst. Selecting, Refining,
and Evaluating Predicates for Program Analysis.
Technical Report MIT-LCS-TR-914, MIT Laboratory
for Computer Science, Cambridge, MA, July 2003.

[15] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically Discovering Likely Program
Invariants to Support Program Evolution. In Proc. of
ICSE’99, pages 213–224, 1999.

[16] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
System for Dynamic Detection of Likely Invariants. Sci.
Comput. Program., 69(1-3):35–45, Dec. 2007.

[17] B. Fluri and H. C. Gall. Classifying Change Types for
Qualifying Change Couplings. In Proc. of ICPC’06,
pages 35–45, 2006.

[18] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change
Distilling: Tree Differencing for Fine-Grained Source
Code Change Extraction. IEEE Trans. Softw. Eng.,
33(11):725–743, Nov. 2007.

[19] S. Hangal and M. S. Lam. Tracking Down Software
Bugs Using Automatic Anomaly Detection. In Proc. of
ICSE’02, pages 291–301, 2002.

[20] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and
M. Saeki. Refactoring Edit History of Source Code. In
Proc. of ICSM’12, pages 617–620, September 2012.

[21] K. Herzig and A. Zeller. The Impact of Tangled Code
Changes. In Proc. of MSR’13, pages 121–130, 2013.

[22] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight
Java: A Minimal Core Calculus for Java and GJ. ACM
Trans. Program. Lang. Syst., 23(3):396–450, May 2001.

[23] W. Jin, A. Orso, and T. Xie. Automated Behavioral
Regression Testing. In Proc. of ICST’10, pages
137–146, 2010.

[24] C. Kästner and S. Apel. Type-Checking Software
Product Lines - A Formal Approach. In Proc. of
ASE’08, pages 258–267, 2008.

[25] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima,
and C. Chen. Change Impact Identification in Object
Oriented Software Maintenance. In Proc. of ICSM’94,
pages 202–211, 1994.

[26] J. Law and G. Rothermel. Whole Program Path-Based
Dynamic Impact Analysis. In Proc. of ICSE’03, pages
308–318, 2003.

[27] Y. Li, J. Rubin, and M. Chechik. Semantic Slicing of
Software Version Histories. In Proc. of ASE’15, pages
686–696, 2015.

[28] G. Misherghi and Z. Su. HDD: Hierarchical Delta
Debugging. In Proc. of ICSE’06, pages 142–151, 2006.

[29] K. Muşlu, L. Swart, Y. Brun, and M. D. Ernst.
Development History Granularity Transformations. In
Proc. of ASE’15, pages 697–702, November 2015.

[30] E. Murphy-Hill, C. Parnin, and A. P. Black. How We
Refactor, and How We Know It. IEEE Trans. Softw.
Eng., 38(1):5–18, Jan 2012.

[31] A. Orso, T. Apiwattanapong, and M. J. Harrold.
Leveraging Field Data for Impact Analysis and
Regression Testing. In Proc. of ESEC/FSE’11, pages
128–137, 2003.

[32] A. Orso and T. Xie. BERT: BEhavioral Regression
Testing. In Proc. of WODA’08, pages 36–42, 2008.

[33] F. Pastore, L. Mariani, A. E. J. Hyvärinen,
G. Fedyukovich, N. Sharygina, S. Sehestedt, and
A. Muhammad. Verification-aided Regression Testing.
In Prof. of ISSTA’14, pages 37–48, 2014.

[34] J. H. Perkins and M. D. Ernst. Efficient Incremental
Algorithms for Dynamic Detection of Likely Invariants.
In Proc. of FSE’04, pages 23–32, 2004.

[35] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A Tool for Change Impact Analysis of Java
Programs. In Proc. of OOPSLA’04, pages 432–448,
2004.

[36] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik.
Managing Forked Product Variants. In Proc. of
SPLC’12, pages 156–160, 2012.

[37] F. Servant and J. A. Jones. History slicing. In Proc. of
ASE’11, pages 452–455, 2011.

[38] F. Servant and J. A. Jones. History Slicing: Assisting
Code-evolution Tasks. In Proc. of FSE’12, pages
43:1–43:11, 2012.

[39] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java Bytecode
Optimization Framework. In Proc. of CASCON’99.
IBM Press, 1999.

[40] T. Xie and D. Notkin. Checking Inside the Black Box:
Regression Testing by Comparing Value Spectra. IEEE
Trans. Softw. Eng., 31(10):869–883, Oct. 2005.

[41] A. Zeller. Yesterday, My Program Worked. Today, It
Does Not. Why? In Proc. of ESEC/FSE-7, pages
253–267, 1999.

505

[42] A. Zeller and R. Hildebrandt. Simplifying and Isolating
Failure-inducing Input. IEEE Trans. Softw. Eng.,
28(2):183–200, 2002.

[43] L. Zhang, M. Kim, and S. Khurshid. Localizing
Failure-inducing Program Edits Based on Spectrum
Information. In Proc. of ICSM’01, pages 23–32, 2011.

[44] S. Zhang, Z. Gu, Y. Lin, and J. Zhao. Change Impact
Analysis for AspectJ Programs. In Proc. of ICSM’08,
pages 87–96, 2008.

[45] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.
Mining Version Histories to Guide Software Changes.
In Proc. of ICSE’04, pages 563–572, 2004.

506

