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ABSTRACT

Smart contracts deployed on permissionless blockchains, such as

Ethereum, are accessible to any user in a trustless environment.

Therefore, most smart contract applications implement access con-

trol policies to protect their valuable assets from unauthorized

accesses. A difficulty in validating the conformance to such policies,

i. e., whether the contract implementation adheres to the expected

behaviors, is the lack of policy specifications. In this paper, we mine

past transactions of a contract to recover a likely access control

model, which can then be checked against various information flow

policies and identify potential bugs related to user permissions.

We implement our role mining and security policy validation in

tool SPCon. The experimental evaluation on labeled smart con-

tract role mining benchmark demonstrates that SPCon effectively

mines more accurate user roles compared to the state-of-the-art

role mining tools. Moreover, the experimental evaluation on real-

world smart contract benchmark and access control CVEs indicates

SPCon effectively detects potential permission bugs while having

better scalability and lower false-positive rate compared to the

state-of-the-art security tools, finding 11 previously unknown bugs

and detecting six CVEs that no other tool can find.

CCS CONCEPTS

· Software and its engineering→ Software testing and debugging;

· Security and privacy→ Access control.
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1 INTRODUCTION

Smart contracts are computer programs that run on a blockchain

platform and manage large sums of money, carry out transactions

of assets, and govern the transfer of digital rights between multiple

parties. Ethereum [70] and EOS [31] are among the most popu-

lar blockchain platforms which support smart contracts and have

them applied in many areas, such as finance, supply chain, identity

management, games, etc. As of January 20, 2022, there are over 48

million smart contracts deployed on Ethereum, which is a 2.3-fold

increase from just two years ago [5]. These smart contracts have

enabled 3, 886 decentralized applications (DApps) serving about

180.13k daily active users [10].

The security of smart contracts has been at the forefront of at-

tention, ever since their adoption in the management of massive

monetary transactions. A large class of smart contract security is-

sues occurred due to low-level coding errors, such as reentrancy [55],

integer overflow/underflow [15], incorrect exception handling [7],

and gas-related issues [19]. While many of these bugs caused dev-

astating monetary losses and made the headlines [55], they have

been widely studied [21] and are relatively easy to address. Such

low-level bugs can often be captured by common vulnerability

patterns [13] and avoided by adopting the suggested coding prac-

tices [57, 69]. However, another class of security issues stems from

flaws in high-level security policy design and enforcement; such

flaws are more subtle to discover and more difficult to address.

One difficulty in validating the conformance to such policies,

i. e., whether the contract implementation adheres to the expected

behaviors, is the łtest oracle problemž [14]Ðthere is a lack of policy

specifications. The current practice is to implement intended access

control policies with ad-hoc Solidity [57] (the programming lan-

guages used to develop Ethereum smart contracts) idioms, such as

the łrequirež statements, to check if the address of a user is within

a predefined whitelist. Many permission bugs [53] are results from

this ad-hoc approach. In particular, when the number of roles and

the complexity of the access control patterns increase, it is difficult

for developers to avoid mistakes, giving rise to vulnerabilities.

In this paper, we address this problem by mining past transac-

tions of a contract to recover a likely access control policy specifi-

cation, which is then used to validate the contract implementation

and identify potential bugs related to user permissions. To this end,

we implemented a security policy validator, SPCon, based on role

mining from past transaction histories. Because of the transparency

and immutability of blockchain transactions, the transaction histo-

ries of a smart contract application from its initial deployment are
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Figure 1: Role mining-based permission bug identification.

always available. These historical transactions contain benign user

interactions, assuming the contract has not yet been attacked by

any malicious party. As is shown in Fig. 1, the key idea behind SP-

Con is that we first perform role mining on the transaction histories

to reverse engineer role structures which describe the different user

groups, the permissions entitled to each group, and potential hier-

archies among them. Then, access-control policy specifications are

constructed based on the role structures and relevant information

flow policies, such as integrity or separation of duty [48]. Through

conformance testing, SPCon validates the actual contract implemen-

tation against the policy specifications. Since historical transactions

only under-approximate the behaviors allowed by the contract im-

plementation, any discrepancy discovered indicates potential policy

violations that may occur in the future.

There are two usage scenarios of SPCon in practice: (1) detect-

ing bugs in deployed on-chain smart contracts based on existing

historiesÐbuggy contracts are to be safely destroyed to prevent

potential money loss, and (2) during internal testing before the

deployment, such as a user acceptance testingÐsuch testing ex-

hibits typical usage patterns that are not attacks, allowing to fix

vulnerabilities before deployment and detect attacks in production.

The main challenge for SPCon is to obtain high-quality underly-

ing role structures from contracts’ historical transactions, which

may not provide full information on every user’s access patterns.

We formulate this partial-observation role mining task as an opti-

mization problem, in which we optimize over two quality metrics,

namely, the role-similarity error and the role-consistency error.

Given the complexity of the optimization problem, we use a genetic

algorithm (GA) to find an approximate solution. To improve the

performance of the GA, we augment the optimization model with

additional constraints: (1) the mined role model must subsume all

observed user permissions from the historical transactions, and (2)

users that share similar permission patterns can be represented by

the same role. Empirically, the GA improves the role structure qual-

ity within a reasonable amount of time. The experimental results

on labeled smart contract role mining benchmark demonstrates

that SPCon is able to mine role structures from contracts’ historical

transactions with better accuracy than existing state-of-the-art role

mining approaches [23, 41, 54, 72]. Moreover, the experimental eval-

uation on real-world smart contract benchmark, namely, SBwild [22]

and access control CVEs, indicates that SPCon effectively detects

potential permission bugs while having better scalability and lower

false-positive rate compared to the state-of-the-art security tools [1ś

4, 8, 16, 56, 60].

Contribution. Our main contributions are summarized as below.

• We propose SPCon, a tool targeting permission bugs in smart

contracts. It mines role structures from historical transactions,

and thus enables conformance testing without specifications.

• We define the partial-observation role mining problem, where

generalizable role structures need to be inferred without full user

access information. We pose it as an optimization problem and

design an effective solution based on genetic algorithms.

• We collect and label a smart contract role mining benchmark.

We implement SPCon and evaluate it on the sampled 50 smart

contracts within the role mining benchmark. The results show

that SPCon can largely reduce the number of mined roles and

mine the role structures with better accuracy compared to the

existing role mining tools.

• The policy specifications produced by SPCon can be used to

enhance existing testing tools. We evaluate SPCon’s bug detec-

tion capability on real-world smart contract benchmark SBwild .

The results show that SPCon achieves the highest accuracy of

permission bug detection and finds 11 previously unknown per-

mission bugs in SBwild . Moreover, SPCon detects six more pre-

viously confirmed CVEs that cannot be found by existing tools.

The dataset, raw results and prototype used are available online:

https://doi.org/10.21979/N9/MBHBCI.

Outline. This rest of this paper is organized as follows. Section 2

motivates our work with a recent real-world permission bug. Sec-

tion 3 presents necessary background on role mining. We then

provide details on the SPCon framework in Sect. 4, and present

evaluation results in Section 5. Finally, we discuss related works in

Sect. 6 and conclude this work in Sect. 7.

2 MOTIVATING EXAMPLE

On May 7, 2021, a smart contract ProfitSharingRewardPool, used

by a Decentralized Finance (DeFi) platform named ValueDeFi, was

hacked due to missing a line of code and lost around six million dol-

lars [11]. ProfitSharingRewardPool is written in Solidity [57]; Fig. 2

shows its simplified source code. ValueDefi used this pool contract

for profit sharing with its users. The contract defines several modi-

fiers to restrict user access, including łonlyOperatorž (Line 9) and

łnotIntializedž (Line 12). Unlike most other contracts, ProfitShar-

ingRewardPool requires an explicit initialization after the contract

deployment, because it does not provide a specialized construc-

tor. Before the initialization, the łinitializedž flag remains false,

while other fields remain uninitialized (Lines 3 to 7).

To properly initialize the contract, the contract owner should

invoke the łinitializež function (Lines 14 to 24), which comes

with the łnotInitializedž modifier to restrict other users’ ac-

cess after the initialization is performed (Line 12). Apart from

configuring the staked and liquidity tokens (Lines 18 to 19), the

contract owner may configure administrator rolesÐłreserveFundž

and łoperatoržÐduring the initialization stage. Yet, since the state-

ment łinitialized = truež (Line 23) was missing, a malicious
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1 pragma solidity ^0.6.12;

2 contract ProfitSharingRewardPool{

3 address public operator;

4 address public reserveFund;

5 address public exchangeProxy;

6 bool public initialized = false;

7 address public liquidityToken , stakeToken;

8 /* ========== Modifiers =============== */

9 modifier onlyOperator () { require(operator == msg.

sender); _;}

10 modifier onlyExchangeProxy () { require(exchangeProxy

== msg.sender || operator == msg.sender); _;}

11 modifier onlyReserveFund () { require(reserveFund ==

msg.sender || operator == msg.sender); _;}

12 modifier notInitialized () { require (! initialized); _

;}

13 /* ======= Initialize function ======== */

14 function initialize(

15 address _stakeToken ,

16 address _liquidityToken ,

17 address _reserveFund) public notInitialized {

18 stakeToken = _stakeToken;

19 liquidityToken = _liquidityToken;

20 reserveFund = _reserveFund;

21 operator = msg.sender;

22 setRewardPool(liquityToken);

23 + initialized = true; // bug-fix

24 }

25 /* ==== Other functions (omitted) ====

26 onlyOperator: setOperator

27 onlyExchangeProxy: setExchangeProxy , depositFor

28 onlyReserveFund: setReserveFund , allocateMoreRewards

29 Permissionless: deposit , withdraw , claimReward */

30 }

Figure 2: The simplified code of ProfitSharingRewardPool.

user could successfully re-initialize the contract. The attacker can

modify the token configurations and perform privilege escalation

by setting himself as the łoperatorž.

Existing smart contract security analysis tools mostly rely on

generic bug patterns; thus, they may face challenges in detecting

this permission bug without an accurate contract specification.

More specifically, pattern-based approaches may fail because, (1)

the łinitializež function is already protected by a modifier, there-

fore, a static analysis tool searching for the łunrestricted writež

pattern [3, 56] would not raise an alarm, and (2) one has to in-

validate the protecting modifier by realizing that the condition

łinitialized == falsež still holds after the initialize function

is called. Yet, this kind of reasoning is beyond the scope of existing

bug patterns.

In general, bug patterns targeting common low-level coding

errors may miss design flaws and fail to reveal many permission

bugs. To address these challenges, we propose to first derive ac-

cess control policy specifications through role mining, which can

then be used to perform conformance testing to detect design-level

permission bugs.

3 BACKGROUND

In this section, we review role-based access control (RBAC) [52],

the classic role mining problem, and other relevant preliminaries

required for the rest of the paper.

Table 1: Role structures of ProfitSharingRewardPool.

Users (UA) Permissions (PA)

{ Operator }

{ initialize, setOperator, setExchangeProxy,

setReservedFund, depositFor,

allocateMoreRewards }

{ ExchangeProxy } { setExchangeProxy, depositFor }

{ ReserveFund } { setReservedFund, allocateMoreRewards }

{ Normal Users } { deposit, withdraw, claimReward }

Operator

write: {operator, stakeToken, liquidityToken, 

exchangeProxy, reserveFund}

Normal Users

write: {}

ExchangeProxy

write: {exchangeProxy}

ReserveFund

write: {reserveFund}

H

L

Figure 3: The ProfitSharingRewardPool’s security lattice.

3.1 Role-Based Access Control Model

RBAC has been well studied in the last twenty years since the

establishment of the NIST RBAC standard in 1995 [50]. We borrow

the standard definition as follows.

Definition 1 (RBAC [52]). An RBAC model 𝑀 can be defined

as a tuple (𝑈 , 𝑅, 𝑃, PA,UA) with the following components:𝑈 is a set

of users, 𝑅 is a set of roles, 𝑃 is a set of permissions, PA ⊆ 𝑃 × 𝑅 is

the permission-to-role assignment relation, and UA ⊆ 𝑈 × 𝑅 is the

user-to-role assignment relation.

A role is properly viewed as a semantic construct around which

access control policy is formulated [52]. Notice that RBAC is policy-

neutral and can be used to implement various types of security

policies. This owes to the flexible granularity of the permission

concept, which could either be a coarse-grained job function or a

fine-grained data read/write. In the smart contract context, permis-

sions can be enforced at both the function- and statement-level.

Table 1 shows the access control model of ProfitSharingReward-

Pool. There are four roles, namely, łOperatorž, łExchangeProxyž,

łReservFundž, and łNormal Usersž. Each role is granted a set of per-

missions: for example, łNormal Usersž can only call permissionless

functions such as łdepositž and łwithdrawž, while łOperatorž can

initialize the contract, set users for other roles, etc.

3.2 Information Flow Policy

Information flow policies are concerned with the flow of informa-

tion from one object to another [51]. In smart contracts, the objects

that we care about the most are contract state variables, recording

critical information such as the balance values, role assignments,
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and asset prices. An important class of information flow policies

can be defined on top of a security lattice.

Definition 2 (Security Lattice [49]). There is a finite lattice

of security labels SC with a partially ordered dominance relation ⪰

and a least upper bound operator.

As RBAC is policy neutral, it can be used to articulate a wide

range of information flow policies [49]. We may recover a security

lattice from the role structures, such that the security labels corre-

spond to roles (𝑅) and the dominance relation is defined over the

write sets of roles: i. e., 𝑟𝑖 ⪰ 𝑟 𝑗 if and only if write(𝑟𝑖 ) ⊇ write(𝑟 𝑗 ),

where write(𝑟𝑖 ) denotes the set of variables that 𝑟𝑖 can write.

For example, Fig. 3 shows a security lattice based on the roles in

ProfitSharingRewardPool, where łOperatorž and łNormal Usersž are

the top and bottom roles, respectively. If an integrity policy is to be

enforced among them, i. e., lower roles should not be able to write

data owned by higher roles, then normal users should not write

to łstakeTokenž, etc. Yet, due to the buggy łintializež function,

normal users are able to re-initialize the contract, thus violating

the integrity policy.

3.3 Role Mining Problem (RMP)

The purpose of RMP is to utilize the observed user access infor-

mation captured by the user permission assignment matrix UPA,

to infer the decomposed user roles (UA, PA), such that the decom-

position exactly describes the UPA and the number of roles are

minimized. Let 𝑎𝑖 𝑗 denote the entry (𝑖, 𝑗) of UPA. Then 𝑎𝑖 𝑗 = 1

indicates that the 𝑖th user has the 𝑗th permission. Typically, users

sharing the same set of permissions should be classified into the

same role. A more generalized version of the RMP allows noises in

the decomposition. More formally, the 𝛿-Consistency Role Mining

Problem (𝛿-RMP) was first defined by Vaidya et al. [63].

Definition 3 (𝛿-RMP [63]). Given a set of users𝑈 , a set of permis-

sions 𝑃 , and a user-permission assignment matrix UPA, the problem of

𝛿-RMP is to find a set of roles 𝑅, a user-to-role assignment matrix UA,

and a role-to-permission assignment matrix PA such that the number

of roles |𝑅 | is minimized, and the following inequality is satisfied.

| |UA ⊗ PA − UPA| |1 ≤ 𝛿,

where | | · | |1 denotes the 𝐿1 norm and ⊗ refers to Boolean matrix

multiplication.

A solution to 𝛿-RMP allows a limited number of mismatches

below the given threshold 𝛿 . Here, we introduce four well-known

role mining approaches [42] that assume a fully-observed user per-

mission assignment and find solutions satisfying 𝛿 = 0. ORCA [54]

clusters users and permissions hierarchically according to the max-

imal overlap among the users, to form roles without minimizing

the number of roles. The HP Labs proposed a role minimization

approach (HPr) [23] for finding minimal number of roles to cover

the user-permission assignment. The Graph Optimization (GO) al-

gorithm [72] views the role mining problem as a graph optimization

problem whose objective is to minimize the number of roles and

the number of graph edges. HierarchicalMiner (HM) [41] is based

on the ontology of formal concept analysis to mine roles with hi-

erarchy, whose objective is to minimize a predefined complexity

metric to create optimal roles.

Our proposed role mining approach aims to reverse engineer

high-quality roles based on the limited partial observations from

the historical transactions. Therefore, we allow a non-zero 𝛿 , and

at the same time, optimize over quality metrics (more details are

discussed in Sect. 4).

3.4 Role-Mining Evaluation Metrics

Evaluating the quality of a role-mining algorithm involves the

comparison between the mined roles and the ground-truth roles. In

general, a role can be viewed as a set of permissions. To compare

the similarity between two sets of roles, one needs to decide a role-

to-role mapping before the similarity between a pair of roles can be

evaluated using, for example, the Jaccard Coefficient [32]. Vaidya

et al. [64] define the similarity between two role sets as the average

over the maximum similarity between each role in the smaller

role set and any matched role in the larger role set. However, this

similarity definition neglects the contribution of unmatched roles

and thus usually prefers solutions that yield a larger number of

mined roles [59]. To mitigate this issue, Takabi et al. [59] extended

it by taking unmatched roles into consideration: they define the

similarity between two role sets as follows.

Definition 4 (Role-Set-Role-Set Similarity [59]). Given two

role sets 𝑅1 and 𝑅2, the similarity between them is determined in three

steps. First, if the sizes of the two sets are not equal, without loss of

generality, assume that 𝑅1 is the smallest set, then we have,

𝑀 =

{

arg max𝑟 𝑗 ∈𝑅2
jaccard(𝑟𝑖 , 𝑟 𝑗 )

�

�

�∀𝑟𝑖 ∈ 𝑅1

}

, (1)

which computes for each role in 𝑅1 the similarity with its ideal match

in 𝑅2. Second, for the remaining 𝑅2 that are not the ideal match with

𝑅1, keep only those elements that match to some degree,

𝑀 =

{

𝑟 𝑗

�

�

�

�

∃𝑟 𝑗 ∈ (𝑅2 \𝑀) · max
𝑟𝑖 ∈𝑅1

jaccard(𝑟𝑖 , 𝑟 𝑗 ) > 𝑡

}

, (2)

where 𝑡 is the similarity threshold to take unmatched roles into con-

sideration. Finally, the similarity between 𝑅1 and 𝑅2 is given as,

𝑆𝑖𝑚 (𝑅1, 𝑅2 ) =

(

∑︁

𝑟𝑖 ∈𝑅1

max
𝑟 𝑗 ∈𝑀

jaccard(𝑟𝑖 , 𝑟 𝑗 )

+
∑︁

𝑟 𝑗 ∈𝑀

max
𝑟𝑖 ∈𝑅1

jaccard(𝑟𝑖 , 𝑟 𝑗 )

)/

(

| |𝑅1 | | + | |𝑀 | |
)

.

(3)

When 𝑡 = 1, role-set-role-set similarity is equivalent to the defi-

nition used by Vaidya et al. [64], which only averages similarities of

the ideal matches. When 𝑡 = 0, role-set-role-set similarity averages

the similarity of all possible role pairs where the Jaccard Coefficient

of each role pair is larger than zero.

4 FRAMEWORK

In this section, we present SPCon, a framework for permission bug

identification in smart contracts through role mining.

4.1 Overview

The overall workflow of SPCon consists of two major steps (see

Fig. 1). First, during role mining, SPCon recovers role structures of

the contract based on the observed user permission assignments

719



Finding Permission Bugs in Smart Contracts with Role Mining ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

(UPA) from the transaction histories. We assume that benign trans-

action histories are readily available for the deployed contract. For

undeployed contracts, transactions can be generated through inter-

nal user acceptance testing. Second, SPCon performs conformance

testing to validate contract implementation against the access con-

trol policy specification defined based on the mined role structures.

We describe each step in detail in the rest of this section.

4.2 Partial-Observation Role Mining (PORM)

Most existing role mining techniques [40] assume a fully-observed

user permission assignment, i. e., UPA contains all permissions as-

signed to each user. This assumption does not work well in the

smart contract setting. In particular, a user is unlikely to access all

functions within her permission, especially for permissionless func-

tions, and different users of the same role (e. g., normal users) may

access different subsets of their permissions. Treating transaction

histories of smart contracts as a fully-observed permission assign-

ment will likely result in more roles than necessary and incorrect

role assignments.

In this paper, we propose the problem of partial-observation

role mining (PORM), where the given permission assignment is

assumed to contain only partial information. To derive a high-

quality estimation of the role structures, we rely on a good balance

between the two quality metrics, namely, the role-similarity error

and the role-consistency error, to guide the role mining process.

In practice, users of the same role tend to share a similar ac-

cess pattern, which can be captured quantitatively by the average

frequency vector (AFV ).

Definition 5 (Average Freqency Vector). Let 𝑟 ∈ 𝑅 be a

role, |𝑟 | be the number of users of 𝑟 , and 𝑃 be the permission set.

Let 𝑛(𝑟, 𝑝𝑖 ) denote the total number of times the permission 𝑝𝑖 ∈ 𝑃

gets exercised by the users of 𝑟 . The average frequency vector of 𝑟 ,

denoted by AFV (𝑟 ), is a |𝑃 |-dimensional vector 𝒙 ∈ R |𝑃 | , where

𝑥𝑖 = 𝑛(𝑟, 𝑝𝑖 )/|𝑟 |.

The AFV of a role measures how frequently its users exercise

different permissions, which serves as a signature of the role and

should vary across different roles. The desired roles should distin-

guish users of different access patterns, therefore, resulting in low

AFV similarities between different roles.

Definition 6 (Role-Similarity Error: SimErr). The role simi-

larity error of a mining result is defined as the maximum of the cosine

similarities between any pair of roles’ AFV s:

SimErr = max
𝑟𝑖 ,𝑟 𝑗 ∈𝑅

cos
(

AFV (𝑟𝑖 ),AFV (𝑟 𝑗 )
)

. (4)

Meanwhile, we aim to minimize the number of mismatches be-

tween the mined role structures (UA, PA) and the given user per-

mission assignment UPA, namely the 𝛿 value of 𝛿-RMP (see Def. 3).

We define this type of error as follows.

Definition 7 (Role-Consistency Error: DeltaErr). Let UPA

be the user permission assignment matrix and (UA, PA) be the mined

role structure. The role-consistency error is defined as:

DeltaErr =
| |UA ⊗ PA − UPA| |1

| |UA ⊗ PA| |1
, (5)

where | | · | |1 denotes the 𝐿1 norm and ⊗ refers to Boolean matrix

multiplication.

PORM as an Optimization Problem. The RMP and 𝛿-RMP are

both NP-Complete problems [62, 63]. The complexity of the PORM

is at least as hard as that of the 𝛿-RMP, and we would like to ensure

the generalizability of roles with SimErr , while maintaining good

consistency with DeltaErr . Therefore, we pose the PORM as a multi-

objective optimization problem to produce likely role structures

achieving a good trade-off between the two error metrics.

Given a set of users𝑈 of size𝑚, a set of permissions P of size 𝑛,

and a user-permission assignment matrix UPA of size𝑚 ×𝑛, PORM

is to infer the unknown RBAC configuration (UA, PA), where R is

a set of roles of size 𝑘 , UA is a user-role assignment matrix of size

𝑚 × 𝑘 , and PA is a permission-role assignment matrix of size 𝑘 × 𝑛,

which satisfies,

min 𝛼 · SimErr + 𝛽 · DeltaErr,

s.t. UA ⊗ PA ⊇ UPA, (6)

where 𝛼 and 𝛽 are relative weights on the two error metrics. Equa-

tion (6) constrains that the mined roles (UA ⊗ PA) should at least

include the permissions appearing in the partial observation (UPA).

4.3 A Solution Based on a Genetic Algorithm

In this section, we introduce a genetic algorithm (GA) to find a

good solution to the PORM. Our algorithm takes UPA as the main

input, which can be obtained from the smart contract transaction

histories. Since a valid solution needs to satisfy Eq. (6), we first

group the largest possible number of users sharing the largest set

of permissions together, as basic roles. This helps reduce the search

space significantly. The basic roles guarantee to have 𝛿 = 0 and thus

satisfy Eq. (6). Subsequently in the GA, basic roles are randomly

merged to form larger roles, which only increases 𝛿 , and therefore

Eq. (6) is never violated.

Chromosome. Given a set of basic roles {𝑟0, . . . , 𝑟𝑖 , . . . , 𝑟𝑘−1}, we

encode the solution as a chromosome Chr [𝒙] in the following form:

Chr [𝒙] = ⟨𝑥0, . . . , 𝑥𝑖 , . . . , 𝑥𝑘−1⟩, where 𝑥𝑖 is the gene of 𝑟𝑖 . Each

gene consists of log2 𝑘 bits, so there are at most 𝑘 different gene

values. Each gene value represents a specific cluster of basic roles.

For example, when 𝑥𝑖 = 𝑥 𝑗 , the two basic roles 𝑟𝑖 and 𝑟 𝑗 are to be

merged to generate a final role.

Fitness function.We use the following fitness function to guide

the search.

fitness(𝒙) = (𝛼 · SimErr + 𝛽 · DeltaErr)−1 , (7)

where SimErr and DeltaErr are defined in Eqs. (4) and (5), respec-

tively.

Selector, Crossover, and Mutator. The three GA operators, se-

lector, crossover and mutator [39], are designed as follows. The

selector adopts the Tournament Selection method [38] to select the

winner of each tournament to perform later crossover. We use a

single-point crossover to exchange two chromosomes of the par-

ents to generate new offspring in a manner where the front and

back of the crossover point for the two chromosomes is exchanged.

Our mutator performs a gene-level mutation, which flips a bit of a

gene or swaps two genes in a chromosome. The initial population
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Algorithm 1 Access control policy conformance testing

Require: (𝐹,𝑉 , 𝑆0 ) ⊲ Function set, state variables, initial concrete state

Require: (UA, PA) ⊲ Role structures

Require: 𝑘 ⊲ Maximum length of test sequences

1: procedure ConformanceTest(𝐹 ,𝑉 , 𝑆0, PA, UA, 𝑘)

2: for all ⟨𝑓0, . . . , 𝑓𝑘−1 ⟩ ∈ 𝐹
𝑘 do ⊲ Function sequences

3: 𝑆,Π ← 𝑆0, true ⊲ Initialize state 𝑆 and path Π

4: for 𝑖 ∈ [0, 𝑘 − 1] do

5: Π ← Π ∧
∨

𝜋 ∈SymbExe(𝑓𝑖 )
𝜋 [𝑣 ↦→ 𝑆 (𝑣) | 𝑣 ∈ 𝑉 ]

6: if Π is not satisfiable then break

7: if PolicyCheck(Π,𝑉 , PA) then

8: return ⟨𝑓0, · · · , 𝑓𝑖 ⟩ ⊲ Exploit (error trace)

9: 𝑆 ← 𝑆 [𝑣 ↦→ 𝑓𝑖 (𝑣) | 𝑣 ∈ 𝑉 ] ⊲ Update 𝑆 w.r.t. 𝑓𝑖

10: return ⟨⟩ ⊲ Bug not found

Require: 𝜆 ⊲ An information flow policy defined on lattice

11: procedure PolicyCheck(Π,𝑉 , PA)

12: 𝑅 ← ∅ ⊲ Initialize role set

13: for all (𝑟, 𝑃𝑟 ) ∈ PA do ⊲ Role-permission pairs

14: 𝑅 ← 𝑅 ∪ {𝑟 } ⊲ Update 𝑅

15: write (𝑟 ) ←
⋃

𝑝∈𝑃𝑟

(𝑝.write ∩𝑉 ) ⊲ Update write set

16: 𝐿 ← BuildLattice(𝑅,write) ⊲ Build lattice 𝐿

17: if Π ̸ |= 𝜆 (𝐿) then ⊲ 𝜆 is violated on Π

18: return true ⊲ Bug found

19: else

20: return false ⊲ Bug not found

of our GA is randomly generated. Meanwhile, we also keep one

best individual from the current generation to carry over to the

next as the elitist selection [24] to guarantee that the solution qual-

ity obtained by the GA will not decrease. The detailed illustration

of the GA role mining process can be found in the supplemental

materials: https://sites.google.com/view/spcon/.

4.4 Policy Validation via Conformance Testing

With the mined role structures, we are able to derive a set of access

control policy specifications and perform conformance testing on

the contract implementation. Since the mined role structures are

based on benign user behaviors, any discrepancy between the policy

specification and the actual allowed behaviors indicates a potential

permission bug. The combination of role mining and testing solves

the problem of missing specifications and provides a rich set of test

oracles specialized for permission violation bugs.

Algorithm 1 details the conformance testing process. The inputs

to Alg. 1 include the contract functions (𝐹 ), state variables (𝑉 ), a

snapshot of the initial concrete contract state (𝑆0), the mined role

structures (UA, PA), and a user-defined bound for the test sequence

length (𝑘). The output is either a test sequence that exploits a

permission bug, where access control policies are bypassed, or an

empty sequence indicating no bug is found within the given bound.

The conformance testing procedure iterates through each test

sequence, consisting of 𝑘 functions from 𝐹 (Line 2). In each itera-

tion, we initialize the contract state 𝑆 using 𝑆0 and set the initial

symbolic path condition Π to true (Line 3). The algorithm pro-

gressively constructs symbolic paths with increasing lengths, and

checks against the information flow policy defined over the mined

role structure (Lines 4 to 9). On Line 5, we construct a global path

Π by concatenating function-level symbolic paths generated from

symbolic execution (i. e., SymbExe in Alg. 1). We also substitute

the state variables (𝑣 ∈ 𝑉 ) with their updated values captured in

𝑆 , which is either concrete values inherited from 𝑆0 or symbolic

expressions as a result of previous function (symbolic) executions.

If Π is not satisfiable, we skip the current test and start a new test

sequence. Otherwise, we check Π against the given information

security policy 𝜆 defined on the security lattice (Line 7).

The security lattice 𝐿 is constructed according to the mined roles

𝑅 and the partial order over the set of state variables written by each

role. Each role is associated with a set of permissions (functions)

given by PA; therefore, we can map roles to their write sets via

data-dependency analysis on the corresponding functions (Line 15).

Note that, the write set of a function contains the written state

variables excluding the ones read. A permission bug is reported if

the information flow policy is violated on the path Π (Line 17). We

then return the shortest test sequence leading to the bug (Line 8).

Otherwise, 𝑆 is updated, to take into account the state changes

introduced by the function 𝑓𝑖 (Line 9). The conformance testing

process continues, till all the test sequences have been tested or a

permission bug is found.

Example. Examples of the security policies checked by SPCon

include integrity and separation of duty. Integrity prevents critical

information flowing from a low-security role to a high-security role,

while separation of duty ensures that the privileged information

owned by a role cannot be modified by other incompatible roles.

Figure 4 illustrates the process how SPCon detects the łinitializež

attack to ProfitSharingRewardPool, which violates the integrity of

the security lattice (see Fig. 3). Following the common practice, at-

tackers are assumed from the lowest-security role, namely łNormal

Userž. In Fig. 4, there are four test sequences where each consists of

two functions. The deployed contract is assumed to have been ini-

tialized once by the owner. Therefore, the initial state 𝑆0 records the

current concrete values of the state variables, such as łstakeTokenž

and łtokenBalancež. The first and the second test sequences, namely,

ts1 and ts2, are infeasible, and there is no change made to 𝑆 . This is

because the attacker’s address will be rejected by the permission

checks for łexchangeProxyž and łreserveFundž, respectively. The

sequence ts3 is feasible, and the attacker’s token balance in 𝑆 is up-

dated to ł𝑋 ž and ł𝑋−𝑌 ž after łdepositž and łwithdrawž, respectively.

Yet, this does not result in any policy violation yet. In ts4, the buggy

łinitializež function is executed first, where the value of łstakeTo-

kenž modified in 𝑆 , thus breaking the integrity policy. Therefore,

SPCon reports the shortest attack test sequenceÐł⟨initialize⟩žÐas

an indication of the permission bug.

Implementation. Step 1 in SPCon sets up the testing environment

with a mirrored contract deployment from a peer node using the

developer APIs provided by Etherscan [5], where we can fetch

the most up-to-date contract states (𝑆0 in Alg. 1) faithfully. Step

2, the function-level symbolic execution, is implemented based on

Manticore [2]; we substitute symbolic state variables with their

concrete values captured in 𝑆0. This avoids false positives from

spurious contract configurations. As the number of possible test
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Test Sequences Path check Changes in 𝑆 Policy check

ts1 = setExchangeProxy(_) → depositFor (_) false Ð Ð

ts2 = setReservedFund (_) → allocateMoreRewards(_) false Ð Ð

ts3 = deposit (X ) → withdraw(Y ) true tokenBalance[attacker] : 0→ 𝑋 → (𝑋 − 𝑌 ) false

ts4 = initialize(Z, _, _) → setExchangeProxy(_) true stakeToken : _→ 𝑍 → 𝑍 true

Figure 4: Illustration of the discovery of the ProfitSharingRewardPool attack by SPCon.

sequences grows exponentially with length 𝑘 , we perform partial-

order reduction on the test sequences according to their control-

flow dependencies, which further reduces unnecessary test cases.

5 EVALUATION

To explore the capability of SPCon, we evaluated it based on the

following research questions, comparing its performance to the

state of the art:

RQ1: How accurately and efficiently does SPCon learn the likely

RBAC model?

RQ2: How does SPCon perform in detecting permission bugs?

RQ3: Why do existing tools fail to detect many permission bugs,

and how does our approach improve on this?

5.1 Experiment Setup

The benchmarks used in the evaluation are listed in Table 2. To

answer RQ1, we collected a role mining benchmark for smart con-

tracts with ground truth. We realized that most smart contracts

are poorly documented, and their role structures are often implicit.

To mitigate this issue, we collected smart contracts which use the

AccessControl template of OpenZeppelin [6], because these con-

tracts have to explicitly define their roles following the template.

We searched all smart contracts whose source code use the Access-

Control template via the Etherscan source code search service [9]

on December 9, 2021. This resulted in 4,719 smart contracts on

Ethereum that use the AccessControl template in their source code.

These contracts use the łonlyRolež and łhasRolež modifiers to

label each privileged function with the corresponding roles. Our

ground truth is largely derived based on these labels. But to avoid

potential errors and incompleteness, we manually reviewed the la-

bels on a smaller set of contracts. In particular, we selected the most

used contracts having at least 1,000 historical transactions and this

resulted in 228 smart contracts. Two authors independently labeled

the role structures of these contracts with the third one to resolve

the divergence of views. Due to time constraints, we sampled 50

smart contracts from the labeled benchmark and evaluated SPCon

with other tools based on these 50 contracts to draw our conclusion

of RQ1.

For RQ2, we evaluated the accuracy of SPCon on real-world

smart contract benchmark SBwild [22], a public data set consist-

ing of 47,518 contracts from the Ethereum blockchain. Specifi-

cally, SBwild includes 3,801 contracts marked as having access con-

trol bugs. Those access control bugs were detected by symbolic

execution-based analysis tools such as Maian [1], Manticore [2],

and Oyente [4], and program analysis tools including Securify [56]

(dataflowproperties), Slither [8] (taint tracking) and SmartCheck [60]

Table 2: Benchmark used for the research questions.

Research Questions Benchmarks

RQ1 Labeled smart contracts for role mining

RQ2 (1) SBwild ; (2) access control CVE.

(AST-level rules), as well as a hybrid analysis tool, Mythril [3]. More-

over, as of December 23, 2021, there are 531 smart contract CVEs,

19 of which contain access-control-related CVEs. We used these 19

CVEs to evaluate the capability of SPCon, as the rest of them are

mainly caused by integer overflow or underflow, which is out of

the scope of this work.

All experiments were conducted on an Ubuntu 20.04.1 LTS desk-

top equipped with an Intel Core i7 16-core processor and 32 GB of

memory. The benchmark contracts and raw results are available at:

https://sites.google.com/view/spcon/.

5.2 Results of the Experiments

We now discuss the results of the experiments in detail.

Results for RQ1. To answer RQ1, we evaluated three combinations

of 𝛼 and 𝛽 , namely, (0.4, 0.5), (0.5, 0.5) and (0.6, 0.4), for the fitness

functionÐsee Eq. (7)Ðused by SPCon, since we believe the optimal

solution should well balance SimErr and DeltaErr . As for the GA

parameters, the population size is set to be 100, and the number of

generations is 200. The mutation rate of the GA population is set to

be 0.10 to avoid being stuck in a local optimum, and the crossover

rate is 0.99. The role mining time budget is 20 minutes per contract

for all the role mining tools. We compared SPConwith existing role

mining tools HPr, ORCA, HM, and GO on the 50 sampled smart

contracts of our role mining benchmark. We compared the mined

roles and the ground truth roles using two metrics: Num_Ratio and

Sim(mined_roles, groundtruth_roles). Num_Ratio is the ratio of the

number of the mined roles to the number of roles in the ground

truth. Sim(mined_roles, groundtruth_roles) measures the similarity

between the roles of the mined result and the roles of the ground

truth at a user-given threshold t (c. f. Def. 4).

Table 3 shows the evaluation on the role mining results. The

first column is the role mining approach; we use the three afore-

mentioned settings for SPCon. The next three columns show the

average time cost, average number of roles, and average Num_Ratio

per contract. The first four columns of the rest show the average

similarity between the mined roles with respect to the ground truth

at different given thresholds. Since privileged roles are critical to a

security policy, the last four columns also present the similarity be-

tween mined privileged roles and the privileged roles of the ground

truth, removing all the permissionless functions.
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Table 3: Evaluation result on the 50 sampled smart contracts of the role mining benchmark.

Approach Run time (s) Number of roles
Number of mined roles

per roles in ground truth

Similarity Similarity (privileged roles)

t=1 t=0.5 t=0.25 t=0 t=1 t=0.5 t=0.25 t=0

HPr 0.21 8.28 2.69 0.545 0.544 0.515 0.319 0.807 0.806 0.771 0.732

ORCA 5.08 21.96 7.17 0.713 0.700 0.525 0.320 0.885 0.838 0.615 0.535

HM 49.54 19.04 6.37 0.572 0.566 0.448 0.323 0.824 0.827 0.763 0.714

GO 191.72 15.34 4.86 0.570 0.565 0.464 0.350 0.805 0.805 0.755 0.719

SPCon (0.4, 0.6) 31.69 7.00 2.27 0.556 0.556 0.541 0.356 0.832 0.832 0.808 0.753

SPCon (0.5, 0.5) 33.10 4.64 1.54 0.541 0.541 0.519 0.408 0.814 0.814 0.784 0.718

SPCon (0.6, 0.4) 34.55 3.52 1.11 0.580 0.580 0.561 0.426 0.778 0.778 0.742 0.665

GO takes the longest time, around three minutes on average,

while HPr is the fastest algorithm. ORCA generates the most roles

(about 22 on average) and thus has the highest ratio of mined roles

per actual role (7.17 on average). The reason is that ORCA uses

a simple clustering analysis without any minimization goals. HM

and GO also generate many more roles than the ground truth,

with the ratio being 6.37 and 4.86, respectively. Although HPr has

the best role similarity among the four existing tools, SPCon (0.4,

0.6) outperforms HPr in all metrics except for the runtime. This

implies that SPCon (0.4, 0.6) mined more accurate roles than HPr,

as SPCon (0.4, 0.6) also mined fewer unnecessary roles. SPCon (0.5,

0.5) generates fewer roles than SPCon (0.4, 0.6) with a similarity

loss to some extent. We argue that SPCon (0.5, 0.5) is still better

than HPr in the sense that SPCon (0.5, 0.5) reports much fewer roles

than HPr, and the similarity of SPCon (0.5, 0.5) is comparable to

that of HPr. SPCon (0.6, 0.4) has the lowest similarity for privileged

roles, which downgrades the role mining accuracy. The reason is

that, with higher weightage 𝛼 , SPCon (0.6, 0.4) could attempt to

cluster different privileged roles to achieve a higher fitness score.

In summary, SPCon significantly reduces the number of (exces-

sive) mined roles compared to other role mining approaches. SPCon

outperforms the existing role mining approaches with respect to

accuracy when we choose suitable (𝛼 , 𝛽) combinations, such as (0.4,

0.6) or (0.5, 0.5). Moreover, SPCon runs efficiently, taking only half

a minute on average for our examples. Due to the random nature

of the GA, we performed 10 role mining experiments of SPCon

(0.4, 0.6), and the mean and variance of the number of roles, ratio

of the mined roles to the ground-truth roles, and similarity (t=1)

are (6.776, 0.05), (2.193, 0.004), (0.553, 0.00008), which implies that

the results are robust.

Answer to RQ1: SPCon can accurately and efficiently reverse

engineer likely RBAC models of smart contracts.

Results for RQ2. To answer RQ2, we evaluated SPCon on the

contracts of SBwild with at least 50 transactions for the observa-

tion of a diversity of users behavior to mine high-quality roles

for conformance testing. For SPCon, the length of test sequence

𝑘 is 2 which is same as the default setting of Manticore [2] and

Mythril [3], and the test time budget for permission bug detection

is set to 10 minutes per contract.

Table 4 shows the evaluation result on permission bug detection

of SBwild of six pattern-based tools and SPCon. To avoid bias, we

reused the original detection result of Slither, Securify, SmartCheck,

Table 4: Permission bug detection results on SBwild

Tool
Number of

vulnerabilities

Agree (≥ 1):

Num (%)
True-positive rate

Slither 2,356 568 (24 %) 24.2 %

Securify 614 93 (15 %) 32.8 %

SmartCheck 384 193 (50 %) 29.3 %

Mythril 1,076 460 (43 %) 39.0 %

Maian 44 29 (66 %) 61.4 %

Manticore 47 19 (40 %) 19.1 %

SPCon 44 33 (75 %) 81.8 %

Table 5: Evaluation results on the 17 permission CVEs.
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CVE-2018-10666 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2018-10705 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2018-11329 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2018-17111 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CVE-2018-19830 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ N/A

CVE-2018-19831 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2018-19832 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2018-19833 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ N/A

CVE-2018-19834 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ N/A

CVE-2019-15078 ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

CVE-2019-15079 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2019-15080 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2020-17753 ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

CVE-2020-35962 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CVE-2021-3006 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CVE-2021-34272 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CVE-2021-34273 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Mythril, Maian and Manticore [21]. We elide Oyente, since it flags

only two permission bugs. The columns in Table 4 show the dif-

ferent tool names, the number of reported permission bugs. the

number of reported permission bugs agreed on by at least one

other existing tool with the corresponding percentage, and the

true-positive rate (confirmed by us).

SPCon reported 44 permission bugs among SBwild , while Slither

reported the most, namely 2, 356 contracts. However, Thomas et
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al. [21] suggests a high number of false positives may exist in the

detection results; its solution is to combine different tools to create

a consensus to reduce the false positives. The agreement result

shows that SPCon achieves the best precision. 75 % of the results

of SPCon are agreed upon by at least one other tool. Furthermore,

we manually confirm those permission bugs to determine the true-

positive rate for each tool.

As it is non-trivial to confirm all detection result of each tool, we

manually confirmed all reported permission bugs by Maian, Man-

ticore and SPCon. For Slither, Securify, SmartCheck and Mythril,

we sampled 66, 61, 58, 64 reported permission bugs among their re-

sults to obtain a 90 % confidence level and a margin of error of 10 %

on whether the sample is representative of all reports. For these

384 (66+61+58+64+44+47+44) contracts, two of the authors spent 5

minutes per contract to confirm the true positives, respectively. In

case the verdict by two authors was not unanimous, a third author

broke the tie. Via this confirmation process, we got the true positive

rate of each tool. Although SPCon is neither sound nor complete,

SPCon achieved the best in the result accuracy, namely, 81.8 % of

the detected permission bugs are true positives. Moreover, SPCon

found 11 previously unknown permission bugs in SBwild .

For a detailed comparison, we also evaluated SPCon and other

tools on the detection of permission CVEs. There are 531 smart con-

tract CVEs as of now, out of which 19 are permission bugs and most

of the rest are integer overflow/underflow bugs. We ignored two

permission CVEs, namely CVE-2021-39167 and CVE-2021-39168,

since they do not target real-world smart contracts. Table 5 shows

the detection results of Slither, Oyente, Maian, SmartCheck, Manti-

core, Mythril, Securify, Ethainter, and SPCon. SPCon does not apply

(łN/Až) to CVE-2018-19830, CVE-2018-19833, and CVE-2018-19833

since they have only one, four and three transactions, respectively.

Ethainter [16] is a newly proposed security analyzer for informa-

tion flow vulnerabilities caused by access control bugs. Note that

although Ethainter is not open-source, it provides a public web-

site [12] recording its analysis results on smart contracts; we used

these published results in our comparison.

Table 5 shows that neither Oyente, Manticore, Securify, nor

Ethainer could detect any permission CVEs. Slither and SmartCheck

detected one permission CVE,which is due to themisuse of tx.origin,

while Mythril and Maian found two and four, respectively. SPCon

detected nine permission CVEs, which is more than all of the other

tools combined and includes six CVEs that existing tools cannot

find. This indicates that SPCon has an advantage over pattern-based

approaches and can complement these to achieve better results.

Answer to RQ2: SPCon exceeded state-of-the-art vulnerabil-

ity detection capabilities, showing higher accuracy on finding

existing access-control bugs. It found 11 unknown permission

bugs and six access-control CVEs that no other tool finds.

Results for RQ3. To understand the causes of previously unknown

permission bugs, we performed a case study on a permission bug

that was found only by SPCon. Figure 5 shows the simplified code

of the EDU token contract.1 It was used to empower an academic

platform led by Open Source University [43]. EDU was launched

1Ethereum address 0x849c2ea2a8f0ed0fe6d28b17fa0f779d6a45dff1

1 contract EDUToken is {

2 Certifier public certifier;

3 address public ownerAddress;

4 function EDUToken () public {

5 certifier = Certifier (0 x1e2F058C ...);

6 ownerAddress = msg.sender;

7 }

8 function updateCertifier(address _address) public{

9 certifier = Certifier(_address);

10 }

11 function () payable{

12 // Only certified addresses are allowed to join

13 if (! certifier.certified(msg.sender)) {

14 revert ();

15 }

16 ...

17 }

18 }

Figure 5: The EDUToken Solidity code.

on November, 2017 and is currently deprecated; it has two sensitive

variables, łownerAddressž and łcertifierž (Lines 2 to 3). The user

having the address of łownerAddressž is in charge of the contract;

łcertifierž is a contract instance which should implement the inter-

face łCertifierž. The łcertifierž instance is used to certify incoming

participants via the fallback function (Lines 11 to 17). However,

unauthorized users can reset łcertifierž by calling the updateCerti-

fier function (Lines 8 to 10).

Existing vulnerability patterns used to detect permission bugs

cannot capture this scenario, because they all capture behaviors

that do not apply here. Some patterns used by Maian, Manticore,

Mythril, Slither and Securify look for Ether withdrawal, which

does not occur in EDU. Similarly, Manticore, Mythril, and Slither

also check if unauthorized users can taint delegatecall, but this

instruction is not used in the contract. Another pattern, used by Ma-

ian, Manticore, Mythril and Slither, checks if unauthorized users can

destroy a smart contract; however, EDU contains no selfdestruct

instruction. Finally, a pattern to check the misuse of tx.origin,

used by Manticore, Mythril and SmartCheck, is not applicable in

EDU either, as it never uses tx.origin in its code.

We should expect that Securify can identify this issue in EDU as

a vulnerability of an unrestricted write. However, Securify failed in

this case. A possible reason for this could be that Securify needs to

analyze the semantics of smart contracts. In function updateCertifier,

certifier=Certifier(_address) (Line 9) is a type conversion

statement to covert ł_addressž from an ordinary address type to

łcertifierž of the łCertifierž interface type. As the implementation of

this interface is not available at compile time, Securify cannot ana-

lyze it. SPCon solves this problem by using a role-based information

security lattice as the expected behavior of smart contract. SPCon

found that only high-security level roles can write to the łcertifierž

variable from the partial observation transaction history of EDU.

With its conformance testing, SPCon confirmed that unauthorized

users can write to łcertifierž, which constitutes the permission bug.

SPCon only flags exploitable permission bugs. The bugs are

exploitable in the sense that users can replay the attack on the

on-chain smart contracts. Most of the existing pattern-based tools

aim to detect a bug but without any guarantee if the bug can be
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1 contract VoipToken is ERC20 {

2 address owner = msg.sender;

3 bool public distributionFinished = false;

4 mapping (address => uint256) balances;

5 modifier canDistr () {

6 require (! distributionFinished);_;

7 }

8 modifier onlyOwner () {

9 require(msg.sender == owner);_;

10 }

11 function VoipTken () public {

12 owner = msg.sender;

13 distr(owner , totalDistributed);

14 }

15 function finishDistribution () onlyOwner canDistr

public {

16 distributionFinished = true;

17 }

18 function distr(address _to , uint256 _amount) canDistr

private {

19 balances[_to] = balances[_to].add(_amount);

20 }

21 }

Figure 6: The VoipToken Solidity code.

exploited or not. However, vulnerable code does not imply that

the contract is exploitable. Figure 6 shows the simplified code of

VoipToken.2 This permission bug was reported by Maian but not by

SPCon. Notice that the constructor function name of the VoipTo-

ken contract has a typo, and it should be łVoipToken()ž instead of

łVoipTken()ž (Lines 11 to 14). The latter can be used to modify the

value of łownerž (Line 12). When attacker calls the function Voip-

Tken, function distr (Lines 18 to 20) will be invoked to manage the

distribution of tokens to users. The distr function is guarded by the

modifier canDistr (Lines 5 to 7), which requires distributionFinished

to be false (Line 6) . For the on-chain smart contract VoipToken, how-

ever, the current value of distributionFinished is true.3 Therefore,

an attacker cannot exploit the buggy constructor function VoipTken.

To some extent, SPCon can identify exploitable permission bugs

for the on-chain smart contracts with higher accuracy and can alert

the contract administrator before attacks cause a money loss.

Answer to RQ3: SPCon complements existing pattern-based

tools and finds previously unknown permission bugs while

achieving a relatively high accuracy.

5.3 Threats to Validity

Internal validity. The ground truth on role structures of our Open-

Zeppelin smart contracts for role mining may not be fully reliable.

To mitigate the issue, two of the authors independently labeled

the role structures with the help of the third author to resolve a

possible disagreement. Also, we lack a ground truth on permission

bugs except for the previously confirmed CVEs. To mitigate this is-

sue, we evaluated SPCon on the previously well-studied real-world

smart contract benchmark SBwild . False positives in the detection

2Ethereum address 0x3da034753b42bda1bcfa682f29685e2fd6729016
3See its storage slot: https://api.etherscan.io/api?module=proxy&action=eth_-
getStorageAt&address=0x3da034753b42bda1bcfa682f29685e2fd6729016&position=0x7

result could exist. We again have two or three authors confirm the

reported permission bugs manually.

External validity. The type of OpenZeppelin smart contracts we

used for role mining in this work may be limited. Our findings may

not generalize to other cases. However, the OpenZeppelin access

control library has empowered smart contracts across different

domains. Therefore, we believe that other types of contracts are

similar to the contracts we study in this work.

6 RELATED WORK

Our work is closely related to the security analysis of smart con-

tracts and the access control models as well as role mining.

6.1 Smart Contract Security Analysis

The research landscape on smart contract security analysis can

be broadly categorized according to the kinds of vulnerabilities

addressed. After the DAO attack [55] in 2016, reentrancy has been

recognized among the most serious vulnerabilities. In a reentrant

contract, an external user is able to repeatedly call back to the

contract within a single transaction. Arithmetic bugs exist in smart

contracts, in the same way as in traditional programs [3], but often

lead toworse damages. For example, łBECžwas attacked by creating

a huge number of tokens by exploiting the integer overflow [15].

Other logical flaws are susceptible to different types of attacks:

some smart contracts are suspected to have the łunchecked-sendž

bug, where the return value of a send function is not checked [28,

46]. This may lead to unwanted behaviors when send fails (e. g.,

due to insufficient gas) and no appropriate error handling code

is present. Because the execution of a smart contract is not inde-

pendent from the blockchain environment, the improper use of

environment variables (e. g., the block timestamp) puts smart con-

tracts at the risk of dependence manipulation [67]. The transaction-

ordering dependence (i. e., front running) problem exists if there are

data races between contract functions. Similarly, attackers may con-

duct a denial-of-service attack by following some gas-consuming

code patterns [18, 27] to make the gas costs of a certain function

extremely high [19]. Missing permission checks on user accesses

can make a smart contract prodigal and suicidal [44], and it may

also enable arbitrary writes to critical variable [16, 56] or arbitrary

code execution using the delegatecall [2, 3, 33], etc. Moreover, Groce

et al. [29] analyzed many real-world audit reports and their findings

show 42 % of the access control bugs are of high severity.

The techniques used to address the security issues can be clas-

sified into static and dynamic analyses. The former can be further

broken down to program analysis, program synthesis, symbolic ex-

ecution, formal verification, and theorem proving. Slither [25] and

Ethainter [16] perform taint analysis to find information flow vul-

nerabilities. SmartCheck [60] targets code issues by searching con-

tracts’ AST against predefined rules. Securify [56] infers semantic

information by analyzing the control- and data-dependencies of con-

tract code, which is then checked against several predefined security

patterns. Meanwhile, SmartScopy [26] introduces a summary-based

symbolic evaluation to synthesize attack programs for vulnerable

contracts. Oyente [37] is one of the earliest symbolic execution en-

gine for smart contracts, followed by Manticore [2] and Mythril [3].

Mythril [3] is an industrial security analysis tool which combines
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symbolic execution and taint analysis to detect nearly 30 classes of

vulnerabilities. Other formal verification [34, 36, 68] and theorem-

proving [30, 47] tools were built aiming to check properties on the

safety [34, 47], security, and fairness [36] of smart contracts.

On the other hand, dynamic analyses find exploitable security

bugs by directly executing the contracts in a testing environment.

Test cases are usually generated through fuzzing or model-based

testing [35]. ContractFuzzer [33] is one of the earliest black-box

fuzzing frameworks for detecting smart contract vulnerabilities. It

predefines several practical test oracles and analyzes the collected

execution traces to check against the oracles. The gray-box fuzzing

tools ContraMaster [65, 66], Harvey [71], and Echidna [61] employ

a feedback-driven mechanism to guide the testing process.

SPCon distinguishes itself from these works in that it focuses on

flaws in high-level security policy design and does not rely specific

low-level bug patterns. This is only achievable through the reverse

engineering of high-quality role structures.

6.2 RBAC in Smart Contracts and Role Mining

RBAC has been developed since 1995 [50]. It mitigates the man-

agement efforts of user access control, because permissions are

assigned to roles, and the users of a role inherit its permissions. An

advantage of RBAC is its policy-neutrality, which enables the im-

plementation of a variety of access control policies. RBAC has been

proposed as a solution to separate the execution of access control

policies from the management of business logic in smart-contract-

based decentralized applications [17]. On the other hand, smart

contracts are also used as a tool to implement access control policies

for off-chain applications, e. g., Internet of Things [73], data sharing

systems [45, 58], and identity management in a trans-organizational

setting [20].

Role engineering is a big challenge in applying RBAC: a top-

down approach based on a specification of the roles is limited to

cases where there exists a design specification of access control

systems. However, for many real-world systems, such as smart

contracts, these roles are not formally implemented or documented.

Therefore, the role structures have to be first reverse engineered

from past user access logs using a bottom-up approach, namely, role

mining. We have discussed a number of well-known role mining

algorithms [23, 41, 54, 72] in Sect. 3, and compared SPConwith them

empirically in Sect. 5. Most existing role mining techniques assume

a fully-observed user permission assignment, i. e., UPA contains all

permissions assigned to each user [40]. This assumption does not

work well in the smart contract setting.

SPCon distinguishes itself from the existing role mining ap-

proaches in that SPCon solves the partial-observation role mining

problem to mine high-quality role structures.

7 CONCLUSION

In this paper, we presented a testing tool, SPCon, specialized for

smart contract permission bugs. SPCon relies on historical transac-

tions and a novel partial-observation role mining technique to solve

the test oracle problem. The evaluation results on multiple datasets

indicate that SPCon is able to mine high-quality role structures and

discover exploitable permission bugs more accurately than existing

tools. In particular, SPCon detects 11 previously unknown permis-

sion bugs from the well-studied vulnerability dataset SBwild . Our

approach can also be used to improve the understanding of role-

based security policies of deployed contracts, allowing potential

permission attacks to be detected before causing real losses.
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