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Creating release candidate by 
cherry-picking

Expert’s instructions…
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Failed due to missing commit(s)
Missing a fix this time.
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Why is it so hard?
Options?

1. Pick target commit(s)

2. Pick the entire history

3. Manually identify necessary commits
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Why is it so hard?
Options?

1. Pick target commit(s)

2. Pick the entire history

3. Manually identify necessary commits

Existing version control tools: 

• Code treated as plain texts

• Do not understand the semantics

• User provided semantic/logical grouping is 
inaccurate!
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Challenges in Evolution Management

Gaps between individual changes and high-level 
system semantics:

• the history re-structuring challenge

• the change isolation and migration challenge

• the variability reverse engineering challenge

• and more …

This thesis aims to address some of them
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What can we do?
Exploit existing artifacts:

• Strictly structured data

• Well-defined language syntax 
and semantics

• Carefully designed test suites
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Solution: Semantic History Slicing

Exploit existing artifacts:

• Strictly structured data

• Well-defined language syntax 
and semantics

• Carefully designed test suites
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semantic preserving:
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Research Map
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Semantic History Slicing

Static Slicing: 
CSLICER

Dynamic Slicing: 
DEFINER

Evolution Managing 
Framework: CSLICER-CLOUD

Porting 
Functionalities

Creating Pull 
Requests

Feature 
Location

Bug 
Localization

[ASE’15] [ASE’16]

[TSE’17] [SPLC’17][ASE’15] …

Problem Definition:

Techniques:

Validation:



http://www.cs.toronto.edu/~liyi/cslicer

CSLICER-CLOUD

http://www.cs.toronto.edu/~liyi/cslicer


Validation

A dataset for semantic changes in version 
histories [MSR’17]

• 98 items of semantic change data

• Collected from 10 open-source Java projects

• Ground-truth obtained from developer’s 
documentation and brute-force minimization

• Available at: https://github.com/Chenguang-Zhu/
DoSC

14

https://github.com/Chenguang-Zhu/DoSC
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Feature Location for SPLE
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core assets (features)

configurations + feature model

product outputs

f1 f2

f4 f3

2. feature relationships
(feature models)

f1:

f2:

f3:

f4:

1. feature implementations
(core assets)

product variants

From “ad-hoc” to “systematic”
The “top-down” approach

The “bottom-up” approach
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New features: {f1, f2, f3, f4},  tests: {t1,t2,t3,t4}

f1:
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f3:

f4:

master

feature 2

f1 f2

f4 f3

feature 3

feature 4

feature 1

commits
features

test 1

test 4

test 2

test 3



Status and Next Steps
Current Status (a few months before graduation)

• Wrapping up thesis work

• Preparing a journal paper summarizing this line of work

Future Plans (comments and discussions please!)

• Deep integration with development tool chains

- semantics-aware cherry-picking

• Leveraging the social aspect of software development

- developer conversations

- log messages

- User studies
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Related Work
History Understanding and Manipulation

• History transformation [Muslu et al.][Servant & Jones]

• Change classifications [Falleri et al.]

Change Impact Analysis

• Chianti [Ren et al.], FaultTracer [Zhang et al.]

• Ekstazi [Gligoric et al.]

Bug Localization

• Delta debugging [Zeller et al.], Selective Bisection Debugging [Saha & Gligoric]

• Information retrieval-based approaches [Wang & Lo][Saha et al.]

Feature Location

• Dynamic FL, Software Reconnaissance [Wilde & Scully]

• Managing cloned variants [Rubin et al.] 
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Summary

19

Semantic History Slicing:

• Bridging gaps between text 
changes and program 
semantics

• Many applications in evolution 
management

• Validation on open source Git 
repositories
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target
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