
SolSEE: A Source-Level Symbolic Execution Engine for Solidity
Shang-Wei Lin

shang-wei.lin@ntu.edu.sg
Nanyang Technological University, Singapore

Palina Tolmach
palina001@ntu.edu.sg

Institute of High Performance Computing, A*STAR
Nanyang Technological University, Singapore

Ye Liu
li0003ye@ntu.edu.sg

Nanyang Technological University, Singapore

Yi Li
yi_li@ntu.edu.sg

Nanyang Technological University, Singapore

ABSTRACT

Most of the existing smart contract symbolic execution tools per-
form analysis on bytecode, which loses high-level semantic infor-
mation presented in source code. This makes interactive analysis
tasks—such as visualization and debugging—extremely challeng-
ing, and significantly limits the tool usability. In this paper, we
present SolSEE, a source-level symbolic execution engine for So-
lidity smart contracts. We describe the design of SolSEE, highlight
its key features, and demonstrate its usages through a Web-based
user interface. SolSEE demonstrates advantages over other exist-
ing source-level analysis tools in the advanced Solidity language
features it supports and analysis flexibility. A demonstration video
is available at: https://sites.google.com/view/solsee/.

CCS CONCEPTS

• Software and its engineering→ Development frameworks

and environments; Software verification and validation.

KEYWORDS

Smart contract, symbolic execution
ACM Reference Format:

Shang-Wei Lin, Palina Tolmach, Ye Liu, and Yi Li. 2022. SolSEE: A Source-
Level Symbolic Execution Engine for Solidity. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’22), November 14–18, 2022,
Singapore, Singapore. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3540250.3558923

1 INTRODUCTION

Symbolic execution is a program analysis technique which explores
multiple execution paths of a program by assigning symbolic—
instead of concrete—values to variables. For each analyzed execu-
tion path, a symbolic execution engine maintains (1) a path condi-
tion—a first-order Boolean formula that describes the conditions
satisfied by the branches taken along that path, and (2) a symbolic
memory store that maps variables to symbolic expressions or values.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3558923

An off-the-shelf constraint solver is typically used to determine
the feasibility of each explored path based on the generated path
condition formula [3].

Symbolic execution is commonly used to systematically explore
the program space and detect property violations as well as secu-
rity vulnerabilities. In recent years, symbolic execution has been
extensively applied on smart contracts—computer programs that
run on blockchain and govern billions of dollars [19], which brings
paramount importance to the security and correctness of the con-
tract code [27]. Most smart contracts are written in Solidity [1]—
a high-level programming language of the Ethereum blockchain
platform, which compiles into EVM bytecode for deployment and
execution on the blockchain. Listing 1 shows a sample Solidity
implementation of a token smart contract. In Ethereum, users inter-
act with a smart contract by initiating transactions that invoke its
functions with public or external visibility. Token’s deposit()
function (lines 18–20) allows the contract to accept ETH, a native
cryptocurrency of Ethereum, and records the deposited amount
(msg.value) in a balances mapping entry associated with a trans-
action sender (msg.sender). The recover() function (lines 21–23)
sends all ETH balance of Token to its owner, the address that per-
formed contract deployment (i.e., creation) which involved the exe-
cution of a constructor function (lines 14–17). Access control on
recover() is implemented using the functionality of the Ownable
smart contract (lines 1–10) that Token inherits from (line 11). Thus,
the signature of recover() (line 21) contains an invocation of the
onlyOwnermodifier (lines 7–8). Themodifier adds additional behav-
ior, such as a prerequisite (line 7), to a function body which replaces
“ ;” in a modifier code (line 8). The transfer of ETH (line 22) is
performed via Ethereum’s built-in .call.value()() function call.

Given a smart contract written in Solidity, SolSEE symbolically
represents the (storage/memory) configuration of the smart con-
tract and executes each statement based on the operational se-
mantics of Solidity [1, 8]. Our developed operational semantics for
Solidity supports many important features including inheritance,
modifiers, ETH transfer, and others. During symbolic execution,
this representation is directly used to determine satisfiability of the
generated path constraints using Z3 SMT-solver [4]. To facilitate
efficient exploration of interesting smart contract behaviors in a re-
alistic setting, SolSEE supports user-defined harness function that
specifies the sequence of function calls to be analyzed symbolically.
The harness definition follows exactly the syntax and semantics of
Solidity, which is intuitive and easy to use for developers.

Listing 2 illustrates how to define a harness in SolSEE. The
MAIN contract serves as the entry point (similar to the main()

1687

https://sites.google.com/view/solsee/
https://doi.org/10.1145/3540250.3558923
https://doi.org/10.1145/3540250.3558923
https://doi.org/10.1145/3540250.3558923

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Shang-Wei Lin, Palina Tolmach, Ye Liu, and Yi Li

1 contract Ownable {

2 address internal owner;

3 constructor(address _owner) public {

4 owner = _owner;

5 }

6 modifier onlyOwner () {

7 require(owner == msg.sender);
8 _;

9 }

10 }

11 contract Token is Ownable {

12 mapping (address => uint256) public balances;

13 string public name;

14 constructor(string memory _tokenName) Ownable(msg.
sender) public payable {

15 name = _tokenName;

16 deposit ();

17 }

18 function deposit () public payable {

19 balances[msg.sender] += msg.value;
20 }

21 function recover () public onlyOwner {

22 owner.call.value(address(this).balance)("");
23 }

24 }

Listing 1: Source code of the Token smart contract

function in C), and the harness is defined as a constructor of it.
The harness contains the declaration of a symbolic variable which
should comewith the prefix “$” (line 4) and the creation of the Token
smart contract which involves transferring a symbolic amount of
ETH to this contract (line 6). The harness also includes a call to
the Token’s recover() function, which is executed successfully,
because the call is invoked by the MAIN contract, satisfying the
onlyOwner modifier. Lines 10–12 show the definition of a fallback
function—another Solidity-specific feature supported by SolSEE.
Here, the fallback function is invoked when ETH is transferred to a
smart contract, i.e., upon the execution of the “.call.value()()”
in Listing 1, line 22. Since the execution of recover() succeeds,
the assertion in Listing 2, line 8, should always be satisfied. The as-
sertion in a harness function can also be used to declare a property,
which can be constructed using Solidity operators and variables
available in the MAIN contract. In addition, SolSEE allows as-
sumptions to be specified in terms of smart contract’s variables
using the assume () statement. For example, line 5 in Listing 2
indicates that the analysis will only be concerned with the paths
where the ETH balance of the MAIN contract is not less than the
amount of ETH being sent to Token upon its creation.
Related Work. Most of the existing symbolic execution tools for
smart contracts operate on bytecode (rather than source-code) level,
which retains limited semantic information about the smart con-
tract and, hence, complicates reasoning about high-level properties
of a smart contract. Most of these tools focus on detecting well-
known vulnerabilities based on a certain pattern appearing in smart
contract bytecode, e.g., Oyente [14], Mythril [17], Maian [18],
etc.Manticore [16] is a bytecode-level symbolic execution engine
which supports property-based symbolic execution and provides
users with some control over the state exploration process.

WhileManticore also offers a GUI plugin, it visualizes low-level
bytecode instructions, which are difficult, for a developer, to match

1 contract _MAIN_ {

2 Token token; bool fallbackExecuted;

3 constructor () public {

4 uint $amount;

5 __assume__(address(this).balance >= $amount);

6 token = (new Token).value($amount)("OT");
7 token.recover ();

8 assert(fallbackExecuted);
9 }

10 function () external payable {

11 fallbackExecuted = true;
12 }

13 }

Listing 2: Solidity source code of the harness contract

with their original Solidity source code statements. Meanwhile,
existing source-level tools for Solidity smart contracts offer limited
support for Solidity features and/or do not allow customization of
the function call sequence and the environment to be analyzed. For
example, VeriSmart [23] is a smart contract verifier that is also
used in SmarTest [22] to perform symbolic execution of smart con-
tracts. These tools do not precisely handle the execution of fallback
functions and inter-contract function calls, which constitute essen-
tial functionality of smart contracts. Inter-contract function calls
are also not analyzed precisely by SMTChecker [2, 5]—a built-in
verifier within the Solidity compiler. Two other source-level tools,
solc-verify [7] and VeriSol [30], translate Solidity code into Boo-
gie intermediate language, which can introduce discrepancy be-
tween the analyzed code translation and original Solidity semantics.
In addition, they also lack support of certain Solidity functionality
and do not allow customization of the harness function and ana-
lyzed environment, which leads to multiple false positives reported
by these tools, as shown in Sect. 3. ESBMC-Solidity [24] translates
Solidity into an intermediate representation of ESBMC, which may
introduce semantics discrepancy, and it does not support certain
Solidity features such as polymorphism and inheritance.
Contribution. In this demonstration paper, we present SolSEE, a
user-friendly symbolic execution engine for analyzing source code
of one or several interacting smart contracts written in Solidity.
The key features of SolSEE can be summarized as follows:
• Precise operational semantics. SolSEE symbolically repre-
sents the configuration of smart contracts and executes each
program statement based on the exact operational semantics for
Solidity version 0.5.

• User-defined harness function. SolSEE facilitates analysis
and debugging of smart contracts by allowing users to define
the harness function to control the function call sequence for
verification. SolSEE detects and reports unsigned integer under-
and overflow and checks the validity of assertions, which can
be used to specify custom high-level properties of the analyzed
smart contracts.

• Smart contract debugging.With the symbolic paths generated
by SolSEE, users can debug smart contracts. Users are able to
visualize the execution details corresponding to the symbolic
paths step by step in a Web user interface.

2 METHODOLOGY

In this section, we introduce the design and usage of SolSEE.

1688

SolSEE: A Source-Level Symbolic Execution Engine for Solidity ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Smart
contract

Harness
function Property

Input

Operational
semantics

Symbolic path
exploration

Property
checking

SolSEE Symbolic Execution

Web UI

AST generation

solc

Z3 SMT Solver

Analysis result

SolSEE
Visualizer

SolSEE Backend

Figure 1: Tool architecture.

2.1 Design

SolSEEwas implementedwith 7,521 lines of C++ code and currently
supports smart contracts written in Solidity v0.5. Figure 1 demon-
strates an overview of the tool architecture. SolSEE takes one or
more smart contracts and a harness function as input, which should
be provided using a Web UI. In its backend, SolSEE uses a Solidity
compiler solc to generate the AST for the given contracts. Then,
SolSEE symbolically executes each statement by traversing the AST
based on the Solidity operational semantics. The (storage/memory)
configuration of the smart contract is encoded symbolically as Z3
types [4]. Also, the SMT solver is used to discharge the feasibility
queries of symbolic paths and validity queries of assertions. The
latter helps prove or disprove the user-defined properties encoded
as assertions in the harness function. SolSEE does not bound the
loop iterations and may unroll the loops infinitely. This can be
addressed by requesting the user to provide a loop invariant or
generating one automatically [11, 12], which is left for future work.

The frontend of SolSEE is based on the Remix IDE [21], which is
implemented as a ReactJs [20] application. The frontend of SolSEE
communicates with its backend via restful APIs. SolSEE also pro-
vides a debugging capability and helps developers examine the
operation of a smart contract by visualizing its (symbolic) execu-
tion in detail. Its usage is presented in Sect. 2.2.

The symbolic execution module of SolSEE supports a majority
of the Solidity language features, including the intra- and inter-
contract function calls, multiple inheritance, library support via
the “using ... for” construct, low-level function calls such as
“.call.value()()” with the associated fallback mechanism, modi-
fiers, and many others. Similarly to the Solidity compiler, SolSEE
automatically generates getter functions for public smart contract
variables of elementary types. Similar to other source-level analyz-
ers for smart contracts [7, 23, 30], SolSEE does not support inline
assembly. SolSEE also introduces a supplementary assume ()
statement that can be used to specify assumption conditions when
verification is performed, as shown in Listing 2, line 5.

In SolSEE, require() and assert() have different semantics,
although in Solidity, both functions could lead to a transaction with
all its effects on the state being reverted, if the required/asserted
condition is not satisfied. In Solidity, require() is used to check a
condition that is expected to fail occasionally, e.g., a guard condition
on function input arguments. Thus, should the expression enclosed
in require() evaluate to false, SolSEE rollbacks all effects of the
transaction on the smart contract state. We consider each statement

in the harness function as one transaction. Semantics of assert()
correspond to its purpose in Solidity: it is used to check conditions
that should never evaluate to false. SolSEE stops execution and
reports a violation if the asserted condition is violated.

In addition, SolSEE also reports possible integer under- and
overflows—a common issue in Solidity smart contracts, which heav-
ily utilize unsigned integers to store important information such
as token balances [28]. SolSEE takes a modular arithmetic ap-
proach to handling unsigned integers of various sizes (from uint8
to uint256): it models them using Z3 integers constrained by range
assertions to follow the semantics of unsigned integer arithmetic
operations in Solidity. Although using bitvectors is another popular
approach to model unsigned integers, it has been shown to have
scalability issues. To model one- and multi-dimensional arrays and
mappings, SolSEE relies on the array theory.

The symbolic execution process of a smart contract is guided
by the harness function provided by the user to orchestrate the
interactions with the analyzed smart contract(s). During path ex-
ploration and assertion/property checking, SolSEE relies on Z3 [4],
an SMT-solver, to resolve constraints. Using a harness function
makes symbolic analysis performed by SolSEE highly configurable,
which is necessary to effectively and efficiently analyze complex
smart contract code in a realistic setting, which is demonstrated by
our evaluation shown in Sect. 3. Additionally, a harness can also
be used to encode properties about the execution trace or smart
contract invariants in a form of assertions. To optimize tool per-
formance, smart contract variables in a harness or analyzed smart
contracts are assumed to have concrete (default) values unless they
are declared as symbolic. Ethereum balance of a harness (MAIN)
smart contract is assumed to be symbolic too.

2.2 Usage

SolSEE has both a command-line interface and a GUI. Given a
file that contains Solidity source code of all smart contracts to be
analyzed, e.g., Token.sol, symbolic execution via SolSEE can be
invoked using the following command:

./SolSEE -symexe-main ./Token.sol

Figure 2 shows the Web GUI of SolSEE. The UI is built on the
Remix IDE framework and allows users to do the following:
(1) Develop smart contracts in the “Smart Contract Panel”;
(2) Customize the MAIN contract serving as the harness for anal-

ysis and verification in the “Harness Contract Panel”;
(3) Click on the “Symbolic Execution Button” to trigger the sym-

bolic execution of SolSEE to obtain a set of symbolic paths;
(4) Visualize the detail of each symbolic path in the “Result Panel”;
(5) Click on the “Debugging Button” for further debugging.
The detailed description of each step can be found in the Appendix.

In SolSEE, we consider a small-step operational semantics. Thus,
if a statement includes several function calls, users need to separate
function calls into different statements. For example, the following
statement with two function calls: a = f() + g(); can be rewritten
into three statements: t1 = f(); t2 = g(); a = t1 + t2;.
While it is not convenient in syntax, it forces the developer to
explicitly specify the order of function evaluation, which is not
specified in the official Solidity document [6]. This enforcement
eliminates ambiguity for analysis and verification, especially when

1689

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Shang-Wei Lin, Palina Tolmach, Ye Liu, and Yi Li

Table 1: Evaluation results.

Smart contract Feature SolSEE VeriSol VeriSol-SP solc-verify VeriSmart SMTChecker

Token Token implementation ✓ ✗ ✗ ✗ ✗ ✗

MultipleModifiers Two modifiers applied to one function ✓ ✗ ✗ ✗ ✓* ✓*
FallbackFunction Fallback function execution ✓ ✗ ✗ ✗ ✗ ✗

GetterFunction Auto-generated getter functions ✓ ✓ ✓ ✗ ✗ ✗

SafeMathLibrary Using library functions on uint ✓ ✗ ✓ ✗ ✓* ✓*
MultipleInheritance Multiple inheritance via C3 linearization ✓ ✗ ✓ ✗ ✗ ✗

Structs Arithmetic operations on struct ✓ ✓ ✓ ✓ ✓ ✗

NewBytesArray New dynamic memory array of bytes32 ✓ ✗ ✗ ✗ ✗ ✗

UintOverflow uint8 overflow detection ✓ ✓† ✓† ✓† ✗ ✓

Revert Proper handling of revert() in a function ✓ ✗ ✗ ✗ ✓* ✗

* The code is analyzed correctly only in the absence of external function calls; † Non-default modular arithmetic mode must be used

Figure 2: The Web user interface of SolSEE.

both f() and g() have side effects on state variables, and different
execution orders may lead to different results.

3 EVALUATION

In this section, we demonstrate the capabilities of SolSEE and
compare it with other source-level tools for Solidity smart contracts.
The tools we compare with include solc-verify [7, 25], VeriSol
v0.1.5 [15, 30] and its modified version used in SmartPulse [26,
29] (denoted as VeriSol-SP in Table 1), VeriSmart [10, 23], and
SMTChecker [5] included in solc v.0.5.11. All these tools claim
that they can identify assertion failures, which is the capability
we perform the evaluation on. We could not run ExGen [9] due
to compilation issues. ESBMC-Solidity [24] cannot process smart
contracts even from its own documentation, so we do not compare
with it as well. We evaluated SolSEE and these tools on our running
example (Listing 1) and a dataset of nine different features present
in Solidity. Table 1 summarizes how these features are supported
by different tools. Each of the nine features has one corresponding
smart contract, as shown in the first two columns of Table 1.

Our results demonstrate that all tools used for comparison lack
support of certain Solidity features, except SolSEE. For example,
VeriSol does not support modifiers with multiple “ ;” statements

(witness: MultipleModfiers). VeriSmart cannot handle fallback
functions (witness: FallbackFunction) or correctly analyze arith-
metic operations on variables of unsigned integer (uint) types
(witness: UintOverflow). solc-verify and VeriSol follow the se-
mantics of arithmetic operations for uint in Solidity, only if a
non-default modular arithmetic mode is enabled. solc-verify fails
to process a bytes32 array in NewBytesArray, while variables of
type struct are not supported by SMTChecker (witness: Structs).
In addition, our results show that the analyzed tools report po-
tential violation of numerous assertions, which are, in fact, false
positives (e.g., solc-verify supports most Solidity features used
in experimental smart contracts, but in many of them it reports
all assertions as potentially failing). We attribute this fact to the
lack of harness function support and missing or incorrect handling
of Solidity language features and their semantics. For example,
none of these tools, except SolSEE and SmartPulse , correctly
implement C3 Linearization that Solidity uses to decide the order in
which methods are inherited in the presence of multiple inheritance
(witness: MultipleInheritance). Besides, while VeriSmart and
SMTChecker process some of our smart contracts correctly, they
can only do so if all the functionality is stored in a single contract,
i.e., no external function calls allowed. In terms of the speed of
analysis, our tool is as efficient as other tools used for comparison.

In closing, SolSEE has a unique source-level GUI that visualizes
the symbolic execution process, which facilitates debugging.

4 CONCLUSION

This paper presents SolSEE, a user-friendly symbolic execution
engine for smart contracts written in Solidity. SolSEE offers a large
degree of customization which enables highly effective symbolic
analysis of real-world smart contracts under realistic settings. Our
evaluation shows that SolSEE is useful in analyzing interacting
smart contracts in an efficient manner based on the user-defined
harness function and assertions. SolSEE also facilitates analysis
and debugging of Solidity smart contracts through a source-level
visualization of symbolic execution in a GUI.

5 DATA AVAILABILITY

The binary of SolSEE and experimental smart contract dataset used
for the evaluation are available on our website [13]. The release of
SolSEE source code is pending approval from the funding agency.

1690

SolSEE: A Source-Level Symbolic Execution Engine for Solidity ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES

[1] 2020. Solidity — Solidity 0.5.11 documentation. https://solidity.readthedocs.io/
en/v0.5.11/. Accessed: June 19, 2022.

[2] Leonardo Alt and Christian Reitwiessner. 2018. SMT-Based Verification of Solidity
Smart Contracts. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice, Tiziana Margaria and Bernhard Steffen (Eds.).
Springer International Publishing, Cham, 376–388.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (may 2018), 39 pages. https://doi.org/10.1145/3182657

[4] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 337–340.

[5] Ethereum. 2022. SMTChecker and Formal Verification. https://docs.soliditylang.
org/en/latest/smtchecker.html. Accessed: June 19, 2022.

[6] Ethereum. 2022. Solidity in Depth — Solidity 0.5.11 Documentation. https:
//docs.soliditylang.org/en/v0.5.11/solidity-in-depth.html. Accessed: June 19,
2022.

[7] Ákos Hajdu and Dejan Jovanović. 2019. solc-verify: A Modular Verifier for
Solidity Smart Contracts. CoRR abs/1907.04262 (2019). arXiv:1907.04262 http:
//arxiv.org/abs/1907.04262

[8] J. Jiao, S. Kan, S. Lin, D. Sanan, Y. Liu, and J. Sun. 2020. Semantic Understanding
of Smart Contracts: Executable Operational Semantics of Solidity. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,
CA, USA, 1265–1282. https://doi.org/10.1109/SP40000.2020.00066

[9] Ling Jin, Yinzhi Cao, Yan Chen, Di Zhang, and Simone Campanoni. 2022. EXGEN:
Cross-platform, Automated Exploit Generation for Smart Contract Vulnerabilities.
IEEE Transactions on Dependable and Secure Computing (2022), 1–1. https:
//doi.org/10.1109/TDSC.2022.3141396

[10] kupl. 2022. Source code of VeriSmart. https://github.com/kupl/VeriSmart-public/.
Accessed: June 19, 2022.

[11] Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. 2017. Automatic Loop-
invariant Generation and Refinement through Selective Sampling. In IEEE/ACM
International Conference on Automated Software Engineering (ASE). 782–792.

[12] Shang-Wei Lin, Jun Sun, Hao Xiao, Yang Liu, David Sanán, and Henri Hansen.
2017. FiB: Squeezing Loop Invariants by Interpolation between Forward/Back-
ward Predicate Transformers. In IEEE/ACM International Conference on Automated
Software Engineering (ASE). 793–803.

[13] Shang-Wei Lin, Palina Tolmach, Ye Liu, and Yi Li. 2022. SolSEE: Online Sup-
plementary Material. https://sites.google.com/view/solsee/. Accessed: May 26,
2022.

[14] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In ACM Conference on Computer and
Communications Security. ACM, 254–269.

[15] Microsoft. 2022. Source code of VeriSol — A formal verifier and analysis tool for
Solidity Smart Contracts. https://github.com/microsoft/verisol. Accessed: June
19, 2022.

[16] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brun-
son, and A. Dinaburg. 2019. Manticore: A User-Friendly Symbolic Execu-
tion Framework for Binaries and Smart Contracts. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 1186–1189.
https://doi.org/10.1109/ASE.2019.00133

[17] Bernhard Mueller. 2018. Smashing Ethereum Smart Contracts for Fun and Real
Profit. Technical Report.

[18] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. Proceedings
of the 34th Annual Computer Security Applications Conference (2018), 653–663.
https://doi.org/10.1145/3274694.3274743

[19] DeFi Pulse. 2022. DeFi - The Decentralized Finance Leaderboard at DeFi Pulse.
https://defipulse.com/. Accessed: May 26, 2022.

[20] ReactJs. 2022. React - A JavaScript library for building user interfaces. https:
//reactjs.org/. Accessed: June 19, 2022.

[21] Remix. 2022. Remix IDE. https://github.com/ethereum/remix-project. Accessed:
June 19, 2022.

[22] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. 2021. SmarTest: Effectively
Hunting Vulnerable Transaction Sequences in Smart Contracts through Lan-
guage Model-Guided Symbolic Execution. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 1361–1378. https://www.usenix.org/
conference/usenixsecurity21/presentation/so

[23] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2019. VeriSmart:
A Highly Precise Safety Verifier for Ethereum Smart Contracts. https://doi.org/
10.48550/ARXIV.1908.11227

[24] Kunjian Song, Nedas Matulevicius, Eddie B. de Lima Filho, and Lucas C. Cordeiro.
2022. ESBMC-Solidity: An SMT-Based model checker for Solidity smart con-
tracts. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 65–69. https://doi.org/10.1109/ICSE-
Companion55297.2022.9793786

[25] SRI-CSL. 2022. Source Code of solc-verify—a modular verifier for Solidity. https:
//github.com/SRI-CSL/solidity/tree/boogie/. Accessed: June 19, 2022.

[26] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dil-
lig. 2021. SmartPulse: Automated Checking of Temporal Properties in Smart
Contracts. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE. https:
//doi.org/10.1109/sp40001.2021.00085

[27] Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. 2021. Formal Analysis of
Composable DeFi Protocols. In Financial Cryptography and Data Security. FC
2021 International Workshops. Springer Berlin Heidelberg, Berlin, Heidelberg,
149–161.

[28] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. 2021. A Survey
of Smart Contract Formal Specification and Verification. ACM Comput. Surv. 54,
7, Article 148 (jul 2021), 38 pages. https://doi.org/10.1145/3464421

[29] utopia group. 2022. Source code of VeriSol used in SmartPulse. https://github.
com/utopia-group/verisol. Accessed: June 19, 2022.

[30] Yuepeng Wang, Shuvendu Lahiri, Shuo Chen, Rong Pan, Isil Dil-
lig, Cody Born, and Immad Naseer. 2019. Formal Specification and
Verification of Smart Contracts for Azure Blockchain. (April 2019).
https://www.microsoft.com/en-us/research/publication/formal-specification-
and-verification-of-smart-contracts-for-azure-blockchain/

1691

https://solidity.readthedocs.io/en/v0.5.11/
https://solidity.readthedocs.io/en/v0.5.11/
https://doi.org/10.1145/3182657
https://docs.soliditylang.org/en/latest/smtchecker.html
https://docs.soliditylang.org/en/latest/smtchecker.html
https://docs.soliditylang.org/en/v0.5.11/solidity-in-depth.html
https://docs.soliditylang.org/en/v0.5.11/solidity-in-depth.html
https://arxiv.org/abs/1907.04262
http://arxiv.org/abs/1907.04262
http://arxiv.org/abs/1907.04262
https://doi.org/10.1109/SP40000.2020.00066
https://doi.org/10.1109/TDSC.2022.3141396
https://doi.org/10.1109/TDSC.2022.3141396
https://github.com/kupl/VeriSmart-public/
https://sites.google.com/view/solsee/
https://github.com/microsoft/verisol
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3274694.3274743
https://defipulse.com/
https://reactjs.org/
https://reactjs.org/
https://github.com/ethereum/remix-project
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://doi.org/10.48550/ARXIV.1908.11227
https://doi.org/10.48550/ARXIV.1908.11227
https://doi.org/10.1109/ICSE-Companion55297.2022.9793786
https://doi.org/10.1109/ICSE-Companion55297.2022.9793786
https://github.com/SRI-CSL/solidity/tree/boogie/
https://github.com/SRI-CSL/solidity/tree/boogie/
https://doi.org/10.1109/sp40001.2021.00085
https://doi.org/10.1109/sp40001.2021.00085
https://doi.org/10.1145/3464421
https://github.com/utopia-group/verisol
https://github.com/utopia-group/verisol
https://www.microsoft.com/en-us/research/publication/formal-specification-and-verification-of-smart-contracts-for-azure-blockchain/
https://www.microsoft.com/en-us/research/publication/formal-specification-and-verification-of-smart-contracts-for-azure-blockchain/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Design
	2.2 Usage

	3 Evaluation
	4 Conclusion
	5 Data Availability
	References

