
Smart Contract Parallel Execution with Fine-Grained State Accesses

Smart Contract Parallel Execution with 
Fine-Grained State Accesses

Xiaodong Qi, Jiao Jiao, Yi Li
Nanyang Technological University

xiaodong.qi@ntu.edu.sg

1



Smart Contract Parallel Execution with Fine-Grained State Accesses 2

Introduction
Ø Blockchain

¡ Ledger maintained by every validators

Ø Smart contract
¡ Self-enforcing computer program

¡ States: persistent storage, e.g., variables 

Ø Consensus protocols
¡ Proof-of-Work

Validator

Validator

Validator

Validator

Validator

User

Send transaction to 
invoke a contract 

function 

Smart Contract

EVM

Snapshots of states

State items



Ø Serial execution
¡ Ensure state consistency across all validators

¡ No parallelism between transaction executions

¡ Bottleneck shifting

Smart Contract Parallel Execution with Fine-Grained State Accesses 3

Motivation



Ø Serial execution
¡ Ensure state consistency across all validators

¡ No parallelism between transaction executions

¡ Bottleneck shifting

Ø Parallel solutions
¡ Directed acyclic graph (DAG), Optimistic 

Concurrency Control (OCC)

Smart Contract Parallel Execution with Fine-Grained State Accesses 4

Motivation

Tx1

Tx2

Tx5

Tx3

Tx4

Tx6

DAG-base Approach

Tx1

Tx2

Tx5

Tx3

Tx4

Tx6



Ø Serial execution
¡ Ensure state consistency across all validators

¡ No parallelism between transaction executions

¡ Bottleneck shifting

Ø Parallel solutions
¡ Directed acyclic graph (DAG), Optimistic 

Concurrency Control (OCC)

Smart Contract Parallel Execution with Fine-Grained State Accesses 5

Motivation

OCC-base Approach

Tx1

Tx2

Tx5

Tx3

Tx4

Tx6

Current 
snapshot

Parallel execution

Intermediate 
snapshotAbort

Tx5

Tx3

Tx4

Tx6
Parallel execution

Abort

Tx6

Intermediate 
snapshot

New snapshot

Tx5

Tx3

Tx4

Tx6

Tx6



Ø Serial execution
¡ Ensure state consistency across all validators

¡ No parallelism between transaction executions

¡ Bottleneck shifting

Ø Parallel solutions
¡ Directed acyclic graph (DAG), Optimistic 

Concurrency Control (OCC)

¡ Unrealistic assumption of read/write set

¡ Low parallelism caused by coarse-grain analysis

Smart Contract Parallel Execution with Fine-Grained State Accesses 6

Motivation
State of Contract

Naïve solution: access entire array B exclusively
Low parallelism!



Ø Deterministic multi-version concurrency control (DMVCC):
¡ Analyze smart contract code to determine the precise read/write sets of each program 

statement and enable more find-grained state accesses

¡ Eliminate the write-write conflicts between transactions by preserving effects of all write 
operations as separate versions, which is referred to as write versioning 

¡ Allow transactions to read uncommitted writes through early-write visibility feature. 

Smart Contract Parallel Execution with Fine-Grained State Accesses 7

Contribution



Smart Contract Parallel Execution with Fine-Grained State Accesses 8

Workflow

Ø SAG analyzer: state access graph anaylsis

Ø Packer: transaction packing

Ø Executor: transaction execution

Analyzer Tx Pool Packer Executor Consensus
Tx

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.Tx

Contract

TxTxTx

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

Header

TxTxTx

State access 
graph

Header

TxTxTx

Header

TxTxTx

Header

TxTxTx

…

Obtain read/write 
information

States

Parallel execution with 
multiple threads

Pack Txs into 
every single block

Add block to 
current ledger

Validator



Smart Contract Parallel Execution with Fine-Grained State Accesses 9

State Access Graph

Ø Partial state access graph (P-SAG)
¡ A simplified control flow graph

¡ Nodes: read /write, loop, release point

Contract

Static Program 
Analysis Release Point

𝝆(−)

Release Point 𝝎(−)𝝎(−)

end

start

loop

𝝆(−)

read write

Control Flow Graph

…

…
… …

Loop

Remove nodes other than 
read and write operations 

Unsolved state access

Rolled loop



Smart Contract Parallel Execution with Fine-Grained State Accesses 10

State Access Graph

Ø Complete state access graph (C-SAG)
¡ Fill nodes with concrete keys

¡ Unroll loop

Release Point
𝒑𝒄: 𝟏𝟓

𝝆(−)

Release Point 𝝎(−)𝝎(−)

end

start

loop

𝝆(−)
Snapshot of states at 𝑩𝒍"𝟏

EVM 
bytecodeEVM

𝒑𝒄

Transaction
Contract: 0x…
Func: UpdateB

Input: 0x21, 0x45

Iteration 2

Iteration 1

𝝆(𝑰𝟐) 𝝎(𝑰𝟑)

𝝆(𝑰𝟒) 𝝎(𝑰𝟓)

Resolve the keys of state 
items to be accessed𝝆(𝑰𝟏)

𝝎(𝑰𝟒) 𝝆(𝑰𝟐) 𝝎(𝑰𝟐)

Unroll loop for TxRead Set: 𝑰𝟏, 𝑰𝟐, 𝑰𝟑, 𝑰𝟓
Write Set: 𝑰𝟐, 𝑰𝟒



Smart Contract Parallel Execution with Fine-Grained State Accesses 11

Access sequences

Ø Access sequence construction
¡ Record all possible conflicts between transactions

Read: 𝐼!
Write: 𝐼", 𝐼!

Read: 𝐼#, 𝐼!
Write: 𝐼#, 𝐼!

Read: 𝐼"
Write:

Read: 𝐼#
Write: 𝐼#

Read:
Write: 𝐼"

Read: 𝐼#, 𝐼!
Write: 𝐼!

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔

𝑇& 𝑇' 𝑇(

𝑇) 𝑇* 𝑇+

𝑇& 𝑇) 𝑇+

read write read &write

𝑰𝟏

𝑰𝟐

𝑰𝟑

Block 𝑩𝒍



𝐼)

Smart Contract Parallel Execution with Fine-Grained State Accesses 12

Schedule Generation

¡ 𝑄!"#$%: queue for ready transactions

¡ Multiple EVM instances

¡ Read/write access sequences

𝑇& 𝑇' 𝑇(

𝑇) 𝑇* 𝑇+

𝑇& 𝑇) 𝑇+

read write read &write

𝑰𝟏

𝑰𝟐

𝑰𝟑

Read: 𝐼!
Write: 𝐼", 𝐼!

𝑻𝟏
Read: 𝐼#, 𝐼!
Write: 𝐼#, 𝐼!

𝑻𝟐
Read: 𝐼"
Write:

𝑻𝟑
Read: 𝐼#
Write: 𝐼#

𝑻𝟒
Read:
Write: 𝐼"

𝑻𝟓
Read: 𝐼#
Write: 𝐼!

𝑻𝟔

Read: 𝐼!
Write: 𝐼", 𝐼!

𝑻𝟏
Read: 𝐼#, 𝐼!
Write: 𝐼#, 𝐼!

𝑻𝟐
Read:
Write: 𝐼"

𝑻𝟓

𝑸𝒓𝒆𝒂𝒅𝒚 Initialize 𝑄*+,-.

Thread 1 Thread 2 Thread 3

Snapshot of states at 𝑩𝒍"𝟏
𝑻𝟏 𝑻𝟐 𝑻𝟓

𝐼/
F

𝐼0
F
𝑽𝟏,𝟓

𝑻𝟐

𝑻𝟓

Schedule over time

F
𝑽𝟐,𝟐

F
𝑽𝟑,𝟐



Smart Contract Parallel Execution with Fine-Grained State Accesses 13

Schedule Generation

𝑇& 𝑇' 𝑇(

𝑇) 𝑇* 𝑇+

𝑇& 𝑇) 𝑇+

read write read &write

𝑰𝟏

𝑰𝟐

𝑰𝟑

Read: 𝐼"
Write:

𝑻𝟑
Read: 𝐼#
Write: 𝐼#

𝑻𝟒
Read: 𝐼#
Write: 𝐼!

𝑻𝟔

𝑸𝒓𝒆𝒂𝒅𝒚

𝑇2 becomes ready

Thread 1 Thread 2 Thread 3

Snapshot of states at 𝑩𝒍"𝟏
𝑻𝟏 𝑻𝟐 𝑻𝟓

F

F
𝑽𝟏,𝟓

𝑻𝟐

𝑻𝟓

Schedule over time

F
𝑽𝟐,𝟐

F
𝑽𝟑,𝟐

Read: 𝐼#
Write: 𝐼#

𝑻𝟒

𝑻𝟒

𝑽𝟐,𝟐
𝑽𝟐,𝟐

F
𝑽𝟏,𝟏

¡ 𝑄!"#$%: queue for ready transactions

¡ Multiple EVM instances

¡ Read/write access sequences



Smart Contract Parallel Execution with Fine-Grained State Accesses 14

Schedule Generation

𝑇& 𝑇' 𝑇(

𝑇) 𝑇* 𝑇+

𝑇& 𝑇) 𝑇+

read write read &write

𝑰𝟏

𝑰𝟐

𝑰𝟑

𝑸𝒓𝒆𝒂𝒅𝒚

Thread 1 Thread 2 Thread 3

Snapshot of states at 𝑩𝒍"𝟏

F

F
𝑽𝟏,𝟓

𝑻𝟏

𝑻𝟐 𝑻𝟒

𝑻𝟑

𝑻𝟔

𝑻𝟓

Schedule over time

F
𝑽𝟐,𝟐

F
𝑽𝟑,𝟐

F
𝑽𝟏,𝟏

F
𝑽𝟐,𝟒

F

F
𝑽𝟑,𝟔

Stay idle !

¡ 𝑄!"#$%: queue for ready transactions

¡ Multiple EVM instances

¡ Read/write access sequences



Smart Contract Parallel Execution with Fine-Grained State Accesses 15

Early Write Visibility

Ø Transaction- vs. statement-level synchronization

Transaction

𝐼2

Transaction

𝐼2

Execute after commitment
Execute before commitment

No deterministic abortable 
statements: require, assert, 

revert…

Transaction-level synchronization Statement-level synchronization



Smart Contract Parallel Execution with Fine-Grained State Accesses 16

Commutative write 

Ø Increment same state item without reading original value

Ø Perform commutative writes in parallel

Ø Merge increments to recover a complete value

∆𝒄𝟏 = 𝟏𝟎 ∆𝒄𝟐 = 𝟓

𝑇) 𝑇* 𝑇+

read write read &write

𝑰𝟐

Read: 𝐼#, 𝐼!
Write: 𝐼#, 𝐼!

𝑻𝟐
Read: 𝐼#
Write: 𝐼#

𝑻𝟒

+10

+5

1

2

𝑻𝟐 and 𝑻𝟒 can be 
executed in parallel!



Smart Contract Parallel Execution with Fine-Grained State Accesses 17

Optimized Schedule Generation

𝑻𝟏

𝑻𝟐

𝑻𝟒 𝑻𝟑

𝑻𝟔

𝑻𝟓

𝑰𝟏 early visible to 𝑻𝟑

Commutative 
writes on 𝑰𝟐

𝑻𝟏

𝑻𝟐 𝑻𝟒

𝑻𝟑

𝑻𝟔

𝑻𝟓



Ø Comparisons
o DAG-based approach

o OCC-based approach

Ø Workload
o Transactions from Ethereum Mainnet

o Jan 1, 2022 -- April 30, 2022 (769,020 blocks in total)

o 122 million transactions and 84 million transactions (69%) made contract calls 

Ø Testbed
o Ubuntu 18.04.3 LTS desktop equipped with an Intel Core i7 16-core and 32GB memory

o Up to 32 threads per validator

18Smart Contract Parallel Execution with Fine-Grained State Accesses

Evaluation



Ø Research questions
o RQ1: How well do the parallel execution results of DMVCC meet the deterministic 

serializability criteria?

o RQ2: How much speedup can DMVCC achieve over the serial execution and how does 
it compare with other existing approaches?

o RQ3: How efficient is DMVCC in a real-world blockchain environment? 

19Smart Contract Parallel Execution with Fine-Grained State Accesses

Evaluation



Ø RQ1: how well do the parallel execution results of DMVCC meet the deterministic 
serializability criteria?
o Compare the execution results of DMVCC and serial execution

o Matched results for 121,210 blocks 

20Smart Contract Parallel Execution with Fine-Grained State Accesses

Experiment



Ø RQ2: How much speedup can DMVCC achieve over the serial execution and how 
does it compare with other existing approaches?
o Performance of EVM execution without taking the impact of consensus into account 

o 1000 transactions per block

o 21.35x (DMVCC), 11.04x (DAG), 13.86x (OCC)

o High-contention setting: 1% hot contracts, 50% hot contract access

o 13.73x (DMVCC), 3.05x (DAG), 3.48x (OCC)

21Smart Contract Parallel Execution with Fine-Grained State Accesses

Experiment



Ø RQ3: How efficient is DMVCC in a real-world blockchain environment? 
o A micro Ethereum testnet with 20 validators

o Mining cycle 12s

o Low-contention setting: 19.79x, execution is not the bottleneck

o High-contention setting: 18.35x, DAG and OCC process 60% transactions of DMVCC

22Smart Contract Parallel Execution with Fine-Grained State Accesses

Experiment



23

Conclusion

Ø Introduce a novel scheduling framework, DMVCC, which improves parallelism for high-
contention transactions with more fine-grained state accesses. 

Ø Support write versioning, which helps avoid write-write conflicts, and early write 
visibility, which makes writes visible to other transactions. 

Smart Contract Parallel Execution with Fine-Grained State Accesses



24

Thank You

Smart Contract Parallel Execution with Fine-Grained State Accesses



25

Q&A

Smart Contract Parallel Execution with Fine-Grained State Accesses


