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ABSTRACT

Smart contracts are self-executing computer programs deployed
on blockchain to enable trustworthy exchange of value without
the need of a central authority. With the absence of documentation
and specifications, routine tasks such as program understanding,
maintenance, verification, and validation, remain challenging for
smart contracts. In this paper, we propose a dynamic invariant
detection tool, InvCon, for Ethereum smart contracts to mitigate
this issue. The detected invariants can be used to not only support
the reverse engineering of contract specifications, but also enable
standard-compliance checking for contract implementations. In-
vCon provides a Web-based interface and a demonstration video
of it is available at: https://youtu.be/Y1QBHjDSMYk.

CCS CONCEPTS

• Software and its engineering → Software reverse engineer-

ing.
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1 INTRODUCTION

Smart contracts are computer programs running atop blockchains
to manage large sum of financial assets and automate the execution
of agreements among multiple trustless parties. Ethereum [27]
and BSC [6] are among the most popular blockchain platforms
which support smart contracts and have them applied in many
areas, such as supply-chain management, finance, energy, games,
digital artworks, etc. As of May 2022, there are nearly 50 million
Solidity [24] smart contracts deployed on Ethereum, which is a 3.25x
increase from just three years ago [7]. These smart contracts have
enabled 4,056 DApps serving about 113.86K daily active users [10].
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1 contract ERC20 {
2 uint256 _totalSupply; // Inv#1:

∑
𝑢 balances[u] = _totalSupply

3 mapping(address=>uint256) balances;
4 mapping(address=>mapping(address=>uint256)) allowances;
5 constructor(uint256 totalSupply){
6 _totalSupply = totalSupply;
7 balances[msg.sender] = _totalSupply;
8 }
9 function transfer(address to, uint tokens) external{
10 // Inv#2: Post(balances[msg.sender]) =

Pre(balances[msg.sender]) - tokens↩→
11 balances[msg.sender] = balances[msg.sender].sub(tokens);
12 // Inv#3: Post(balances[to]) = Pre(balances[to]) + tokens
13 balances[to] = balances[to].add(tokens);
14 }
15 function approve(address spender, uint tokens) external{
16 // Inv#4: Post(allowances[msg.sender][spender]) = tokens
17 allowances[msg.sender][spender] = tokens;
18 }
19 function transferFrom(address from, address to, uint tokens)
20 external {
21 // Inv#5: Post(allowances[from][msg.sender]) =

Pre(allowances[from][msg.sender]) - tokens↩→
22 allowances[from][msg.sender] =

allowances[from][msg.sender].sub(tokens);↩→
23 // Inv#6: Post(balance[msg.sender]) =

Pre(balances[msg.sender]) - tokens↩→
24 balances[msg.sender] = balances[msg.sender].sub(tokens);
25 // Inv#7: Post(balances[to]) = Pre(balances[to]) + tokens
26 balances[to] = balances[to].add(tokens);
27 }
28 }

Figure 1: A reference implementation of ERC20 Contract.

At the same time, defects in smart contract applications have caused
significant financial losses, since the notorious DAO attack [23].

The correctness of smart contracts is non-trivial to guarantee
with the absence of contract specifications. Most smart contracts
have little to none documentation. Meanwhile, even popular smart
contract libraries, such as OpenZeppelin [12], are found to contain
errors and incompleteness in their documentation [11]. Program
invariants are properties always preserved throughout the pro-
gram execution, which characterize an important aspect of the
program. They naturally serve as good candidates for completing
and strengthening program documentation. Well-known invariant
detection tools, such as Daikon [8], is able to detect likely program
invariants for Java programs, by executing their test cases. Because
of blockchain’s transparency and immutability, the entire historical
transaction data of a smart contract is persistently stored on the
blockchain. The transaction histories capture all the execution data
of a smart contract since its creation and deployment. In this work,
we propose to use these transaction data to automatically infer
invariants of a smart contract and we implemented a lightweight
invariant detector InvCon to fully automate the process.
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Figure 2: The architecture overview of InvCon.

We now illustrate the invariants detected by InvCon with an
example and demonstrate how this may be used to identify incon-
sistencies between the contract implementations and the corre-
sponding specifications. ERC20 [1] is the most popular standard
interface on Ethereum: six out of the top-20 most reused smart con-
tracts are ERC20 contracts [15]. There are two well-known ERC20
reference implementations written by ConsenSys [2] and OpenZep-
pelin [12]. A simplified version is shown in Fig. 1. Three important
state variables—_totalSupply, balances, and allowances—are
used to record the total amount of tokens available, users’ balances,
and their approved allowances, respectively. The three functions—
transfer, approve, and transferFrom—are used to perform to-
ken transfers between users and approval of allowances. The in-
variants of ERC20 contracts have been extensively studied and is
well-understood [1, 14, 21]. Specifically, the ERC20 reference imple-
mentation has seven invariants marked in Fig. 1, i.e., Inv#1 (Line 2)
to Inv#7 (Line 25), which can all be successfully detected by InvCon.
For example, Inv#1 states that the sum of the account balances of
all users always equal to the total supply, which is referred to as the
balance invariant in previous works [25]. Similarly, Inv#2 says that
the sender’s balance should be deducted with the correct amount.

Yet, many ERC20 contract implementations are inconsistent with
the standard specification [14]. In such a case, discrepancies from
the standard specification may be captured by the unusual invari-
ants detected by InvCon. In our experiments, InvCon found 16
non-compliant ERC20 contracts among the 246 studied contracts.
InvCon also provides a Web interface that allows the user to query
invariants given a contract address, and its key applications are:
• Specification Mining. The invariants detected by InvCon can
be used to complete and strengthen contract specifications. Con-
sidering that many smart contracts need to be upgraded and the
documentations have to be properly maintained, the detected
invariants are useful and timely resources for contract developers
to write reliable specifications.

• Standard Compliance. InvCon can be used to find inconsis-
tencies between smart contract implementations and standard
specifications. Specifically, given a smart contract, it is likely the
contract is non-compliant, if InvCon fails to infer invariants
specified in the standard requirements.

• Higher-Level Oracles. Most existing analysis techniques for
smart contracts, either static or dynamic, are pattern-based: for
example, they detect security vulnerabilities against a limited set
of predefined patterns or test oracles. Yet, many security attacks
on smart contracts are caused by subtle logic bugs, which can
hardly be captured by low-level oracles. The invariants detected
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Figure 3: The user interface of InvCon.

by InvCon can be used to infer higher-level oracles to facilitate
the detection of such problems.

2 INVCON OVERVIEW

In this section, we describe the architecture of InvCon and demon-
strate its user interface. As shown in Fig. 2, InvCon consists of a
Web-based front-end (implemented as a Vue.js [13] single-page ap-
plication) and a server-side back-end (written in Python3 and Java).
The front-end allows the user to query for a designated contract
address and obtain its contract invariants. On the back-end, the
contract’s ABI, storage layout, and transaction data are collected,
which are then fed into the data trace generator to generate the
data traces for the invariant detection engine to subsequently mine
the likely contract invariants. The back-end communicates with
the front-end through restful APIs.

2.1 User Interface

Figure 3 illustrates the user interface of InvCon. The user interface
consists of an 1○ address field for inputting the contract address, a
2○ “Get Invariants” button to trigger the invariant query, and a 3○
“Go to Etherscan” link for user to check detailed contract data on
the Etherscan website [7]. Once the front-end obtained the query
result, 4○ panel-1 displays the contract source code and 5○ form-1
shows the contract name and its Solidity compiler version as well
as the selected function invariant(s) that is displayed in 6○ panel-2.

2.2 Back-End Implementation

The back-end of InvCon consists of two components, namely, the
data collection and the invariant detection components.
Data collection. Given a contract address on Ethereum, we first
extract the inputs and outputs from the contract’s past transactions,
based on its Application Binary Interface (ABI) and the storage
layout of all the contract state variables. The input to a contract
transaction can be seen as a tuple (sender, function, parameters),
encoding the sender of the transaction, the name of the function
called, and the values of the input parameters, respectively. The out-
put of a transaction is recorded as (status, storageChanges), where
status indicates if the transaction is successful or reverted, and stor-
ageChanges refers to the changes on the contract’s storage slots. ABI
provides a standard way to interact with contracts in the Ethereum
ecosystem, while interpreting the layout of state variables in stor-
age allows the value of any state variables to be fetched (using the
“getStorageAt” API on Ethereum). Notice that any wrongly recog-
nized variable value may lead to wrong invariant result. Through
the analysis of transaction data, we may recover a sequence of data
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traces, indicating how values of the state variables are changed
before and after different function calls.
InvariantDetection. InvCon’s invariant detection is implemented
based on Daikon [8], which detects program invariants out of a
set of data trace records. With a set of predefined invariant tem-
plates, Daikon statistically infers the invariants that hold for the
given data trace records and discards those that are refuted by
the records. However, existing invariant detection approaches re-
quire code instrumentation while executing a test suite dynamically,
which are not directly applicable for smart contracts. This is be-
cause, instrumented smart contract code may behave differently
from the original one, due to the change in gas1 consumption caused
by the instrumented code. In addition, few or none test cases exist
for smart contracts, which barely cover any interesting invariant.

For practicality, InvCon uses a heuristic-based approach to re-
cover data traces efficiently. The intuition is that with the storage
layout available, we can calculate the storage slots for each state
variable. The function input variables and its values can also be
extracted from the decoded transaction inputs with the contract’s
ABI. Note that for state variables with dynamic storage, e.g., ones
stored as mappings, the transaction sender, function input parame-
ters are also used for the storage slot calculation. Given the value
changes of contract storage slots, we may derive the old and new
values of the contract state variables precisely. Therefore, for a
smart contract, InvCon mirrors the snapshots of all contract state
variables before and after a transaction by accumulating all the past
value changes of contract storage slots.

On the other hand, Daikon is written in Java and the data traces
provided to Daikon expect a data type mapping from Solidity (lan-
guage used to write Ethereum contracts) to Java. Solidity has a
unique primitive type called mapping, which consists of a col-
lection of key-value pairs. However, Daikon only supports one-
dimension array, and every mapping needs to be translated into
two one-dimension arrays, where one array records the keys and
the other records the corresponding values. InvCon also extends
the Daikon type system by adding support for unlimited integer
type “java.math.BigInteger”, because the used Java primitive
types “int” or “long” occupies only four or eight bytes which
cannot hold Solidity integers “uint256” taking 32 bytes. Because
the aforementioned mapping is translated into two one-dimension
arrays, we also extend Daikon by adding customized derivation tem-
plates to derive mapping items such as “balances[msg.sender]”
and “allowances[msg.sender][spender]”.

3 EVALUATION

In this section, we evaluate the performance and applicability of
InvCon on real-world Ethereum smart contracts. In order to ver-
ify the correctness of the detected invariants, we used contracts
implementing the ERC20 standard, which largely follow the same
set of well-understood specifications. We collected 246 contracts
with the ERC20 label, which were deployed after Jan 2021, from
the BigQuery Ethereum database. We measured the time usage of
mining their invariants and identifying inconsistencies between

1Gas is the transaction fee paid for transaction execution on Ethereum.
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Figure 4: The time cost for different contracts.

Table 1: Statistics about the detected ERC20 invariants.

Invariants Inv#1 Inv#2 Inv#3 Inv#4 Inv#5 Inv#6 Inv#7

# Contracts 126 46 25 51 2 10 6
# TPs 126 42 24 51 2 10 6
Precision 100% 91.3% 96% 100% 100% 100% 100%

the contract implementations and the ERC standard. All the experi-
ments were conducted on a desktop computer with Ubuntu 20.04
OS, an Intel Core Xeon 3.50GHx processor, and 32 GB RAM.

Figure 4 shows the time costs of InvCon on different contracts,
given various number of transactions. Note that we have cached the
transaction data locally so that the network delay is not included
in the timing results. The number of transactions used in the ex-
periments was capped at 2,000. Figure 4 shows that the time usage
of InvCon is nearly proportional to the number of transactions,
and for most cases, InvCon takes no more than one minute to
mine the contract invariants. InvCon takes longer for contracts
with dynamic storage items, such as “mapping”, because it needs
to dynamically calculate the storage slots for each of its items.

Among the 246 ERC20 contracts, InvCon successfully detected
at least one ERC20 invariants in 141 unique contracts. Table 1 shows
statistics about the detected ERC20 invariants, which cover “Inv#1”
to “Inv#7”, as shown in Fig. 1. The first row (“# Contracts”) shows
the number of contracts detected with the corresponding invariants.
The second (“# TPs) and the third (“Precision”) rows list the number
of true positives and the precision of the invariant detection. We
obtain the ground-truth by manually confirming if these ERC20
contracts are in line with the invariant specifications (see Fig. 1).

It is not surprising that Inv#1: “
∑
𝑢 balances[u] = _totalSupply”

is the most detected invariant by InvCon, which is a balance in-
variant [25] expected to hold for all ERC20 contracts. The two
transaction invariants [25] (Inv#2 and Inv#3) and the invaraint on
approve (Inv#4) are other three common ones. There are some false
positives in the detected Inv#2 and Inv#3. In some implementations
of the transfer function, failed token transfer would not trigger a
transaction reversion, which is assumed by InvCon for transaction
failures. Overall, the detected invariants are mostly accurate and
aligned with the ERC20 standard specification.

Furthermore, we also investigated on the invariants expected
from the ERC20 standard, which InvCon failed to detected. We
found 16 contracts inconsistent with the ERC20 specification: six
of them violate Inv#1, one violates Inv#4, and the remaining ones
violate the invariants on transfer and transferFrom. Figure 5 shows
a real-world contract TokenMintERC20Token, whose _mint function
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1 /** @dev Creates `amount` tokens and assigns them to `account`,
2 * increasing the total supply.
3 * Requirements
4 * - `to` cannot be the zero address.*/
5 function _mint(address account, uint256 amount) internal {
6 require(account != address(0), "ERC20: mint to the zero

address");↩→
7 _totalSupply = _totalSupply.add(amount);
8 _balances[account] = _balances[account].add(amount);
9 _balances[Account] = _totalSupply/100;
10 }

Figure 5: Violating Inv#1 in TokenMintERC20Token.

does not follow the balance invariant—the sum of the account
balances always equal to the total supply, which indicate a non-
compliant of the standard. The full experiment results and source
code are available at: https://github.com/Franklinliu/InvCon-Tool.

4 RELATEDWORK

Smart contract analysis. There is a large body of work on smart
contract analysis [17]. Most focus on the security issues of smart
contracts via static and dynamic analyses combinedwith a set of pre-
defined vulnerability patterns. Slither [9] is a static analyzer which
runs a suite of more than 76 vulnerability detectors to find smart
contract security bugs. Oyente [5] is one of the earliest symbolic
execution engine, which detects eight contract vulnerabilities. The
other symbolic execution-based tools also include Manticore [3]
and Mythril [4], where Manticore is able to detect 11 vulnerabilities
and Mythril can find 36 vulnerabilities. As for the dynamic analysis
tools, ContractFuzzer [19] is the earliest dynamic fuzz testing tool
targeting common vulnerability types, such as reentrancy, followed
by ContraMaster [26], sFuzz [22], and SPCon for permission bug
detection [20]. InvCon complements the existing tools by inferring
likely invariants, which can then be used to augment their oracles
by strengthening contract specifications.
Invariant detection. Incorrect program behaviors can be identi-
fied from invariant violations. However, in most cases, program
invariants are either not explicitly stated or only partially stated
in the code comments or program specifications. Ernst et al. [18]
proposed an automatic deduction technique of likely program in-
variants, implemented as the Daikon tool [8]. Daikon accepts a set
of data traces as input and checks them against a set of predefined
invariant templates. The inferred invariants consist of program
pre- and post-conditions, as well as object invariants. The mined
invariants can be used for program understanding, documentation,
and checking program correctness. Daikon has also been extended
to infer invariants for relational databases [16]. The database in-
variants were used to suggest schema modifications that increase
data integrity guarantees. InvCon extends Daikon to automatically
detect invariant from transaction histories to mitigate the absence
of specifications for Ethereum smart contracts.

5 CONCLUSION

In this paper, we presented a dynamic invariant detector InvCon,
which efficiently detects contract invariants from historical trans-
action data. InvCon comes with a Web-based interface and works
on deployed Ethereum smart contracts. Our evaluation results sug-
gest that InvCon is able to accurately detect invariants for ERC20

contracts, and the detected invariants can also be used to discover
standard non-compliance effectively.
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