
Smart Contract Parallel Execution with
Fine-Grained State Accesses

Xiaodong Qi
Nanyang Technological University

xiaodong.qi@ntu.edu.sg

Jiao Jiao
Nanyang Technological University

jiao0023@ntu.edu.sg

Yi Li
Nanyang Technological University

yi li@ntu.edu.sg

Abstract—As various optimizations being proposed recently, the
performance of blockchains is no longer limited by the consensus
protocols, successfully scaling to thousands of transactions per
second. To further improve blockchains’ throughput, exploiting the
parallelism in smart contract executions becomes a clear solution
to resolve the new performance bottleneck. The existing techniques
perform concurrency control on smart contract transactions
based on pre-determined read/write sets, which can hardly be
calculated precisely. As a result, many parallelization opportunities
are missed in order to maintain the correctness of transaction
executions. In this paper, we propose a novel execution scheduling
framework, DMVCC, to further increase the parallelism in
smart contract executions, via more fine-grained control on
state accesses. DMVCC improves over existing techniques with
two key features: (1) write versioning, eliminating the write-
write conflicts between transactions, and (2) early-write visibility,
enabling other transactions to read the writes from a transaction
earlier, before it being committed. We integrated DMVCC into
the Ethereum Virtual Machine, to evaluate its performance in
real-world blockchain environments. The experimental results
show that DMVCC doubles the parallel speedup achievable to a
20× overall speedup, compared with the serial execution baseline,
approaching the theoretical optimum.

Index Terms—Parallel execution, smart contract, blockchain

I. INTRODUCTION

The blockchain technology owes its initial popularity to
Bitcoin [1]—a decentralized cryptocurrency without relying
on any central authority. With the widespread utilization of
smart contracts [2], the applications of blockchain have been
extended to broader contexts, such as finance [3], supply
chains [4], and healthcare [5]. Smart contracts are self-executing
programs running on blockchain to govern interactions among
mutually untrusted parties. Ethereum [2] is among the most
popular blockchain platforms that support smart contracts,
whose transactions take up around 70% of all the traffic.When
a smart contract is deployed on the blockchain platform, its
state (i.e., data) and execution logic (i.e., functions) are stored
on all blockchain validators.

On the Ethereum, all miners pack multiple transactions into
a block and add it to the existing chain after verification,
following a Proof-of-Work (PoW) [1] consensus protocol. This
process is often time-consuming and limits the throughput
of the blockchain: for example, Ethereum only achieves a
throughput of 30 transactions per second (TPS). Once a block
is verified by the majority of the validators, all of them execute
the transactions in the block and update the states of involved

smart contracts. The transactions within a block are executed
serially to ensure that state consistency is always maintained
among all validators.

To improve the throughput of blockchain without increasing
the block generation rate, one may choose to pack more
transactions into the same block. Yet, larger blocks would
naturally slow down the transaction execution at the side of
the miners, in terms of a simple serial execution. An obvious
way to speed up is to exploit the multi-core processors widely
available and parallelize the transaction execution [6, 7]. Deter-
mining whether two transactions from the same block can be
parallelized may not be trivial, especially when the transactions
are generated from smart contract executions. On the other
hand, as many new and more efficient consensus protocols
being proposed recently [8, 9], the throughput bottleneck of
blockchain systems is now shifting to smart contract executions.
For example, both Conflux [8] and OHIE [9] are able to process
simple payment transactions with a throughput of more than
5,000 TPS, several orders of magnitude faster than the original
PoW consensus. Therefore, optimizations on smart contract
execution start to have a major impact on the overall blockchain
performance.

Correct parallel transaction execution has to meet the
requirement of deterministic serializability, where the effect of
the parallelization is equivalent to that of the serial execution
in the order how transactions appear in every block. Two
transactions may conflict with each other through their accesses
to shared data (state). A simple idea to achieve deterministic
serializability is to allow non-conflicting transactions to be
executed in parallel and conflicting ones still to be executed
serially. As pointed out in the previous works [10, 11],
however, most blocks are bottlenecked on a single chain
of conflicting transactions that need to be executed serially,
dominating the overall execution time. Consequently, the overall
speedup achieved by these approaches is capped at about
4× compared with serial execution. The main reason behind
this is the high contention in smart contract transactions. For
example, a shared counter of a popular contract is updated
by almost all the transactions, leaving little opportunity for
parallelization. Garamvölgyi et al. [10] proposed some practical
coding paradigms, such as conflict-aware token distribution and
partitioned counters, to reduce the contention of smart contracts
at the application level. The downside of these techniques is
that they may not be generalizable to all contracts, and we

1 pragma solidity ˆ0.6.12;
2 contract Example {
3 mapping(address => uint) public A;
4 uint[] public B;
5

6 function UpdateB(address x, uint y) public
{↪→

7 uint idx = A[x];
8 if(idx > 1) {
9 for(uint i = idx; i > 1; i--) {

10 B[i] = B[i-2] + y;
11 }
12 } else {
13 B[0] = 0;
14 assert(y <= 10);
15 B[1] = B[1] + y;
16 }
17 }
18 }

Fig. 1: Example contract highlighting state access dependencies.

would like to address this issue by optimizing the low-level
scheduler implementation to achieve maximum parallelism for
transaction execution.

The key challenge for maximizing parallelism is to precisely
compute transaction dependencies, i.e., to accurately infer
state variables (read/write sets) accessed by every transaction.
Existing solutions [6, 12] either do not infer the read/write
sets automatically, or their coarse-grained static analysis [13]
may miss opportunities for parallelization. For example, in
Fig. 1, the state variable, “B[i]”, depends on “idx”, which
further depends on the runtime value of “A[x]”. But since the
value of “A[x]” is only known at runtime, static analysis may
over-approximate transaction dependencies. Some other parallel
execution solutions [14, 15] adopt the optimistic concurrency
control (OCC) strategy to avoid the computation of read/write
sets. As for OCC, transactions are executed in parallel first
without considering the dependencies, and then the ones, which
violate the deterministic serializability, are aborted and re-
executed until there is none to be aborted. The pitfall of these
approaches is that a large number of transactions need to be
re-executed when the contention between transactions is high.

In this paper, we address the challenge by analyzing smart
contract code to determine the precise read/write sets of
each program statement and enable more find-grained state
accesses. Orthogonal to the program analysis technique, we also
present a novel scheduling framework called deterministic multi-
version concurrency control (DMVCC). DMVCC improves
the parallelism of transaction execution in two key aspects: (1)
it eliminates the write-write conflicts between transactions by
preserving effects of all write operations as separate versions,
which is referred to as write versioning; and (2) it allows
transactions to read uncommitted writes through early-write
visibility feature.

In particular, we propose a novel program representation for
smart contracts, called state access graph (SAG), to record
various information needed for determining the dependencies
between transactions. An SAG is first lazily constructed based
on the contract source code, containing partial information for
certain state accesses. With the actual transaction data, the SAG

will be completed dynamically with concrete runtime values
and then used to calculate the precise data dependencies. For
an operation depending on an unready state, DMVCC allows
to retrieve the requested values from a most recent snapshot of
global states, in order to determine transaction dependencies.

To eliminate write-write conflicts, the writes of different
transactions to a same state are preserved as separate versions.
During the execution, each transaction reads a proper version
from these, which is written by the closest preceding transaction
in the block. As a result, writes of different transactions to
a same state do not conflict with each other, which further
increases the parallelism. Many previous works [6, 16] only
allow a transaction’s writes to be read after its results are
committed, to avoid causing cascading aborts. In contrast,
DMVCC makes the writes of uncommitted transaction visible to
other transactions under a more fine-grained control: it does so
as soon as there is no abortable statement to be executed. This
is known as early-write visibility, and thus, other transactions
depending on those values can be executed much earlier.

Organizations. The rest of the paper is organized as follows.
Section II describes the background and our motivation.
Section III overviews the workflow of DMVCC and explains its
key designs. Section IV gives details on DMVCC and shows the
correctness proof. Section V provides implementation details
and presents the evaluation results. Finally, Sections VI and VII
compares DMVCC with the related works and concludes the
paper, respectively.

II. BACKGROUND

In this section, we provide necessary background and define
concepts needed for the rest of the paper.

A. Blockchain and Smart Contracts

Blockchain. A blockchain is a shared and distributed ledger,
which consists of a chain of blocks, maintained by a decen-
tralized network of nodes. These nodes are either light nodes,
full nodes, or miners. Light nodes only store block headers,
and full nodes have to store and validate every block. A miner
is a special full node that participates in mining to generate
new blocks. We use the terms “full node” and “validator”
interchangeably in this paper. Validators pack new transactions
as blocks and append them at the end of chain, following some
consensus protocols, such as Proof-of-Work (PoW) [1].

Smart Contracts. A smart contract is a self-enforcing com-
puter program, which allows user-defined contractual rules to
be programmed and executed automatically on blockchains.
Ethereum [2] is the most popular blockchain platform that
supports smart contracts. A smart contract on Ethereum is
written in the Solidity language [17], which is compiled into a
sequence of bytecode instructions, and then executed on the
Ethereum Virtual Machine (EVM). An EVM is a stack-based
machine with an instruction set. Data is stored in the persistent
memory storage area, the contract-local memory (a contract
obtains a fresh instance for each message call), or the stack.

States and Transactions. There are two types of accounts in
Ethereum, namely, the user accounts and the contract accounts.
A user account is associated with its Ether balance information,
has no associated code, and can send transactions. A contract
account has an associated executable code and its own storage
as described above. The collective persistent memory storage
of all accounts represents the state of a blockchain.

Definition 1 (Contract States). Let C be the set of smart
contracts deployed on a blockchain. Then S = {Sc | c ∈ C}
is the states of the blockchain, where Sc is the contract state
represented by a set of key-value pairs that map 256-bit words
to 256-bit words. The value of a contract state, termed as a
state item, can be accessed with its key I , i.e., Sc[I].

A user may trigger the execution of the code associated with
a contract account, by sending a transaction to the blockchain
network, i.e., making a contract call. When a smart contract
function is invoked through a transaction, the current contract
state is retrieved from the blockchain, and the updated contract
state is stored back when the execution finishes. Besides, there
is another type of transactions, called Ether transactions, which
merely transfer Ether between accounts without incurring any
code execution on EVM. To ensure that transaction executions
terminate, each computational step incurs a cost denominated in
gas, paid by transaction senders. A sender specifies a maximum
amount of gas it is willing to pay (called gas limit), and if
the charge exceeds the limit, the execution is terminated and
rolled back, and the sender is not refunded.

Blocks and Snapshots. In a blockchain, a block Bl contains
a sequence of transactions ⟨T1, . . . , Tm⟩ and a block header.
Once a block is appended successfully, validators execute the
transactions in the block, following the order specified in Bl, to
update the blockchain states. Since all transactions are stored
persistently on the blockchain, we may easily recover the states
of blockchain at a certain block height. We use Sl to denote
the l-th state snapshot, which is the blockchain state after
executing all the transactions up to the l-th block. The set of
all state snapshots, denoted as {S0, S1, . . .}, is referred to as
the StateDB of the blockchain.
B. Smart Contract Parallel Execution

The serial execution of traditional blockchains limits their
throughput significantly. A direct solution is to leverage the
multiple cores available to execute multiple transactions in
parallel, which is well-studied in databases [18, 19]. These
protocols commonly ensure serializability, where the effect of
concurrent execution is equivalent to a serial execution in some
order. The order, however, may vary for different executions,
thus validators, running concurrent execution independently,
may enter inconsistent states. The parallel executions in
blockchain should additionally meet the deterministic seri-
alizability criteria, as defined in Definition 2, which promises
that all validators obtain the same result for every block.

Definition 2 (Deterministic Serializability). A schedule for
a batch of transactions ⟨T1, . . . , Tn⟩, is deterministically
serializable if its effect is equivalent to that of the serialized

SAG
Analyzer

StateDB
(Snapshots)

Transaction
Pool

Executor

𝑩𝒍 & SAGs
Read states

Snapshot readclient

validator

Consensus

Tx

Tx

𝑩𝒍"𝟐

𝑩𝒍"𝟏

𝑩𝒍

𝑩𝒍"𝟑

Packer

Txs & SAGs

Write states
Make snapshot 𝑺(𝒍)

𝑩𝒍 & Writes

Fig. 2: The workflow of DMVCC on a single validator.

execution, which conforms to the transactions’ commitment
order, ⟨T1, . . . , Tn⟩.

Many recent works [6, 7, 14, 20] explore the design space
of parallel transaction execution for smart contracts. On one
hand, some of them assume that the accurate read/write sets of
transactions are readily available, which poses various practical
challenges. For example, FISCO BCOS [12] requires users to
specify the read/write sets explicitly to support parallelization of
transactions. Such a setting is not applicable to smart contracts.
On the other hand, some works [10, 21] employ the Optimistic
Concurrency Control (OCC) strategy to execute transactions
in parallel without read/write sets. With OCC, all transactions
read state items from a state snapshot to drive the executions
without reading writes of other transactions. As a result, all
transactions can be executed in parallel. After the parallel
execution, validators abort and re-execute the transactions that
violate deterministic serializability.

However, according to the reported results [10], the speed-up
achieved by existing approaches is far from linear on real-
world Ethereum workload. This is mainly due to the lack
of inherent parallelism on the real-world workloads—many
frequently accessed shared variables force transactions to be
executed sequentially, on a few critical paths. These approaches
perform coarse-grained transaction-level concurrency controls
without considering the logic of smart contracts, thus they
cannot exploit the potential parallelism by analyzing the state
access patterns at the statement level. In this paper, we seek
to develop an alternative approach that adapts to the existing
Ethereum architecture, to achieve much better parallelism by
reducing conflicts between transactions.

III. OVERVIEW

In this section, we overview the high-level workflow of
DMVCC and demonstrate it with an example.

A. Workflow

DMVCC is a novel scheduling approach to maximize the
parallelism in smart contract transaction execution. To achieve
this goal, DMVCC enables more fine-grained state accesses,
where executions are synchronized at the statement level, as
opposed to the transaction level. Such a fine-grained execution
control is achieved by a precise analysis of the contract code.

Fig. 2 presents a generic workflow of DMVCC on a single
validator, and the same workflow is replicated on all validators.

When receiving a transaction from a client or other validators,1

each validator first analyzes the code of the invoked contract
to infer the state items (read/write sets) to be accessed during
the execution. The analysis results are captured by a statically-
constructed state access graph (SAG), which is a custom
data structure to record necessary information for DMVCC to
produce the execution schedule (cf. Section III-B). The SAG
analyzer may also retrieve some contract state values from
the latest snapshot Sl−1, to further refine the SAG. Then, the
processed transactions are stored in the transaction pool, along
with their SAGs, waiting to be scheduled for executions later.
Next, the packer periodically selects a number of transactions
from the transaction pool to form a new block Bl, same as
the original Ethereum does. The executor of each validator
executes this block of transactions in parallel, following the
schedule produced by DMVCC and updates the global state S
when necessary. Finally, block Bl is appended to the current
ledger after a consensus phase, and the state writes are applied
on the StateDB to produce a new snapshot Sl.

When a new valid block is mined by other validator success-
fully, the current validator attempts to retrieve the corresponding
SAGs of the block cached in the local transaction pool. Due
to the delay of transaction transmission, the transaction pools
maintained by different validators may not be synchronized. If
a transaction in the block is missing from the local pool, the
validator constructs a SAG for it on-the-fly. Surely, the validator
can also execute it without any information of the read/write set
as what OCC does. Our approach still promises the correctness
of parallel execution even if SAGs of some transactions are
missing. Finally, the transactions and their corresponding SAGs
are sent to the executor for parallel execution.

B. DMVCC by Example

Here, we illustrate the construction of SAGs and the
generation of execution schedule with an example.

1) State Access Graph and Its Construction: A state access
graph (SAG) is a simplified control-flow graph (CFG) [13],
from which the nodes performing no read/write operation are
removed. Particularly, we first build a partial state access
graph (P-SAG) statically from contract source code and then
use concrete values from a specific transaction to refine the
P-SAG and generate a complete state access graph (C-SAG).
Fig. 3 exemplifies the construction of P-SAG and C-SAG based
on a transaction that calls the smart contract in Fig. 1.

A P-SAG, as depicted in Fig. 3(a), has a unique start and
end node, and the other nodes in between are either (1) read
or write nodes, (2) loop nodes, or (3) release points. A node
with ρ(−) or ω(−) corresponds to a read or write operation,
respectively. Since the P-SAG is built statically, there may not
be enough information to determine which state items will be
accessed during the execution, without the actual parameters
of function calls. We use a placeholder “−” in place of any
unresolved access. Loops are represented as loop nodes, if they

1When receiving a transaction sent by a client, a validator relays it to others
through the Ethereum P2P network.

Release Point
!": $%
gas: -!(−)

%&: ()
Release Point

!": &'
gas: -

*(−)
%&: +,

*(−)
%&: ,-

end

start

No deterministic abort in succeeding statements

loop

!(−)
%&: +.

Branch 1

Branch 2

(a) Partial state access graph

Release Point
!": $%
gas: 200!(#!)

%&: ()

Release Point
!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

Iteration 1

Iteration 2

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

Unroll loop
for every Tx

!$: #$% = ' % = (
!&:) * , !(:)[(]
!):) . , !%:)[/]

Read from *("#$)

(b) Complete state access graph.

Fig. 3: The state access graph of the smart contract in Fig. 1.

cannot be solved statically. Then these loops will be unrolled
when transaction data is provided. The program counters (PCs),
included in SAG nodes, maps operations to the corresponding
EVM instructions.

Besides, some nodes are labeled as release points, which
indicate that there exists no abortable statement beyond these
points that may cause an abort. When executions reach release
points, values of relevant state items can be made visible earlier
to other transactions, instead of waiting till the end of the
execution. For example, other transactions can read the written
value for I4 safely, without any risk of an abort, once the
execution of Branch 2 reaches the release point. Additionally,
to ensure there is enough gas to finish the execution, a gas field
is included in each release point, which gives an upper bound
estimation to the gas needed for the remaining statements.

When a new transaction arrive, a validator refines the P-SAG
for the smart contract invoked into a C-SAG with concrete
input of the transaction, as is shown in Fig. 3(b). The input
parameters of the transaction and state snapshots are used to
resolve the keys used in state accesses, which may not be
known statically. For instance, in Fig. 1, the key used in a state
access at Line 10 is “idx”, which depends on the runtime
value of “A[x]” (Line 7).2 With the absence of “idx” value,
a naı̈ve solution would be to treat the entire array “B” as being
accessed by the transaction exclusively, blocking simultaneous
accesses from other transactions, which is over pessimistic and
reduces opportunities for parallelization. In contrast, DMVCC
reads the value of “A[x]” from a latest committed snapshot
Sl to infer the value of “idx”, without blocking accesses
to the rest of the array. This helps enable more fine-grained
state access controls and improves the parallelism. Suppose
the snapshot value of “idx” is “3”. Then the for-loop at Line
9 is also unrolled twice, which expands the loop node in
the P-SAG into multiple nodes in the C-SAG. Then, a gas
estimation tool is used to fill the gas fields in release points.

2For the sake of simplicity, variable names are used as keys here. In practice,
a unique encoding is used to avoid name collisions with other smart contracts.

If the analysis is inaccurate, i.e, the state values used to infer
keys are overlapped by other transactions, DMVCC will abort
and re-execute the transaction to guarantee the deterministic
serializability. More details about the construction of SAGs
are presented in Section IV-A.

2) Transaction Conflicts and Access Sequences: The goal of
DMVCC is to generate schedules that execute non-conflicting
transactions in parallel, where transaction conflicts are defined
formally as follows.

Definition 3 (Transaction Conflicts). Given two transactions
Ti, Tj ∈ Bl and their C-SAGs, AGi and AGj , Ti conflicts
with Tj if there is a state item I that meets one of following
conditions: (1) ρ(I) ∈ AGi ∧ ω(I) ∈ AGj; or (2) ω(I) ∈
AGi ∧ ρ(I) ∈ AGj . Otherwise, Ti and Tj are non-conflicting.

Note that two transactions writing to a common state item
are non-conflicting in our case. This is because write-write
conflicts are eliminated by DMVCC’s write versioning feature.
At the high-level, all versions of writes performed by different
transactions are stored in an access sequence, which can be
used to resolve the correct values for read operations (see
Section IV-D for details).

Definition 4 (Access Sequences). Let ⟨T1, . . . , Tn⟩ be a
sequence of transactions in Bl. For a state item I , its access se-
quence w.r.t. Bl is denoted as LI = ⟨Tp1

: αp1
, . . . , Tpk

: αpk
⟩,

such that pi ∈ {1, . . . , n}, αpi
∈ {ρ, ω, θ}, and for any i < j,

pi < pj holds. The symbols ρ, ω, and θ indicate that the
corresponding transaction Tpi

performs a read, a write, or
both read and write on I , respectively. Ml denotes the set of
access sequences for all the state items to be accessed by the
transactions in Bl.

An access sequence records the access types, the values to
be read/written, and status of the access operations for a state
item, in the order in which these operations appear in a block
Bl. For example, the left hand side of Fig. 4(a) shows the
access sequences of three state items, I1, I2, and I3, to be
accessed by the transactions from a block Bl. In each rectangle,
the field “F” indicates the operation’s status, and “Val” stores
the value read or written by the transaction. They are initialized
as “N” (not finished) and “−” (empty), respectively.

According to this sequence, a read operation of a transaction
can be resolved to an appropriate version of the state item.
If there is no write prior to a read, e.g., “T1 : ρ(I3)”, the
transaction T1 should read the value of I3 from the latest
snapshot Sl−1. Otherwise, the read should be blocked until
the latest prior write is finished. While the transactions are
being executed, the validator inserts values of new writes to
the access sequences and allows the blocked transactions to
read them. If all the state items to be read by a transaction are
ready, it then can be scheduled for execution. Meanwhile, an
access sequence serves as a buffer, which holds intermediate
versions of a state item for every operation. By storing all
versions of writes, reads do not have to block later writes;
write-write conflicts are also avoided, e.g., both “T1 : ω” and
“T5 : ω” on I1 can be scheduled to run in parallel.

EVM
bytecodeEVM

𝒑𝒄 EVM
bytecodeEVM

𝒑𝒄

𝑻𝟏: 𝝎
F:N, Val:-

𝑻𝟐: 𝜽
F:N, Val:-

𝑻𝟏: 𝝆
F:N, Val:-

𝑻𝟐: 𝜽
F:N, Val:-

𝑻𝟒: 𝜽
F:N, Val:-

𝑻𝟑: 𝝆
F:N, Val:-

𝑻𝟓: 𝝎
F:N, Val:-

𝑻𝟔: 𝝆
F:N, Val:-

𝑻𝟔: 𝜽
F:N, Val:-

Sn
ap

sh
ot

 𝑺
(𝒍
)

𝑰𝟏

𝑰𝟐

𝑰𝟑

Write 𝑰𝟏

Read 𝑰𝟑

Run on a separate thread

Access sequences & write buffer

(a) Parallel transaction execution with access sequences.

𝑻𝟏: 𝝎 𝑰𝟏 , 𝝆(𝑰𝟑)

𝑻𝟐: 𝜽 𝑰𝟐 , 𝜽 𝑰𝟑 𝑻𝟒: 𝜽 𝑰𝟐

𝑻𝟑: 𝝆 𝑰𝟏

𝑻𝟔: 𝝆 𝑰𝟐 , 𝜽(𝑰𝟑)

Thread1

Thread2

Thread3 𝑻𝟓: 𝝎 𝑰𝟏

(b) Execution scheduling of transactions over three threads.

Fig. 4: Example of parallel transaction execution based on
DMVCC protocol.

3) Execution Schedule Generation: In the transaction exe-
cution stage, a validator executes the transactions in a block to
obtain the results. Fig. 4 demonstrates the parallel execution of
the six transactions, ⟨T1, . . . , T6⟩, of the block Bl. During the
execution, an EVM instance reads state values from the access
sequences and writes updates back, with the fields “F” and
“Val” propagated accordingly. For example, the EVM instance
executing T1 first updates the “Val” field of the write operation
on I1 (i.e., “T1 : ω” at the top left), and sets the “F” field
to “true” (finished). This essentially creates an intermediate
version for I1, and the transaction T3 is allowed to read from
this version. A transaction is ready to be scheduled for an
execution, when the state items it depends on have all been
written to. At this moment, the validator will create a new
EVM instance to execute this transaction. If there are multiple
transactions executed in parallel, these EVM instances perform
the read/write access sequences concurrently and our design
promises a safe synchronization.

Fig. 4(b) presents a schedule for the six transactions on three
threads. At the very beginning, T1, T2, and T5 are not blocked
by any other transactions, hence they are executed in parallel on
the three threads. They may directly read values from the latest
snapshot. T3 is scheduled on Thread 1, after T1 has written
the value of I1 to the access sequence (LI1). Similarly, T4

has to wait for T2 to finish. This schedule synchronizes at the
transaction level, and it is still far from ideal: Thread 3 stays idle
after executing T5, due to the inherent dependencies between
transactions. In Section IV, we show that the parallelism of the
transactions can be improved by adopting early write visibility
and commutative write, which enables a more fine-grained
control over state accesses.

IV. PROTOCOL DESIGN

In this section, we first introduce the construction of state
access graphs as well as access sequences (Section IV-A).
Then, we present algorithms for the schedule generation
(Section IV-B) and early write visibility along with some opti-

mizations (Section IV-C). Finally, we discuss the correctness
of DMVCC (Section IV-F).

A. Preprocessing

Since the structure of a P-SAG resembles that of a CFG,
we may reuse the skeleton of a CFG and remove nodes
other than read and write operations. The main challenge
in refining a P-SAG into a C-SAG is to resolve the keys of
state items to be accessed during the execution, for a particular
transaction. The keys used to perform a state item access may
depend on other state values, inputs of transactions, and global
parameters, such as the block heights and timestamps (we
treat them as special transaction inputs), which may not be
determined statically. For an access key I , its state access
dependency is denoted as DI(V,E), here V is the set of state
values and E is the set of inputs to a transaction. Specifically,
V = {V al(I1), . . . , V al(Ii)} and E = {e1, . . . , ej}.

We obtain set V from the latest snapshot Sl−1 and the set E
from a given transaction. Concrete values of the dependencies
are used to execute the contract code (only a forward slice of
the contract code is executed in our implementation), and the
relevant fields of the C-SAG nodes are updated dynamically.
In particular, the state access keys and the state items are
resolved with their actual values. If the state item values read
from the snapshot become stale, making the resulting C-SAG
inaccurate, the abort mechanism still promises a recovery and
ensures correct execution results. Next, after the C-SAGs are
completed for transactions, the validator constructs the access
sequences for all the state items to be accessed. This is done
by a simple traversal of the C-SAGs.

B. Schedule Generation

Once the access sequences of the state items to be accessed
by the transactions in Bl are ready, a validator starts to execute
them concurrently, as shown in Algorithm 1. This algorithm
takes n transactions and their C-SAGs Gl as the inputs. Besides,
there are two global data structures: (1) a set Ml of access
sequences as defined in Definition 4; and (2) a queue Qready of
transactions that are ready for execution. At the beginning, all
transactions that do not conflict with any other transaction
proceeding themselves are inserted into the queue Qready

(Line 1). For example, the transactions T1 and T2 in Fig. 4(a)
are ready for execution initially, because all the state item
values to be read by them can be retrieved from the latest
snapshot Sl−1. Then, in the execution phase, transactions are
popped from Qready (Line 4) and bound to a thread for parallel
executions (Lines 6–17). With the executions of transactions,
new writes are inserted into the access sequences of some state
items (Line 16). When all writes that should be read by a
transaction are completed, the validator pushes it into Qready ,
waiting for future execution.

Every transaction execution runs on a separate thread. First,
each validator obtains the code and pc from the EVM opcode
of the smart contract invoked by the transaction Ti (Line 6).
Then a map W indexed by state items is initialized, to buffer
temporary values for writes (Line 7). Next, the validator

Algorithm 1: Schedule generation for DMVCC
Input: a block Bl = ⟨T1, . . . , Tn⟩,
a set of C-SAG Gl = {AG1, . . . , AGn}
Data: a set Ml of access sequences, a queue Qready of ready

transactions
/* Grant state items locks to transactions only

reading values from the snapshot */
1 Qready ← Initialize(Ml)
2 ▷ Execution Phase // Run in parallel
3 while executions for T1, . . . , Tn is not complete do
4 Ti ← Qready .pop()
5 if Ti ̸= null then

// Run on a separate thread
6 (code, pc)← Get Code(Ti)
7 W ← ∅ // map from state items to values
8 foreach op← GetOp(code, pc) do
9 if op is SSTORE with key I then

10 W [I]← V al(I)

11 else if op is SLOAD with key I then
12 Execute Read(Ml[I],W, Ti)

13 else
14 pc← ExecuteOp(op,Ml)

// Make existing writes visible to
later transactions (Algorithm 2)

15 if AfterReleasePoint(AGi, pc) = true then
16 W ← Early Write(W,Gl, pc)

17 pc← NextPC(op, pc)

18 ▷ Commit Phase // Run in parallel
19 if executions for T1, . . . , Tn complete then
20 Flush last write of every access sequence in Ml to StateDB

and make a new snapshot S(l).

executes every operation op ∈ code sequentially (Lines 8–
17). In each iteration, if op is “SSTORE” (write operation), the
validator writes V al(I) to the buffer W . The values buffered
in W will be made visible to other execution processes through
the shared access sequences, when current process reaches a
release point, i.e., can be visible early as explained later. If op
is “SLOAD” (read operation), the validator reads the value of
I from the buffer W , the latest snapshot Sl−1, or the access
sequence Ml[I] (Line 12). Here, Ti in Execute Read() is
used to determine which version should be read. Otherwise, the
validator simply executes op according to its original semantics
(Line 14). Finally, when execution reaches a release point, the
write of a state item can be made visible earlier only if it will
not be updated in the future. The function Early Write(·) is
used for this purpose, which is detailed in Algorithm 2.

In the commit phase, when the executions of all transactions
are finished, the validator flushes the results (i.e., the last write
in every access sequence), to the StateDB and makes a new
snapshot Sl (Line 20). Note that the two phases may run in
parallel.

C. Early Write Visibility

Previous works [6, 10, 12, 22] synchronize writes at the
transaction level: the writes of state items are made visible to
other transactions only when they are committed or at least
finished. With our more fine-grained statement-level analysis
on state accesses, the written values can be made visible to the
succeeding transactions much earlier, known as the early write

Algorithm 2: Early Write
Input: write buffer W , C-SAG AGi, program counter pc
Output: write buffer W
Data: the set Ml, the queue Qready

1 if remaining gas is sufficient then
2 foreach I, V al(I) in W do
3 if there is no write of I in successor nodes then
4 LI ←M [I]

// Algorithm 3
5 allowed, aborted←

V ersion Write(LI , Ti, V al(I))
6 W.Delete(I)
7 foreach Tk in allowed do
8 ready ← Grant Lock(Tk, I)

// All locks of reads are
collected, Tk becomes ready

9 if ready = true then
10 Qready .Push(Tk)

11 foreach Tk in aborted do
12 Abort(Tk, I, AGi)
13 ready ← Grant Lock(Tk, I)
14 if ready = true then
15 Qready .Push(Tk)

16 return W

visibility [23]. Yet, the downside of sharing premature writes is
that it may incur more transactions aborted, for instance, when
the writes are abandoned due to various exceptions. In such
cases, a validator has to abort and re-execute the transactions
that depend on the premature values. To reduce the cascading
aborts, we make writes visible when the execution reaches a
release point in the C-SAGs. A release point in a CFG is a
node whose successors do not contain any abortable statement.
A CFG may have multiple release points, and we only retain
the earliest ones whose predecessors are not release points.
The gas field of a release point gives an upper bound to the
gas needed for the remaining instructions, which is used to
judge whether the transaction can potentially be aborted due
to the lack of gas. If there’s enough gas and no abortable
statement in remaining execution paths, we can conclude that
the transaction will not be aborted and make its writes visible
to other transactions safely. The gas estimation is done for
C-SAGs since loops may not be unrolled for P-SAGs.

Algorithm 2 depicts the early write visibility procedure,
called after a release point. First, the validator ensures that
the remaining gas at the current node (labeled with pc) is
greater than the estimated upper bound (Line 1). Then, for
each I ∈ W , if there exists no write on I in the successors
of the current node, the validator fills the value of I as an
intermediate version in the access sequence LI (Lines 3–5).
When a transaction Ti acquires a lock on the state item, it
means that the execution of it can read the correct version of
the value from the access sequence. With the newly written
value, the transactions depending on it (denoted by allowed),
are enabled and gain the lock of I immediately. If a transaction
in allowed has yet collected all the locks required, it is then
pushed into the queue Qready, waiting for being executed
(Lines 7–10). If this write is not detected before, it will cause

Algorithm 3: Version Write
Input: Access sequence LI = ⟨Tp1 : αp1 , . . . , Tpk : αpk ⟩,

transaction Ti, value of state item V al(I)
Output: allowed: a set of transactions to be granted lock, aborted:

a set of transactions to be aborted
1 allowed← ∅, aborted← ∅
2 t← find out t such that pt ≤ i < pt+1

3 for j ← t+ 1; αpj = ρ or αpj = θ; j ← j + 1 do
4 if read operation αpj is completed then
5 aborted← aborted ∪ {Tpj }
6 else
7 allowed← allowed ∪ {Tpj }

8 if t /∈ ⟨p1, . . . , pk⟩ then
9 LI ← ⟨. . . , Tpt−1 : αpt−1 , Ti : ω, Tpt : αpt , . . .⟩

10 else if αpt = ρ then
11 LI ← ⟨. . . , Tpt : θ, . . .⟩
12 Write V alue(LI , Ti, V al(I))
13 return allowed, aborted

𝑻𝟏:𝝎
F:Y, Val:𝒗𝟏

𝑻𝟑: 𝝆
F:Y, Val:𝒗𝟏

𝑻𝟓: 𝜽
F:N, Val:--𝑰𝟏

𝑻𝟐:𝝎
F:Y, Val:𝑽𝟐

New write that is
not detected beofre

𝑻𝟏:𝝎
F:Y, Val:𝒗𝟏

𝑻𝟐:𝝎
F:Y, Val:𝒗𝟐

𝑻𝟑: 𝝆
F:Y, Val:𝒗𝟏𝑰𝟏

𝑻𝟓: 𝜽
F:N, Val:--

Aborted and re-executed

Fig. 5: Abort of transaction execution.

transactions that have read a stale version written by prior
transaction to be aborted and re-executed (Lines 11–15). The
details of the Abort() function is elaborated in Section IV-E.

D. Write Versioning and Commutative Writes

Algorithm 3 presents how write versioning works on an
access sequence. The procedure takes an access sequence LI

of the state item I , a transaction Ti, and the value V al(I)
as inputs. First, the validator finds out a proper location t in
LI , where the new write of V al(I) should be placed (Line 2).
With the arrival of a new write, the transactions after t, which
have read a value of I , should be aborted, since they have
read a stale value (Line 5). On the other hand, the transactions
waiting for the new value are allowed to read (Line 7). Next,
the access sequence is refined in case the analysis performed
before is inaccurate, i.e., missing write operations. If there was
no access to I in Ti, we insert a new write operation Ti : ω into
LI (Line 9). If I was only read by Ti, we change the operation
to θ, i.e., both read and write (Line 11). Then, the validator
writes value to LI by setting the field “F” to “true” and copying
V al(I) to the field “Val” through the function Write V alue()
(Line 12). Finally, the sets allowed and aborted are returned.

Commutative writes. Another strategy to further increase
the parallelism is to bypass avoidable conflicts arising from
commutative writes. Inspired by the previous works [10, 24],
we notice that two transactions both incrementing the same
state item without reading its original value are semantically
commutative. Thus, they are not considered conflicting and both

increments can be stored in any order. When reading the state
item, the validator merges both increments to determine the
final value. Fig. 6 illustrates the effects of early write visibility
and commutative write, compared with the parallel execution in
Fig. 4(b). Thanks to write versioning, transactions that are going
to write the same state item do not conflict with each other and
can be executed in parallel. As illustrated above, transactions
T2 and T4 write the same state I2 commutatively (denoted
by ω(I2)), thus the validator can execute them in parallel.
Otherwise, T2 and T4 must be executed serially, resulting in
Thread 3 staying idle. Also, because I1 is made visible early
by T1, T3 can be executed right after T4 is finished.

E. Transaction abort

The abort of transactions happened in DMVCC can be
classified into two categories: deterministic abort and non-
deterministic abort. The deterministic abort is caused by some
deterministic abort logic of smart contract statements. For
example, when an assert() does not hold or the gas runs out, the
execution is interrupted explicitly. These aborted transactions
do not need to be re-executed because they follow the original
semantics of the code. The non-deterministic abort occurs
when there is some unpredictable situation that violates the
deterministic serializability. This is inevitable since we cannot
ensure the state access graph analysis is accurate completely. If
the write on I does not appear in the access sequence (due to
imprecision in program analysis), a new node will be inserted
into the access sequence. For example, in Fig. 5, the write
“T2 : ω” is not detected before and T3 has read the version
written by T1. As “T2 : ω” is inserted into access sequence,
the version v1 read by T3 becomes stale and T3 should be
re-executed.

Algorithm 4: Abort
Input: Transaction Tk, state item I , complete access graph

AGk

Data: the set Ml, the queue Qready

1 if Tk does not gain the lock of I then
2 return
3 else if Tk in Qready then
4 Remove Tk from Qready

5 else if Tk is running then
6 Stop execution for Tk

7 Release Lock(Tk, I)
// Handle cascading aborts recursively

8 W ← AGk.Get V isible Writes()
9 foreach Ii in W do

10 LIi ←Ml[Ii]
11 allowed, aborted← V ersion Write(LIi , Tk, null)
12 foreach Tj in aborted do
13 Abort(Tj , Ii, Gl)

Algorithm 4 details the non-deterministic transaction abort.
This algorithm takes a transaction Tk, a state item I that incurs
the abort of Tk and the C-SAG set AGk as inputs. The data are
the same as the aforementioned algorithms. If the transaction
Tk does not gain the lock of state I , the validator does nothing

(Lines 1-2). If Tk is ready for execution, the validator removes
it from the queue Qready (Lines 3-4). Otherwise, if Tk is
running, the validator stops its execution. Then the validator
releases the lock that has been granted to Tk (Line 7). Next, the
validator tries to abort all transactions that have read the value
written by itself. Specifically, the validator gets all writes W
that already are visible to other transactions (Line 8). For each
state Ii in W , the validator resets the node of Tk in the access
sequence LII by inserting an empty write (null) and abort
every transaction Tj that has read the version of Ii written by
Tk recursively (Lines 9-13)).

Transaction aborts are caused by unexpected write operations.
If the accuracy of the state access graph analysis is improved,
the abort ratio can be reduced significantly. Yet, the presence of
inaccurate analysis is inevitable since the logic of smart contract
can be complicated. In such cases, the abort mechanism can
still promise the deterministic serializability.

F. Correctness of DMVCC

To investigate the correctness of the DMVCC protocol, we
show that it meets the deterministic serializability criteria, given
in Theorem 1. Intuitively, our protocol ensures that if a stale
value of a state item is read, the execution of that transaction
will eventually be aborted and the incorrect results will be
reverted. We first prove the following lemma.

Lemma 1. For a block Bl = ⟨T1, . . . , Tm⟩, if an execution Ei
of the transaction Ti reads a value of state item I that is stale
or not finally committed, Ei will be aborted eventually.

Proof. According to the assumption, let vj written by Tj be
the write (version) read by an execution Ei. Then there are
two cases: (1) vj becomes stale later; (2) vj becomes invalid,
since Tj is aborted later. For the first case, a transaction Tk

(j < k < i) should write a new version vk into the access
sequence LI . If transaction Tk writes vk before Ei happens, the
transaction Ti will read the write vk instead of vj , since every
transaction reads the latest write preceding it. If the transaction
Tk writes vk after Ei finishes, the transaction Ti should be
aborted and re-executed according to the abort mechanism.
For the second case, vj becomes invalid when Tj is aborted,
e.g., Tj makes vj visible to Ti early, but is aborted as a
result of running out of gas3 or other unexpected reasons. At
this moment, all writes performed by Tj will be rolled back
and Ti should be aborted in cascade subsequently. Besides,
commutative write does not affect the lemma. If transaction
Ti is going to read a state item I , the validator merges all
increments to a complete state. Therefore, we can conclude
that Ti reads the latest normal write preceding it.

In summary, the lemma holds for the execution of every
transaction.

Theorem 1. Given block Bl = ⟨T1, . . . , Tm⟩, the schedule
generated by DMVCC produces the same results as the serial
execution.

3Albeit the efforts in making accurate gas estimations, running out of gas
may still happen in some extreme situations.

Proof. We prove the correctness of this theorem by induction.
Let execution E∗

i be the last execution for Ti. Obviously, the
executions E∗

1 , . . . , E∗
i do not read any write generated by

Ei+1, . . . , En. Therefore, Ei+1, . . . , En do not affect the deter-
ministic serializability of E∗

1 , . . . , E∗
i . We assume the parallel

executions E∗
1 , . . . , E∗

i meets deterministic serializability. Then
the execution E∗

i+1 for Ti+1 will be committed if and only if
E∗
i+1 does not read any stale or invalid value of every state

item according to Lemma 1. It means E∗
i+1 reads the latest

writes for all state items generated by E∗
1 , . . . , E∗

i . Therefore,
the parallel executions E∗

1 , . . . , E∗
i+1 have the same effect as the

serial executions for ⟨T1, . . . , Ti+1⟩. In summary, the theorem
holds for E∗

1 , . . . , E∗
n.

V. IMPLEMENTATION AND EVALUATION

In this section, we provide the implementation details of
DMVCC and discuss its experimental evaluation.

A. Implementation

We integrated DMVCC into the Go Ethereum (Geth) plat-
form [25] and the contract-related analyses were implemented
based on the Slither tool [13, 26]. If the smart contract
source code is unavailable, we could still construct CFGs
from bytecode, so that the SAG can be built from the CFG of
every contract. The DMVCC protocol was implemented in Go
with about 4,000 lines of code. Since the EVM implementation
in Geth does not support multi-threading, we modified the
validator code to create multiple EVM instances in advance.
When a transaction becomes ready, the customized validator
binds an EVM instance to a CPU core to execute the transaction
accordingly.

In practice, the persistent memory storage of a smart contract
is represented as an array of 2256 slots, as opposed to the
simplified state view used in Section III. During compilation,
each Solidity variable is mapped to one or more slot(s),
according to a predefined addressing rule [27]. The values
of the slots are persisted to a special form of Merkle tree,
called the Merkle Patricia Tree (MPT). The MPT generates
a snapshot of the current state automatically, at the end of
execution, for each block. Sequentially, DMVCC treats each
slot as an independent state item. The state access graphs were
built based on the CFGs generated using Slither.

The access sequences are implemented as buffers between the
EVMs and the underlying MPT to save all writes generated by
executions for transactions in the current block. The executions
for transactions in Bl fill writes into the access sequences of
various state items through write versioning and read proper
versions from them. When all executions finish, we flush the
write operations cached in the access sequences into MPT by
inserting the last write of each access sequence into the MPT.

B. Experiment Setup

Comparisons. We compared DMVCC with the default se-
rial execution implemented by the original EVM and two
other existing parallel execution solutions: (1) a DAG-based

𝑻𝟏: 𝝎 𝑰𝟏 , 𝝆(𝑰𝟑)

𝑻𝟐:)𝝎 𝑰𝟐 ,)𝝎 𝑰𝟑

𝑻𝟒:)𝝎 𝑰𝟐 𝑻𝟑: 𝝆 𝑰𝟏

𝑻𝟓: 𝝎 𝑰𝟏

𝑻𝟔: 𝝆 𝑰𝟐 , 𝜽(𝑰𝟑)

𝝎 𝑰𝟏 is visible

Thread1

Thread2

Thread3
Commutative write

Fig. 6: Scheduling with early write visibility and commutative write
for transactions in Fig. 4.

approach [6]; and (2) an OCC-based approach [10, 14]. DAG-
based approach uses a Directed Acyclic Graph (DAG) to
depict the conflicts between transactions and then allows non-
conflicting transactions to be executed in parallel. This approach
is similar to ours, but it does not tolerate incorrect analysis
of the read/write set and includes the write-write conflicts
that are eliminated by DMVCC. The OCC-based approach
is introduced in Section II-B. For a fair comparison, we
implemented both approaches on the Geth platform although
their implementations are on different platforms.

Datasets. To test the performance of different algorithms on
real-world workloads, we synchronized the transactions from
the mainnet of Ethereum as our test data. Our experiment
focuses on the period between Jan 1, 2022 and April 30, 2022
(769,020 blocks in total). There are 122 million transactions
in these blocks, and about 84 million of them (69%) made
contract calls, to about 61,392 different smart contracts and
the rest are non-contract transactions. ERC20 tokens (e.g.,
token distributions, airdrops) accounted for 60% of the traffic,
Decentralized Finance (DeFi) applications made up 29%, while
games and collectibles (NFTs) triggered another 10% of the
transactions. For each non-contract transaction, it is trivial
to infer its read/write sets from its inputs and there is no
need to construct state access graph for it. We simply add
the non-contract transactions as constraints when calculating
the schedule, without any change to the schedule generation
algorithm.

Testbed. Our experiments were conducted on a Ubuntu 18.04.3
LTS desktop equipped with an Intel Core i7 16-core and 32GB
memory. We simulated scheduling the transactions on a set
of threads (up to 32). Every evaluation result we report is the
average of four independent runs.

C. Experiment Results

To explore the capability of our proposed approach, we
evaluated DMVCC to answer the following research questions.
• RQ1: How well do the parallel execution results of DMVCC

meet the deterministic serializability criteria?
• RQ2: How much speedup can DMVCC achieve over the

serial execution and how does it compare with other existing
approaches?

• RQ3: How efficient is DMVCC in a real-world blockchain
environment?
We now discuss the experiment findings in details.

Results for RQ1. Theorem 1 states the correctness of DMVCC
theoretically. To validate the correctness of our implementation,

2 4 8 16 32
0

10

20
Sp

ee
du

p

of threads

 DMVCC
 DAG
 OCC

(a) Low contention

2 4 8 16 32
0

5

10

15

Sp
ee
du

p

of threads

 DMVCC
 DAG
 OCC

(b) High contention

Fig. 7: Speedup of all parallel execution approaches. The x-axis
shows the number of threads, and y-axis shows the speedup achieved.

we compared the state snapshots produced by DMVCC with
that of the serial execution. Since Ethereum maintains its state
snapshot using Merkle trees [2], we could easily test if two state
snapshots are identical by comparing the values of their Merkle
roots. The Merkle root value of a block can be obtained after
all the transactions of the block are executed. We tested a total
number of 121,210 blocks, carrying 22,557,724 transactions,
since the time needed to execute all blcoks serially is prohibitive.
The comparison always results in a matching value of the
Merkle roots for every block.

Results for RQ2. To measure the effectiveness of DMVCC,
we first report its effective speedup against the serial execution
of the original EVM implementation. In this experiment, we
evaluated only the performance of pure EVM execution without
taking the impact of consensus into account. For every non-
contract transaction, we directly transferred Ethers without a
need to start an EVM instance. We repacked transactions into
blocks randomly, each of which contains 1,000 transactions,
because each original block contains fever transactions. For
each block, transactions were executed with up to 32 threads
in parallel. Comparing with the serial execution baseline over
all blocks, the average speedup of DMVCC with 32 threads is
21.35× as shown in Fig. 7(a), while the average speedups
of DAG and OCC are 11.04× and 13.86×, respectively.
Specifically, DMVCC is able to save 30 to 40s execution
time per block cycle. These results show that DMVCC is able
to exploit more parallelism among the transactions. This is
because two transactions with write-write conflict, which is
eliminated in DMVCC, cannot be executed in parallel in the
DAG-based approach. Compared with the OCC-based approach,
the abort rate of DMVCC is less than 2% and DMVCC reduces
63% unnecessary transaction aborts by detecting potential
conflicts between transactions in advance. Besides, when the
number of threads is small, the performance difference between
the three approaches is not significant, when they all exploit
the capacity of threads. As the number of threads increases,
the speedup for DAG and OCC grows at a lower rate, because
some threads may stay idle during execution for the DAG-based
and OCC-based approaches.

To verify the effectiveness of the early write visibility and
commutative write features, we simulate some high-contention
blocks, in which there are more conflicts between transactions.
We selected 1% of the smart contracts as the hot contracts
and each transaction has a 50% probability to access the

hot accounts, which is used by many previous works [28]
in evaluating performance of transaction executions. Fig. 7(b)
shows the speedup of all approaches under a skewed workload
with high contention. The average speedup of DMVCC on all
blocks is 13.73× with 32 threads, while the average speedup of
DAG-based and OCC-based approaches are 3.05x and 3.48×,
respectively. With high contention, the speedup of DAG and
OCC declines significantly because the inherent parallelism
between transaction is low. DMVCC, instead, reduces the
conflicts through commutative write and allows transactions
to be executed earlier with early write visibility. As a result,
DMVCC achieves much better scalability when the chance of
conflicts is high.

Results for RQ3. To evaluate the efficiency of all approaches
in a real-world blockchain environment, we built a micro
Ethereum testnet with 20 validators (miners). To simulate
the traffic of the Ethereum mainnet, we adjusted the mining
difficulty to ensure that a new block is mined in approximately
every 12 seconds, which is on a par with the Ethereum
mainnet. Since the major bottleneck of the current Ethereum
blockchain still lies in mining, a block can only be packed with
about 180 transactions. The advantage of parallel execution
in such a setting is not obvious. To simulate a blockchain
environment with optimized mining protocols and increased
block sizes, e.g., Ethereum 2.0 [29] and EOS [30], we adjusted
the gas limit to allow each validator to pack up to 10,000
transactions per block. Besides, the setting of high-contention
is the same as that in RQ2 except for the block size. Under
such a setting, the overhead shifts to transaction executions, and
parallel executions start to show significant improvements. The
execution time of the tested transactions varies substantially,
ranging from sub-milliseconds to tens of milliseconds.

As is shown in Fig. 8, the throughput speedup increases
as the number of threads grows. In a low-contention setting,
the average throughput speedup of DMVCC over all blocks
is 19.79× with 32 threads, and the speedup of DAG and
OCC is similar. Transaction execution in such a setting is
not a bottleneck and the speedup is linear to the number of
transactions per block. Besides, the overhead for P-SAG and
C-SAG construction does not affect the execution performance
of DMVCC, because these processes are performed offline,
before the execution.

However, when the contention becomes high, as depicted
in Fig. 8(b), the transaction execution becomes the bottleneck.
With more threads, the increase in terms of throughput speedups
achieved by DAG and OCC are small. This is because DAG and
OCC could only finish executing 60% of the transactions that
DMVCC could finish within the same time period. DMVCC,
instead, can finish executing 10,000 transactions with 8 threads
within 12 seconds (a mining cycle). Such high-contention cases
are common when an Initial Coin Offering (ICO) is launched,
where almost all transactions in the recent blocks access the
same ICO contract. Moreover, we also adjusted the mining
difficulty, allowing validators to generate a block in every
second. Then, the transaction execution becomes the main

2 4 8 16 32

12

14

16

18

20

22
TP

S
sp

ee
du

p

of threads

 DMVCC
 DAG
 OCC

(a) Low contention

2 4 8 16 32
10
12
14
16
18
20
22

TP
S

sp
ee

du
p

of threads

 DMVCC
 DAG
 OCC

(b) High contention

Fig. 8: Throughput speedup for blockchain of all parallel execution
approaches.

bottleneck, and the speedup achieved in throughput is closely
related to the execution.

D. Threats to Validity

Our selected transactions may not be representative of all
traffic patterns on Ethereum, or other blockchain platforms.
We mitigated this by selecting a large number of transactions
covering a long period of time. Our implementation of DMVCC
may contain bugs. We rigorously tested our tool for a prolonged
period of time and fixed many bugs along the way. Our
implementation of the DAG and OCC approaches may not
accurately replicate their original proposals. We deployed some
smart contracts with the same logic on both our implementation
and the original platforms, and then compared the obtained
results carefully to ensure the correctness.

VI. RELATED WORK

Various types of techniques have been proposed to improve
the performance of blockchains, including parallel transaction
execution and sharding that are closely related to our work.
Our work is also related to program analysis techniques applied
to smart contracts.

Parallel transaction execution. The parallel execution of
blockchain transactions has been extensively studied in recent
years [7, 20]. Zhang & Zhang [7], instead of using a dependency
graph, includes each transaction’s write set in the block and
allows validators to use them in detecting conflicts. Hyperledger
Fabric [21] and its variants [15, 28] employ an Optimistic
Concurrency Control (OCC) strategy to support parallel exe-
cution under a novel execute-order-validate-commit (EOVC)
paradigm. However, the validation for transactions is performed
sequentially, which may become the bottleneck of the system.
Most of the proposed techniques are protocol-breaking, in the
sense that they modify the block structure and the execution
semantics. In contrast, our approach remains compatible with
the existing implementation of Ethereum. The deterministic
concurrency is also well studied in databases [31, 32]. The
approach in [31] still needs an accurate analysis on read/write
sets of transactions and may result in high abort rate when
the contention between transactions is high. Sparkle [32] also
employs an OCC-based currency protocol and applies the abort
mechanism to ensure determinisitc serializability.

Sharding. Another way to improve blockchain performance is
through sharding, which splits the set of nodes into a number

of smaller committees. Incoming transactions can then be
processed by different committees in parallel. This has been
an popular research topic recently, in both industry [33, 34]
and academia [35–38]. Many of these works focus exclusively
on applying sharding on the simplest kind of transactions, i.e.,
user-to-user transfers of digital funds, while ignoring more
complex smart contract transactions [36–38]. Existing proposals
targeting smart contract transactions impose heavy restrictions
on the contract-manipulating transactions, e.g., processing all
such transactions in a specialized shard [35, 39]. Other solutions
assume that a complex cross-shard communication protocol
reconciles possible conflicts [34, 40], or adopt a contract design
very different from that of Ethereum [2].

Smart contract program analysis. There have been a large
number of static [41–43] and dynamic [44–46] analysis
techniques developed for smart contracts. Most of these
techniques focus on security issues. For example, Oyente [47]
is one of the earliest static analysis tools to detect security
vulnerabilities such as reentrancy, and Slither [13] is used
to perform taint analysis to find information flow related
vulnerabilities. Similarly, fuzzing [44–46] and model-based
testing [48, 49] have been explored to discover common
security issues. Moreover, Pı̂rlea et al. [24] proposed analyses
on data ownership and commutativity of operations, which are
used to accelerate executions for cross-shard smart contract
transactions. In this paper, we leverage precise static and
dynamic program analysis to enable more fine-grained state
accesses and improve the performance of parallel execution.

VII. CONCLUSION

With the evolution of consensus protocols for public
blockchains, the execution efficiency is becoming the new
bottleneck of the entire system, driving the need for better trans-
action parallelization. This paper introduces a novel scheduling
framework, DMVCC, which improves parallelism for high-
contention transactions with more fine-grained state accesses.
DMVCC supports write versioning, which helps avoid write-
write conflicts, and early write visibility, which makes writes
visible to other transactions, as soon as there is no risk of abort.
The evaluation results demonstrate that DMVCC maintains
deterministic serializability, and significantly outperforms other
modern parallel execution techniques.

ACKNOWLEDGMENTS

This research is supported by the National Research Founda-
tion, Singapore, and Cyber Security Agency of Singapore under
its National Cybersecurity R&D Programme, National Satellite
of Excellence in Mobile Systems Security and Cloud Security
(NRF2018NCR-NSOE004-0001). Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore and Cyber Security Agency
of Singapore.

REFERENCES
[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”

2008.
[2] G. Wood et al., “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[3] “Blockchain Technology Use Cases in Financial Services,” http://blog.
deloitte.com.ng/5-blockchain-use-cases-in-financial-services/, 2017.

[4] “IBM Blockchain for Supply Chain,” https://www.ibm.com/blockchain/
supply-chain/, 2020.

[5] “Blockchain: Opportunities for Health Care,” https:
//www2.deloitte.com/us/en/pages/public-sector/articles/
blockchain-opportunities-for-health-care.html, 2018.

[6] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Parblockchain: Leveraging
transaction parallelism in permissioned blockchain systems,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019, pp. 1337–1347.

[7] A. Zhang and K. Zhang, “Enabling concurrency on smart contracts
using multiversion ordering,” in Asia-Pacific Web (APWeb) and Web-Age
Information Management (WAIM) Joint International Conference on Web
and Big Data. Springer, 2018, pp. 425–439.

[8] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and
A. C.-C. Yao, “A decentralized blockchain with high throughput and fast
confirmation,” in 2020 USENIX Annual Technical Conference (USENIX
ATC 20), 2020, pp. 515–528.

[9] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “Ohie: Blockchain scaling
made simple,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 90–105.

[10] P. Garamvölgyi, Y. Liu, D. Zhou, F. Long, and M. Wu, “Utilizing
parallelism in smart contracts on decentralized blockchains by taming
application-inherent conflicts,” arXiv preprint arXiv:2201.03749, 2022.

[11] V. Saraph and M. Herlihy, “An empirical study of speculative concurrency
in ethereum smart contracts,” arXiv preprint arXiv:1901.01376, 2019.

[12] “FISCO-BCOS,” http://fisco-bcos.org/, 2020.
[13] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework

for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[14] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jayachandran,
“Blockchain meets database: Design and implementation of a blockchain
relational database,” Proceedings of the VLDB Endowment, vol. 12,
no. 11, pp. 1539–1552, 2019.

[15] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich, “Blurring
the lines between blockchains and database systems: the case of
hyperledger fabric,” in Proceedings of the 2019 International Conference
on Management of Data, 2019, pp. 105–122.

[16] D. Reijsbergen and T. T. A. Dinh, “On exploiting transaction concurrency
to speed up blockchains,” in 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2020, pp. 1044–1054.

[17] “Solidity,” https://docs.soliditylang.org/, 2022.
[18] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions of

consistency and predicate locks in a database system,” Communications
of the ACM, vol. 19, no. 11, pp. 624–633, 1976.

[19] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, no. 2,
pp. 213–226, 1981.

[20] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “An efficient
framework for optimistic concurrent execution of smart contracts,” in
2019 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, 2019, pp. 83–92.

[21] E. Androulaki et al., “Hyperledger fabric: a distributed operating system
for permissioned blockchains,” in Proceedings of the thirteenth EuroSys
conference, 2018, pp. 1–15.

[22] M. Fang, Z. Zhang, C. Jin, and A. Zhou, “High-performance smart
contracts concurrent execution for permissioned blockchain using sgx,”
in 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 1907–1912.

[23] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein, “High performance
transactions via early write visibility,” Proceedings of the VLDB
Endowment, vol. 10, no. 5, 2017.

[24] G. Pı̂rlea, A. Kumar, and I. Sergey, “Practical smart contract sharding
with ownership and commutativity analysis,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, 2021, pp. 1327–1341.

[25] “Go Ethereum,” https://github.com/ethereum/go-ethereum, 2022.
[26] “Slither tool,” https://github.com/crytic/slither, 2022.
[27] “Solidity storage layout,” https://docs.soliditylang.org/en/v0.6.8/internals/

layout in storage.html, 2022.
[28] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi,

“A transactional perspective on execute-order-validate blockchains,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 543–557.

[29] “Ethereum 2.0,” https://ethereum.org/en/upgrades/beacon-chain/, 2022.
[30] B. Xu, D. Luthra et al., “Eos: An architectural, performance, and

economic analysis,” Retrieved June, vol. 11, p. 2019, 2018.
[31] A. Thomson and D. J. Abadi, “The case for determinism in database

systems,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
70–80, 2010.

[32] Z. Li, P. Van Roy, and P. Romano, “Sparkle: Speculative deterministic
concurrency control for partially replicated transactional data stores,”
2018.

[33] E. A. Stoica and D. M. Sitea, “Blockchain disrupting fintech and
the banking system,” in Multidisciplinary Digital Publishing Institute
Proceedings, vol. 74, no. 1, 2021, p. 24.

[34] A. Skidanov and I. Polosukhin, “Nightshade: Near protocol sharding
design,” URL: https://nearprotocol. com/downloads/Nightshade. pdf,
p. 39, 2019.

[35] H. Dang, T. T. A. Dinh, D. Loghin et al., “Towards scaling blockchain
systems via sharding,” in Proceedings of the 2019 international confer-
ence on management of data, 2019, pp. 123–140.

[36] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[37] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 17–30.

[38] M. Zamani and M. Movahedi, “Rapidchain: Scaling blockchain via full
sharding,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 931–948.

[39] K. Amrit, “Provisioning sharding for smart contracts: A design for zilliqa,”
2018.

[40] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic actions,” ACM
SIGPLAN Notices, vol. 44, no. 1, pp. 2–15, 2009.

[41] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[42] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy et al., “Smartcheck:
Static analysis of ethereum smart contracts,” in Proceedings of the 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain, 2018, pp. 9–16.

[43] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: analyzing safety
of smart contracts.” in Ndss, 2018, pp. 1–12.

[44] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: effective,
usable, and fast fuzzing for smart contracts,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020, pp. 557–560.

[45] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 3, pp.
1795–1809, May 2022.

[46] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” 2020, pp. 1398–1409.

[47] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[48] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, “ModCon: A model-based testing
platform for smart contracts,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1601–1605.

[49] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in
smart contracts with role mining,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). New York, NY, USA: ACM, Jul. 2022, pp. 716–727.

