
Managing Software Evolution
Through Semantic History

Slicing
Yi Li

University of Toronto

PhD Advisor: Marsha Chechik

ASE’17 Doctoral Symposium
Oct 30, 2017

Acknowledgements

2

Marsha Chechik
U Toronto

Chenguang Zhu
U Texas, Austin

Julia Rubin
UBC

3

…master

v0.4.2

3

…master

v0.4.2

3

…master

v0.4.2

v0.4.3

3

…master

v0.4.2

Pitfalls of Cherry-Picking

4

Dec 2, 2016

Dec 22, 2016

58 authors
279 commits

479 files changed

https://github.com/bazelbuild/bazel/issues/2246

v0.4.2 release [0.4.2]

master release [0.4.3]

Add coverage support for java test. (series 4/4 of
open-sourcing coverage command for java test)

Rollback of commit 67b4d52

Debian repository: override section and priority fields

Release script: if master branch does not exist, fall
back on origin/master

Fix scripts/packages/convert_changelog to read the
changelog correctly

…

…

Pitfalls of Cherry-Picking

4

Dec 2, 2016

Dec 22, 2016

58 authors
279 commits

479 files changed

https://github.com/bazelbuild/bazel/issues/2246

v0.4.2 release [0.4.2]

master release [0.4.3]

Add coverage support for java test. (series 4/4 of
open-sourcing coverage command for java test)

Rollback of commit 67b4d52

Debian repository: override section and priority fields

Release script: if master branch does not exist, fall
back on origin/master

Fix scripts/packages/convert_changelog to read the
changelog correctly

…

…

Pitfalls of Cherry-Picking

5

Creating release candidate by
cherry-picking

Expert’s instructions…

Pitfalls of Cherry-Picking

6

Failed due to
merge conflicts

Pitfalls of Cherry-Picking

7

Failed due to missing commit(s)

Pitfalls of Cherry-Picking

8

Failed due to missing commit(s)
Missing a fix this time.

Why is it so hard?

9

base

target

Why is it so hard?
Options?

1. Pick target commit(s)

2. Pick the entire history

3. Manually identify necessary commits

9

base

target

change
dependency

Why is it so hard?
Options?

1. Pick target commit(s)

2. Pick the entire history

3. Manually identify necessary commits

9

base

target

change
dependency

Why is it so hard?
Options?

1. Pick target commit(s)

2. Pick the entire history

3. Manually identify necessary commits

9

base

target

change
dependency

Why is it so hard?
Options?

1. Pick target commit(s)

2. Pick the entire history

3. Manually identify necessary commits

Existing version control tools:

• Code treated as plain texts

• Do not understand the semantics

• User provided semantic/logical grouping is
inaccurate!

9

base

target

change
dependency

Challenges in Evolution Management

Gaps between individual changes and high-level
system semantics:

• the history re-structuring challenge

• the change isolation and migration challenge

• the variability reverse engineering challenge

• and more …

This thesis aims to address some of them

10

What can we do?
Exploit existing artifacts:

• Strictly structured data

• Well-defined language syntax
and semantics

• Carefully designed test suites

11

base

target

What can we do?
Exploit existing artifacts:

• Strictly structured data

• Well-defined language syntax
and semantics

• Carefully designed test suites

11

base

target

Solution: Semantic History Slicing

Exploit existing artifacts:

• Strictly structured data

• Well-defined language syntax
and semantics

• Carefully designed test suites

11

History:
sequence of commits

+
Criterion:
set of tests

Sub-history:
well-formed: compiles

&
semantic preserving:

passing tests

base

target

Solution: Semantic History Slicing

Exploit existing artifacts:

• Strictly structured data

• Well-defined language syntax
and semantics

• Carefully designed test suites

11

History:
sequence of commits

+
Criterion:
set of tests

Sub-history:
well-formed: compiles

&
semantic preserving:

passing tests

base

target

target

base

Research Map

12

Semantic History Slicing

Static Slicing:
CSLICER

Dynamic Slicing:
DEFINER

Evolution Managing
Framework: CSLICER-CLOUD

Porting
Functionalities

Creating Pull
Requests

Feature
Location

Bug
Localization

[ASE’15] [ASE’16]

[TSE’17] [SPLC’17][ASE’15] …

Problem Definition:

Techniques:

Validation:

http://www.cs.toronto.edu/~liyi/cslicer

CSLICER-CLOUD

http://www.cs.toronto.edu/~liyi/cslicer

Validation

A dataset for semantic changes in version
histories [MSR’17]

• 98 items of semantic change data

• Collected from 10 open-source Java projects

• Ground-truth obtained from developer’s
documentation and brute-force minimization

• Available at: https://github.com/Chenguang-Zhu/
DoSC

14

https://github.com/Chenguang-Zhu/DoSC
https://github.com/Chenguang-Zhu/DoSC

Feature Location for SPLE

15

core assets (features)

configurations + feature model

product outputs

The “top-down” approach

Feature Location for SPLE

15

core assets (features)

configurations + feature model

product outputs

product variants

The “top-down” approach

The “bottom-up” approach

Feature Location for SPLE

15

core assets (features)

configurations + feature model

product outputs

f1 f2

f4 f3

2. feature relationships
(feature models)

f1:

f2:

f3:

f4:

1. feature implementations
(core assets)

product variants

From “ad-hoc” to “systematic”
The “top-down” approach

The “bottom-up” approach

Feature Location in Version Histories

16

master

feature 2

feature 3

feature 4

feature 1 test 1

test 4

test 2

test 3

Feature Location in Version Histories

16

New features: {f1, f2, f3, f4}, tests: {t1,t2,t3,t4}

master

feature 2

feature 3

feature 4

feature 1 test 1

test 4

test 2

test 3

Feature Location in Version Histories

16

New features: {f1, f2, f3, f4}, tests: {t1,t2,t3,t4}

f1:

f2:

f3:

f4:

master

feature 2

feature 3

feature 4

feature 1

commits

test 1

test 4

test 2

test 3

Feature Location in Version Histories

16

New features: {f1, f2, f3, f4}, tests: {t1,t2,t3,t4}

f1:

f2:

f3:

f4:

master

feature 2

f1 f2

f4 f3

feature 3

feature 4

feature 1

commits
features

test 1

test 4

test 2

test 3

Status and Next Steps
Current Status (a few months before graduation)

• Wrapping up thesis work

• Preparing a journal paper summarizing this line of work

Future Plans (comments and discussions please!)

• Deep integration with development tool chains

- semantics-aware cherry-picking

• Leveraging the social aspect of software development

- developer conversations

- log messages

- User studies

17

Related Work
History Understanding and Manipulation

• History transformation [Muslu et al.][Servant & Jones]

• Change classifications [Falleri et al.]

Change Impact Analysis

• Chianti [Ren et al.], FaultTracer [Zhang et al.]

• Ekstazi [Gligoric et al.]

Bug Localization

• Delta debugging [Zeller et al.], Selective Bisection Debugging [Saha & Gligoric]

• Information retrieval-based approaches [Wang & Lo][Saha et al.]

Feature Location

• Dynamic FL, Software Reconnaissance [Wilde & Scully]

• Managing cloned variants [Rubin et al.]

18

Summary

19

Semantic History Slicing:

• Bridging gaps between text
changes and program
semantics

• Many applications in evolution
management

• Validation on open source Git
repositories

base

target

target

base

Bibliography
Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. A Dataset for Dynamic Discovery of Semantic Changes in Version Controlled
Software Histories. In Proceedings of the 14th International Conference on Mining Software Repositories, pages 523–526, Piscataway,
NJ, USA, 2017. IEEE Press.

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Transactions on Software Engineering,
28(2):183–200, 2002.

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Semantic Slicing of Software Version Histories. IEEE Transactions on
Software Engineering, 2017.

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. FHistorian: Locating Features in Version Histories. In Proceedings of the 21st
International Systems and Software Product Line Conference - Volume A, pages 49–58, New York, NY, USA, 2017. ACM.

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Precise Semantic History Slicing through Dynamic Delta Refinement. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, pages 495–506, Singapore, Singapore,
September 2016.

Yi Li, Julia Rubin, and Marsha Chechik. Semantic Slicing of Software Version Histories. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering, pages 686–696, Lincoln, NE, USA, November 2015.

Bazel: a Fast, Scalable, Muti-Language, and Extensible Build System. https://bazel. build, 2017.

Kivanç Muşlu, Luke Swart, Yuriy Brun, and Michael D. Ernst. Development History Granularity Transformations. In Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering, pages 697–702, Lincoln, NE, USA, November 2015.

Shaowei Wang and David Lo. AmaLgam+: Composing Rich Information Sources for Accurate Bug Localization. Journal of Software:
Evolution and Process, 28(10):921–942, 2016.

Yun Zhang, David Lo, Xin Xia, Tien-Duy B. Le, Giuseppe Scanniello, and Jianling Sun. Inferring Links between Concerns and Methods
with Multi-Abstraction Vector Space Model. In Proceedings of the 32nd IEEE International Conference on Software Maintenance and
Evolution, pages 110–121, Oct 2016.

Ripon Saha and Milos Gligoric. Selective Bisection Debugging. In Proceedings of the 20th International Conference on Fundamental
Approaches to Software Engineering, pages 60–77, New York, NY, USA, 2017. Springer-Verlag New York, Inc.

20

