
Finding Permission Bugs in Smart
Contracts with Role Mining

Ye Liu*, Yi Li*, Shang-Wei Lin*, Cyrille Artho+

*Nanyang Technological University
+KTH Royal Institute of Technology

Date: July 20, 2022

Smart Contract

• Manage valuable assets
• Involve multiple types of users with

different capabilities
• Self-governed and once deployed,

contract code cannot be changed

Enforcing access control correctly is crucial
for smart contract implementations

2

Smart Contract

• Manage valuable assets
• Involve multiple types of users with

different capabilities
• Self-governed and once deployed,

contract code cannot be changed

A decentralized finance application,
ValueDeFi’s pool contract access control

Operator:
initializing the contract

Exchange proxy:
performing tasks on behalf of

normal users

Fund agent:
allocating profits among

normal users

Normal users: depositing/
withdrawing fundsEnforcing access control correctly is crucial

for smart contract implementations

2

Contents

▪ Smart contract and its access control
▪ Permission bug case study
▪ Our approach to find permission bugs
▪ Evaluation of the approach
▪ Conclusion

3

A permission bug in ValueDeFi

contract ProfitSharingRewardPool {
 ...

function initialize (
 address _stakeToken,
 address _liquidityToken,
 address _reserveFund) public notInitialized
{

stakeToken = _stakeToken;
 liquidityToken = _liquidityToken;
 reserveFund = _reserveFund;
 operator = msg.sender;
 setRewardPool(liquidityToken);
+ initialized = true // bug-fix
}

 ...
}

4

Exploit: On May 7, 2021, the contract ProfitSharingRewardPool, used by a Decentralized Finance (DeFi)
platform named ValueDeFi, was hacked due to unprotected initialize function and lost around six million
dollars

A permission bug in ValueDeFi

contract ProfitSharingRewardPool {
 ...

function initialize (
 address _stakeToken,
 address _liquidityToken,
 address _reserveFund) public notInitialized
{

stakeToken = _stakeToken;
 liquidityToken = _liquidityToken;
 reserveFund = _reserveFund;
 operator = msg.sender;
 setRewardPool(liquidityToken);
+ initialized = true // bug-fix
}

 ...
}

(1) Pattern-based approach
Limitation:

• Static analysis: fail to realize that the
notInitialized modifier will always
return true, thus making the initialize
function unprotected

• Dynamic analysis: lacking contract-
specific test oracle on which type of
user may invoke the initialize function

(2) Model-based approach

Limitation:
• Requiring customized model

4

Exploit: On May 7, 2021, the contract ProfitSharingRewardPool, used by a Decentralized Finance (DeFi)
platform named ValueDeFi, was hacked due to unprotected initialize function and lost around six million
dollars

Smart contract permission bug finding with role
mining (SPCon)

Fig from Check by nareerat jaikaew from NounProject.com

Role structures Bug findingSmart contract

Role mining Conformance
testing

(u0, creation)
(u1, f1)
(u2, f2)
(u3, f3)

…
(un, fn)

Access control policyTransaction history

6

Smart contract permission bug finding with role
mining (SPCon)

Fig from Check by nareerat jaikaew from NounProject.com

Role structures Bug findingSmart contract

Role mining Conformance
testing

(u0, creation)
(u1, f1)
(u2, f2)
(u3, f3)

…
(un, fn)

Access control policyTransaction history

6

▪ Extract user function access log from transaction history

Smart contract permission bug finding with role
mining (SPCon)

Fig from Check by nareerat jaikaew from NounProject.com

Role structures Bug findingSmart contract

Role mining Conformance
testing

(u0, creation)
(u1, f1)
(u2, f2)
(u3, f3)

…
(un, fn)

Access control policyTransaction history

6

▪ Role mining ! infer user roles from existing user function access log.

Smart contract permission bug finding with role
mining (SPCon)

Fig from Check by nareerat jaikaew from NounProject.com

Role structures Bug findingSmart contract

Role mining Conformance
testing

(u0, creation)
(u1, f1)
(u2, f2)
(u3, f3)

…
(un, fn)

Access control policyTransaction history

6

▪ Recover information-integrity access control policy from mined role structures

Smart contract permission bug finding with role
mining (SPCon)

Fig from Check by nareerat jaikaew from NounProject.com

Role structures Bug findingSmart contract

Role mining Conformance
testing

(u0, creation)
(u1, f1)
(u2, f2)
(u3, f3)

…
(un, fn)

Access control policyTransaction history

6

▪ Conformance testing ! Check the conformance between contract implementation and its access

control policy

Deploy smart contract to blockchain

Contract creation
transaction

Smart contract

blockchain

deploy

7

Transaction history

contract creator

contract creation

blockchain

Smart contract

8

Contract creation

Transaction history

A

initialize

blockchain

Smart contract

9

Contract creation

initialize

Transaction history

A

setExchangeProxy

blockchain

Smart contract

10

Contract creation

initialize

setExchangeProxy

Transaction history

B

deposit

blockchain

Smart contract

11

Contract creation

initialize

setExchangeProxy

deposit

Transaction history

B

deposit

blockchain

Smart contract

12

Contract creation

initialize

setExchangeProxy

deposit

deposit

Transaction history

B

withdraw

blockchain

Smart contract

13

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

Transaction history

C

allocateMoreReward
s

blockchain

Smart contract

14

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreReward
s

Transaction history

D

deposit

blockchain

Smart contract

15

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreReward
s

deposit

Transaction history

D

withdraw

blockchain

Smart contract

16

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreReward
s

deposit

withdraw

Transaction history

E

depositFor

blockchain

Smart contract

17

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreReward
s

deposit

withdraw

depositFor

Transaction history

F

deposit

blockchain

Smart contract

18

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreReward
s

deposit

withdraw

depositFor

deposit

User access log

19

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreRewards

deposit

withdraw

depositFor

deposit

User access matrix

User access log is Incomplete

20

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreRewards

deposit

withdraw

depositFor

deposit

User access matrix is Partial

Role mining from partial observation

▪Assumption: Users are likely to belong to the same role if they have
(a) accessed the exact same set of functions.

(b) called common set of functions with similar usage frequency.

▪Challenges
➢Considering only (a) would create too many spurious roles

➢However, considering (b) can lead to many mismatches with the observation.

➢NP-hard problem.

21

Role mining from partial observation

▪Genetic algorithm solution
(a) Frequency similarity metric: measure the chance of a spurious role.
(b) Consistency metric: measure the mismatch with the observation.

▪Role mining steps
➢Infer basic roles: Group users having the same set of function calls
➢Merge basic roles: Combine those with similar frequency patterns

22

Role mining result

23

Contract creation

initialize

setExchangeProxy

deposit

deposit

withdraw

allocateMoreReward
s

deposit

withdraw

depositFor

deposit

Role structure

Users (UA) Permissions to Functions (PA)

{ Operator }
{ initialize(), setOperator(), setExchangeProxy(), se-
tReserveFund(), depositFor(), allocateMoreRewards() }

{ Exchange proxy } { setExchangeProxy(), depositFor() }
{ Fund agent } { setReserveFund(), allocateMoreRewards() }
{ Normal Users } {deposit(), withdraw(), claimRewards() }

24

Role structure

Written State Variables
{operator, stakeToken, liquidityTo-ken,
exchangeProxy, reserveFund}

{exchangeProxy}
{reserveFund}
{}

Users (UA) Permissions to Functions (PA)

{ Operator }
{ initialize(), setOperator(), setExchangeProxy(), se-
tReserveFund(), depositFor(), allocateMoreRewards() }

{ Exchange proxy } { setExchangeProxy(), depositFor() }
{ Fund agent } { setReserveFund(), allocateMoreRewards() }
{ Normal Users } {deposit(), withdraw(), claimRewards() }

24

Access control policy (information security lattice)

25

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy() -> depositFor() Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe

26

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe setExchangeProxy()

27

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe setExchangeProxy()

27

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe setExchangeProxy()

28

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() -> allocateMoreRewards() Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe
setReserveFund()

29

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe

deposit(X)

withdraw(Y)

30

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe

initialize()

31

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe

initialize()

32

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe

initialize()

setExchangeProxy()

33

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Conformance testing

Operator
Write: {operator, stakeToken, liquidityToken,

exchangeProxy, reserveFund }

Exchange proxy
write: {exchangeProxy}

Fund agent
Write: {reserveFund}

Normal Users
Write: {}

H

L

Test Sequences Policy check

ts1 = setExchangeProxy(_) -> depositFor(_) Safe

ts2 = setReservedFund() ->
allocateMoreRewards()

Safe

ts3 = deposit(X) -> withdraw(Y) Safe

ts4 = initialize() -> setExchangeProxy() Unsafe

initialize()

ts4 is an exploit attack sequence to the permission bug and
we generate concrete transactions as the PoCs.

34

setExchangeProxy()

▪ Symbolic execution.
▪ Concrete value from blockchain snapshot.

Evaluation

Accuracy and efficiency of
role mining

RQ1: How accurately and efficiently does
SPCon learn the user roles?

Performance in permission
bug finding

RQ2: How does SPCon perform in
detecting permission bugs?

Discussion
RQ3: Why do existing tools fail to

detect many permission bugs, how
does our approach improve on this?

▪ Answering 3 Research Questions:

35

RQ1: Accuracy and efficiency of role mining

SPCon can accurately and efficiently reverse engineer likely user roles of smart contracts

Approach Run time (s) Number of roles Number of mined roles
per roles in ground truth

HPr 0.21 8.28 2.69
ORCA 5.08 21.96 7.17
HM 49.54 19.04 6.37
GO 191.72 15.34 4.86
SPCon (0.4, 0.6) 31.69 7.00 2.27
SPCon (0.5, 0.5) 33.10 4.64 1.54
SPCon (0.6, 0.4) 34.55 3.52 1.11

36

RQ2: Performance in permission bug finding on the benchmark
SmartBugs.

SPCon shows higher true positive rate (81.8%) compared to the existing tools

Moreover, SPCon found 11 previously unknown permission bugs in the SmartBugs benchmark

Tool Number of
vulnerabilities

Agress (>=1)
Num (%) True-positive rate

Slither 2,356 568 (24%) 24.2%
Securify 614 93 (15%) 32.8%
SmartCheck 384 193 (50%) 29.3%
Mythril 1076 460 (43%) 39.0%
Maian 44 29 (66%) 61.4%
Manticore 47 19 (40%) 19.1%
SPCon 44 33 (75%) 81.8 %

37

RQ2: Performance in permission bug finding on 17 permission CVEs.

SPCon can find more permission CVEs (nine) compared to other existing tools

Number of CVEs detected by each tool

0

2

5

7

9

Slither Maian Manticore Securify SPCon

Num of CVEs

38

RQ3: Discussion

Why the current tools fail to detect some permission bugs?
• Limited and overly generic, "one size fits all" approach. They only

cover some kinds of permission bugs, e.g., the use of modifier

How does our approach improve on this?
• Learn access control model tailored to each contract

39

Conclusion
Our main contributions include:
(1) Learn permission model from transaction history. (2) Generate executable exploits.

Role structuresSmart contract

Role mining Conformance
testing

(u0, creation)
(u1, f1)
(u2, f2)
(u3, f3)

…
(un, fn)

Access control policyTransaction history Bug finding

40

