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Introduction
Ø Blockchain

¡ Ledger maintained by every validators

Ø Smart contract
¡ Self-enforcing computer program

¡ States: persistent storage, e.g., variables 

Ø Consensus protocols
¡ Proof-of-Work
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Ø Serial execution
¡ Ensure state consistency across all validators

¡ No parallelism between transaction executions

¡ Bottleneck shifting
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Motivation



Ø Serial execution
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Ø Parallel solutions
¡ Directed acyclic graph (DAG), Optimistic 

Concurrency Control (OCC)
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Motivation
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Ø Serial execution
¡ Ensure state consistency across all validators

¡ No parallelism between transaction executions

¡ Bottleneck shifting

Ø Parallel solutions
¡ Directed acyclic graph (DAG), Optimistic 

Concurrency Control (OCC)

¡ Unrealistic assumption of read/write set

¡ Low parallelism caused by coarse-grain analysis
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Motivation
State of Contract

Naïve solution: access entire array B exclusively
Low parallelism!



Ø Deterministic multi-version concurrency control (DMVCC):
¡ Analyze smart contract code to determine the precise read/write sets of each program 

statement and enable more find-grained state accesses

¡ Eliminate the write-write conflicts between transactions by preserving effects of all write 
operations as separate versions, which is referred to as write versioning 

¡ Allow transactions to read uncommitted writes through early-write visibility feature. 
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Contribution
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Workflow

Ø SAG analyzer: state access graph anaylsis

Ø Packer: transaction packing

Ø Executor: transaction execution
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Tx

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.Tx

Contract

TxTxTx

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

!": $%
gas: 200

!(#!)
%&: ()

!": &'
gas: 100

*(#")
%&: +,

*(##)
%&: ,-

end
start

!(#")
%&: ,.

*(#$)
%&: ,,

!(##)
%&: ,.

*(#%)
%&: ,,

!(#")
%&: +.

Header

TxTxTx

State access 
graph

Header

TxTxTx

Header

TxTxTx

Header

TxTxTx

…

Obtain read/write 
information

States

Parallel execution with 
multiple threads

Pack Txs into 
every single block

Add block to 
current ledger

Validator



Smart Contract Parallel Execution with Fine-Grained State Accesses 9

State Access Graph

Ø Partial state access graph (P-SAG)
¡ A simplified control flow graph

¡ Nodes: read /write, loop, release point
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State Access Graph

Ø Complete state access graph (C-SAG)
¡ Fill nodes with concrete keys

¡ Unroll loop

Release Point
𝒑𝒄: 𝟏𝟓
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Release Point 𝝎(−)𝝎(−)

end
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Access sequences

Ø Access sequence construction
¡ Record all possible conflicts between transactions
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Schedule Generation

¡ 𝑄!"#$%: queue for ready transactions

¡ Multiple EVM instances

¡ Read/write access sequences
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Schedule Generation
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Schedule Generation
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Early Write Visibility

Ø Transaction- vs. statement-level synchronization

Transaction

𝐼2

Transaction

𝐼2

Execute after commitment
Execute before commitment

No deterministic abortable 
statements: require, assert, 

revert…

Transaction-level synchronization Statement-level synchronization
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Commutative write 

Ø Increment same state item without reading original value

Ø Perform commutative writes in parallel

Ø Merge increments to recover a complete value

∆𝒄𝟏 = 𝟏𝟎 ∆𝒄𝟐 = 𝟓

𝑇) 𝑇* 𝑇+

read write read &write
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Read: 𝐼#, 𝐼!
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Optimized Schedule Generation
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Ø Comparisons
o DAG-based approach

o OCC-based approach

Ø Workload
o Transactions from Ethereum Mainnet

o Jan 1, 2022 -- April 30, 2022 (769,020 blocks in total)

o 122 million transactions and 84 million transactions (69%) made contract calls 

Ø Testbed
o Ubuntu 18.04.3 LTS desktop equipped with an Intel Core i7 16-core and 32GB memory

o Up to 32 threads per validator
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Evaluation



Ø Research questions
o RQ1: How well do the parallel execution results of DMVCC meet the deterministic 

serializability criteria?

o RQ2: How much speedup can DMVCC achieve over the serial execution and how does 
it compare with other existing approaches?

o RQ3: How efficient is DMVCC in a real-world blockchain environment? 
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Evaluation



Ø RQ1: how well do the parallel execution results of DMVCC meet the deterministic 
serializability criteria?
o Compare the execution results of DMVCC and serial execution

o Matched results for 121,210 blocks 
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Experiment



Ø RQ2: How much speedup can DMVCC achieve over the serial execution and how 
does it compare with other existing approaches?
o Performance of EVM execution without taking the impact of consensus into account 

o 1000 transactions per block

o 21.35x (DMVCC), 11.04x (DAG), 13.86x (OCC)

o High-contention setting: 1% hot contracts, 50% hot contract access

o 13.73x (DMVCC), 3.05x (DAG), 3.48x (OCC)
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Experiment



Ø RQ3: How efficient is DMVCC in a real-world blockchain environment? 
o A micro Ethereum testnet with 20 validators

o Mining cycle 12s

o Low-contention setting: 19.79x, execution is not the bottleneck

o High-contention setting: 18.35x, DAG and OCC process 60% transactions of DMVCC
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Experiment
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Conclusion

Ø Introduce a novel scheduling framework, DMVCC, which improves parallelism for high-
contention transactions with more fine-grained state accesses. 

Ø Support write versioning, which helps avoid write-write conflicts, and early write 
visibility, which makes writes visible to other transactions. 
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Thank You
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Q&A
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