
LightCross: Sharding with Lightweight Cross-Shard
Execution for Smart Contracts

Xiaodong Qi
Nanyang Technological University

xiaodong.qi@ntu.edu.sg

Yi Li
Nanyang Technological University

yi li@ntu.edu.sg

Abstract—Sharding is a prevailing solution to enhance the
scalability of current blockchain systems. However, the cross-
shard commit protocols adopted in these systems to commit
cross-shard transactions commonly incur multi-round shard-to-
shard communication, leading to low performance. Furthermore,
most solutions only focus on simple transfer transactions without
supporting complex smart contracts, preventing sharding from
widespread applications. In this paper, we propose LightCross, a
novel sharding blockchain system that enables efficient execution
of complex cross-shard smart contracts. First, LightCross offloads
the execution of cross-shard transactions into off-chain executors
equipped with the TEE hardware, which can accommodate
execution for arbitrarily complex contracts. Second, we design a
lightweight cross-shard commit protocol to commit cross-shard
transactions without multi-round shard-to-shard communica-
tion between shards. Last, LightCross lowers the cross-shard
transaction ratio by dynamically changing the distribution of
contracts according to historical transactions. We implemented
the LightCross prototype based on the FISCO-BCOS project and
evaluated it in real-world blockchain environments, showing that
LightCross can achieve 2.6× more throughput than state-of-the-art
sharding systems.

Index Terms—sharding, blockchain, smart contract

I. INTRODUCTION

Sharding is considered as a prominent approach to scale
blockchains [1, 2]. The key idea is to split the blockchain
system into numerous small groups, called shards, to handle
different sets of transactions in parallel and maintain different
parts of the whole ledger separately [3]. Due to the separation
of ledgers, a critical challenge for sharding systems is to handle
cross-shard transactions (CSTx), i.e., transactions that access
data managed by different shards, requiring a so-called cross-
shard commit protocol established among the involved shards.

Many previous sharding solutions [4–8] focus exclusively
on the simplest kind of cross-shard transfer transactions, i.e.,
user-to-user transfers of digital funds, while ignoring how to
support contract transactions efficiently. A regular transfer
can be split into several withdraw and deposit operations,
which can be executed at different shards independently.
Yet, processing smart contract transactions is much more
challenging. This is because executing a contract transaction
may involve multiple complex contracts—states of different
contracts need to be accessed, so it is difficult to separate a
contract transaction into independent operations. Although some
sharding blockchains [9–11] attempt to handle contract CSTxs,
they all come with complex, multi-round and cross-shard

Contract 1

Contract 3

Contract 2

Commit

Shard 1

Shard 2

Shard 3

Transaction

Commit

Reference
committee

Fig. 1: Illustration of two kinds of basic protocols to process
CSTxs in existing systems.

commit protocols to deal with CSTxs, causing performance
degradation in terms of throughput, latency, and scalability.

Essentially, to complete the execution of a CSTx, all the
involved shards need to execute multiple invoked contracts in
a certain order, e.g., RingBFT [11] and OmniLedger [4] (left-
hand side of Fig. 1), or assign a special reference committee
to dispatch and collect data or messages, e.g., AHL [10] and
ByShard [12] (right-hand side of Fig. 1). However, both kinds of
solutions need shard-to-shard communication between shards to
coordinate the execution. This communication, rather than point-
to-point communication, is much more costly, even resulting in
more than 50% throughput degradation [13, 14]. Meanwhile,
all accessed states should be locked for the whole protocol
cycle to ensure the atomicity of CSTxs. Furthermore, some
solutions just works for the simple contract transactions. For
example, AHL and ByShard require the logic of a contract
transaction can be properly expressed by multiple independent
code fragments, which is unrealistic for complex contracts.

In blockchain sharding solutions [4, 9, 10, 15], the presence
of CSTxs is inevitable. As shard number rises, the chance of
requiring a CSTx increases (even over 90% [2] on a 10-shard
blockchain). With a high CSTx ratio, the heavy cross-shard
commit protocol may offset the benefits brought by the sharding
design. Therefore, lowering the CSTx ratio is critical to an
efficient sharding system. OptChain [2] attempts to relieve this
issue by carefully dispatching every transaction to an optimal
shard. Unfortunately, OptChain is designed toward the UTXO-
based model.

Our Solution. In this paper, we propose LightCross, a novel
sharding framework with a lightweight cross-shard commit
protocol and low CSTx ratio. First, LightCross leverages the
trusted execution environment (TEE) to execute CSTxs off-
chain with no need of multi-round shard-to-shard communi-

1



cation. In particular, every CSTx is executed in the TEE at a
particular node, called executor. On-chain shards can verify the
execution results via the provided attestation mechanism [16]
without re-executing it. During the execution, TEE synchronizes
necessary state data from involved shards via point-to-point
communication. As all the data and codes are centralized at a
executor, the logic of every smart contract transaction can be
arbitrarily complex.

Second, LightCross explores a lightweight cross-shard com-
mit protocol to handle CSTxs. LightCross allows all executors
to execute CSTxs speculatively and concurrently against certain
contract state snapshots and then serializes these CSTxs.
During the protocol, accessed states are only locked for a
very short period, and all shards can still process other intra-
shard transactions in most cases. LightCross amortizes the
overhead of each CSTx by handling CSTxs in batches, while
current solutions have to initiate a protocol instance per CSTx.

Finally, LightCross also lowers the CSTx ratio to improve
the performance. Intuitively, LightCross periodically migrates
smart contracts to gather contracts often invoked simultaneously
to the same shard, based on knowledge learned from historical
transactions. Particularly, LightCross models the relationship
among contracts as a transaction call graph, then convert
the contract migration to a graph partition problem. Then, a
protocol is used to migrate the code and storage associated
with contracts between all shards to lower CSTx ratio.

Our contributions can be summarized as follows:
• We propose a novel blockchain sharding framework,

LightCross, based on TEE to accelerate the execution of
complex contract CSTxs. LightCross adopts a lightweight
cross-shard commit protocol to commit CSTxs, without
requiring multi-round communication for each CSTx.

• We design a smart contract migration mechanism to reduce
the ratio of CSTxs, by moving contracts often invoked
simultaneously to the same shard according to the pattern
learned from historical transactions.

• We implemented a prototype of LightCross based on the
FISCO-BCOS project and compare its performance with
two art-of-the-state sharding systems. Experimental results
show that LightCross achieved 2.6× more throughput and
reduced at least 50% latency.

II. PRELIMINARIES AND RELATED WORK

In this section, we provide some necessary background and
preliminaries to understand the design of LightCross.

A. Blockchain and Smart Contract

A blockchain is a shared and distributed ledger, which
consists of a chain of blocks, maintained by a decentralized
network of nodes. Nodes pack new transactions as blocks and
append them at the end of the chain, following some consensus
protocols, such as Proof-of-Work (PoW) [17] or Byzantine Fault
Tolerance (PBFT) [18].

Smart contracts. A smart contract is a self-enforcing com-
puter program, which executes automatically on blockchains.

Ethereum [19] is the most popular blockchain platform that
supports smart contracts, which are executed on the Ethereum
Virtual Machine (EVM). Now, EVM is also integrated into
other systems as the execution environment for smart contracts,
such as FICOS-BCOS [20] and Ethermint [21].

States and transactions. There are two types of accounts in
Ethereum, namely, the user accounts and the contract accounts,
all identified by an address. A user account is associated with its
Ether balance information. A contract account has an associated
executable code and its own persistent storage, which is termed
as the state data of the contract. Within each contract, the state
data are represented by a set of key-value pairs that map 256-bit
words to 256-bit words. The blockchain states encompass the
states of all on-chain smart contracts.

A user may trigger the execution of a contract account by
sending a transaction to the blockchain network, i.e., making a
contract call. During the execution, the current contract state is
retrieved from the blockchain, and the updated state is stored
back at the end of execution. A contract can implicitly invoke
a function of another contract via an internal message. There is
another type of transaction, called transfer transaction, which
merely transfers Ether between accounts without incurring any
code execution on EVM.

To mine a block B, the miner must execute all transactions in
B first and then broadcast B to other nodes, who append B to
the end of the current chain through some consensus protocols.
All other nodes execute the transactions in B serially to update
their local blockchain states. After execution at each block,
nodes make a snapshot of current blockchain states so that
users can request each state value at a particular block height.

B. Blockchain Sharding Solutions

Sharding [4, 5, 9, 10] is an effective approach to improve the
performance and scalability of existing blockchains. There are
mainly three types of sharding schemes, i.e., network sharding,
transaction sharding, and state sharding. Basically, network
sharding [5, 10] divides the entire blockchain network into
smaller groups, also called shards, the foundation of the other
two sharding schemes. In transaction sharding, disjoint sets of
transactions are first distributed to all shards for local consensus,
and then these sets are ordered globally through a specific
consensus. However, each shard still needs to synchronize and
execute all transactions. The state sharding [10, 11] partitions
blockchain states among different shards, i.e., a disjoint set of
accounts are assigned to each shard. Sequentially, every shard
only processes transactions associated with those accounts.

Limitation. Sharding is expected to enhance performance if,
hopefully, most transactions are “local” to a single shard, called
intra-shard transactions. However, the presence of cross-shard
transactions (CSTxs), which access states from multiple shards,
deeply limits the capability of sharding. Obviously, a CSTx
cannot be handled by any single shard directly, thus it needs
a cross-shard commit protocol to coordinate the execution for
a CSTx among all involved shards. The protocols in most
works [4–6, 8, 9] focus exclusively on the simplest kind of

2



Validation
Data𝜀! 𝜀"

𝜀# 𝜀$

Contracts States

S-shard 𝓢𝟎

R-shard 𝓢𝟒

Order & Schedule CSTxs

Executors with TEEs 
to Execute CSTxs

UpdatesCodes

Txs

Contracts States

S-shard 𝓢𝟐

Contracts States

S-shard 𝓢𝟏

Contracts States

S-shard 𝓢𝟑

CSTxs
or

States CSTxs with
Execution Results

Users

T
ra

ns
ac

tio
ns

Fig. 2: Overview of LightCross architecture.
transfer CSTx, whose read/write information can be inferred
statically. Thus, a transfer transaction can be split into multiple
sub-transactions, each of which can be processed by a shard
independently. However, obtaining state access of a contract
transaction is challenging, let alone splitting transactions into
irrelevant sub-transactions.

Only a few existing proposals devote to handling contract
CSTxs. ByShard [12] and AHL [10] utilizes two-phase commit
protocols that necessitate multiple rounds of cross-shard com-
munication and state locking between shards to guarantee the
atomicity of CSTxs. RingBFT [11] reduces the communication
overhead by adhering shards to the ring order. Chainspace [15]
handles contract CSTxs like the way of transfer CSTxs based on
a novel contract design. Ethereum 2.0 [22] moves the contract
code and state data into a centralized shard at the execution
time, similar to our system. However, all these protocols incur
multiple rounds of shard-to-shard communication and several
rounds of consensus in involved shards.

C. TEE and Off-chain Execution

In this paper, we utilize the power of Trusted Execution
Environment (TEE) [16] to implement a CSTx execution engine
at each off-chain executor. The attestation mechanism of TEE
provides auxiliary verifiable information by which others can
attest to the execution results without re-executing involved
contracts [23, 24]. LightCross integrates the Intel SGX as the
TEE implementation. Intel SGX creates a sandbox environment
called enclave where a contract can be executed without
interference. We refer to [16] for more details about TEE.

Recently, some works propose off-chain execution [24–
29] of smart contracts to empower transaction execution of
blockchain. For example, Fastkitten [26] and Ekiden [25]
employ TEE to implement off-chain executors to achieve high
performance. However, both systems at most support single-
contract or simple transfer transactions and cannot handle
complex contract transactions. ACE [30] requires executors
to synchronize tentative state updates of contracts from the
network to execute the contracts independently. All the above
solutions are designed for traditional single-ledger blockchains
rather than sharding blockchains.

III. DESIGN

A. Overview

As shown in Fig. 2, the system model of LightCross
encompasses four parties: namely, users, executors, S-shards,

and a R-shard.

• Users (clients), are a set of clients of LightCross, who invoke
transactions to perform cryptocurrency exchange or trigger
state transitions of smart contracts.

• S-shards, are a set of shards, identified by {S0, . . . ,Sm−1},
each of which consists of several blockchain nodes to
maintain a subchain. Every smart contract is deployed at a
single S-shard, which is termed as the entry S-shard of the
contract. The entry S-shard manages the state data of the
contract and processes transactions that invoke this contract.

• Executors, identified by E = {E0, . . . , Ee−1}, are nodes
equipped with TEEs, designated to execute CSTxs. For
every CSTx, the assigned executor requests state data of
the triggered contracts from involved S-shards, executes it
locally, and sends it along with read/write information as well
as a generated certificate to the R-shard for commitment.

• R-shard, is a distinct shard, denoted by Sm, to schedule
the executions of CSTxs. In particular, Sm is responsible
for sorting these CSTxs to determine a commit order after
validating them. Then, Sm broadcasts the CSTxs to the
involved S-shards for final commitment.

LightCross hides details of the sharding mechanism, e.g.,
locations of smart contracts, from users. A user can submit
a transaction to any node of the LightCross network, and the
transaction will be automatically routed to its entry S-shard of
the contract invoked. 1 If a contract invoked by transaction τ
does not call any other contract internally, τ is an intra-shard
transaction. Otherwise, τ is a cross-shard transaction, which
cannot be processed by any single S-shard. LightCross assigns
a trusted executor to execute such a transaction.

Trust model. The security of LightCross depends on the
security of blockchains and TEEs. Thus, we make the following
assumptions about the involved technology. First, an adversary
cannot break the fundamental security of blockchain. For both
S-shards and R-shard, we adopt the Byzantine Fault Tolerance
(BFT) protocol (e.g., PBFT [18]), which causes no fork, to
make decisions within every shard. It requires no more than
one-third nodes are malicious within a single shard in practical
settings [32] to promise the safety and livness of BFT. Second,
the confidentiality of contract executions is guaranteed by
TEEs. An adversary cannot access the attestation private key.
We note that side-channel attacks which could leak private
information do exist and is a real threat to TEEs, but consider
it an orthogonal issue. Mitigation exists to such attacks [25],
which is outside the scope of our design. The executors can be
arbitrarily malicious without breaking the oracle of TEE. For
example, a malicious executor can intercept or tamper with
external data to be fed into TEE or hold the messages issued
by TEE forever. But an honest executor should follow our
protocol correctly. We only assume there are enough honest
executors to execute CSTxs, and do not require more than
a certain percentage of executors to be honest, because the

1In this paper, we focus on smart contract transactions and the processing
of non-contract CSTxs is trivial, discussed in [31].

3



security of LightCross does not rely on the number of honest
executors.

Cross-shard transaction processing. Existing sharding sys-
tems commonly employ a heavy protocol to handle CSTxs
as elaborated in Section II-B. In LightCross, we offload the
CSTx execution to off-chain executors with TEE support. Then,
involved S-shards can verify and accept the execution results
without re-executing every CSTx. Moreover, different executors
can process different CSTxs in parallel, increasing the system’s
parallelism. Based on the new execution scheme, we propose a
lightweight cross-shard commit protocol, which avoids heavy
multi-round communication between S-shards and amortizes
the overhead of protocol for each CSTx by processing CSTxs
in batches. This part is detailed in Section III-C.

Smart contract migration. In current sharding blockchains,
every contract is assigned to a single shard randomly and per-
manently. However, this random-allocating approach inevitably
leads to a high CSTx ratio. For example, if a transaction
accesses k states in a system with m shards, the probability of
having a CSTx is up to 1− ( 1

m )k−1, which is approaching 1
when k or m is large. Since processing CSTxs is more costly
than intra-shard transactions, the performance of sharding can-
not scale as expected for this approach. Instead, in LightCross,
we try to reduce the CSTx ratio by periodically redistributing the
ownership of all smart contracts over all S-shards dynamically.
Then, contracts that are invoked simultaneously are gathered
in the same S-shard, lowering the CSTx ratio. In Section III-E,
we will formally model and solve this problem.

B. Notations

The format of a transaction is defined as follows: τ :=
⟨As, Ar, v,P, η⟩, where As and Ar denote the addresses of
the sender and receiver of the transaction τ , respectively; v is
the amount of Ether to be transferred. If Ar is a contract address,
P includes all input arguments to the function invoked by τ .
Otherwise, P is an empty set if Ar represents a user account.
η denotes other related information, such as the nonce of As.
Besides, each transaction piggybacks a signature issued by the
sender for verification, which is neglected in this paper for
brevity. We write shards(τ) ⊆ {S0, . . . ,Sm−1} to denote the
S-shards that are affected by τ (the S-shards contain state data
that τ accesses). We say that τ is a cross-shard transaction if
|shards(τ)| > 1. Furthermore, rshards(τ) ⊆ shards(τ) and
wshards(τ) ⊆ shards(τ) stand for the S-shards that own state
data read or written by τ , respectively. Similarly, rcontra(τ)
and wcontra(τ) denote all contracts read or written during the
execution of τ , respectively.

We then formally define the read/write set of each transaction.
The read set R(τ) of a transaction τ is defined as:

R(τ) :=
⋃

A∈rcontra(τ)

R(τ,A),

where each R(τ,A) = {⟨A, κ, h, d⟩} is a set of states within
contract A accessed by τ . For each state, κ is the key, h is the
block height that indicates from which snapshot state A[κ] is

𝑬𝒏(𝑨𝒓)
Send  𝜏

𝑬𝒏(𝑨’) R-shard 𝓢𝒎

Send 𝜏, 𝑐𝑜𝑑𝑒(𝐴!)

Request 𝑐𝑜𝑑𝑒(𝐴′)

Send 𝑐𝑜𝑑𝑒(𝐴′)
Send 𝒯 = 𝜏,𝑊 𝜏 , 𝑅(𝜏)

Send ℬ = 𝒯", … , 𝒯#

User
Raw Tx creation

Executor 𝓔

1

CSTx
identification

2

CSTx execution3

Send ℬ = 𝒯", … , 𝒯#

CSTxs schedule 
generation

4

CSTxs
commitment

5
Validation

Batching

…
Sync states in 𝑅(𝜏, 𝐴)

…
Sync states in 𝑅(𝜏, 𝐴′)

Fig. 3: Workflow of cross-shard commit protocol in LightCross.

read, and d is the value of A[κ]. Similarly, the write set W (τ)
of transaction τ is defined as:

W (τ) :=
⋃

A∈wcontra(τ)

W (τ,A),

where each W (τ,A) = {⟨A, κ, d⟩} is a set of states to be
written within contract A. For each state in W (τ,A), d is the
new data to be stored at A[κ].

C. Cross-Shard Commit Protocol

Every CSTx τ is assigned to an executor E equipped
with TEE for execution. Since the memory space of TEE
is limited (e.g., 128MB), E cannot maintain all state data
within TEE. Instead, E stores no state data and requests state
data from shards(τ) to drive the execution. This design also
enables LightCross to add or remove executors as needed
flexibly. The execution results generated by E are verifiable
to others via the attestation mechanism. With this design,
the intra-shard and cross-shard transactions are processed
concurrently on various S-shards and executors. LightCross
employs Sm as a coordinator to schedule all transactions to
hold the serializability, which ensures all S-shards operate like
a single-ledger blockchain that executes transactions serially.
The detailed cross-shard commit protocol goes through five
phases as follows (also see Fig. 3).

1 Raw transaction τ creation. The sender account As first
creates a raw transaction τ = ⟨As, Ar, v, η,P⟩ that invokes
the smart contract with address Ar. Then, the transaction τ is
routed to the entry S-shard, denoted by En(Ar), of the contract
Ar.

2 CSTx identification. Once τ in En(Ar) is packed in the
next block, it will be executed speculatively by running the
code associated with Ar. If the execution of τ calls another
contract A′ on another S-shard En(A′), τ is marked as a
CSTx.2 Sequentially, En(Ar) forwards τ to an executor for
execution alongside the code code(Ar) of Ar.

3 CSTx execution. Once receiving a CSTx τ , an executor E
first initializes a new execution engine implemented with the
TEE. E starts the execution by loading code(Ar). During the
execution, E requests values of states in the read set R(τ,Ar)
from En(Ar) through a point-to-point communication, which
we will explain later. When another contract A′ is invoked

2Alternatively, we can do such identification through static program analysis
techniques [33] without executing transactions.

4



internally, E requests the code code(A′) from the counterpart
entry S-shard En(A′) to drive execution and then requests
values of states in R(τ,A′) in the same way. After execution,
E generates a certificate Certτ for attestation and sends a
message, Ti = ⟨τ,W (τ), R(τ), Certτ ⟩ to Sm, including the
original transaction and its read/write set.

4 CSTxs schedule generation. The R-shard Sm schedules
a batch of received messages {Ti} periodically. First, upon
receiving a message Ti, Sm verifies the execution by attesting
Certτ to ensure W (τ) and R(τ) are correct. Then, Sm packs a
batch of valid messages B = ⟨T1, T2, . . . , Tk⟩ for consensus and
sends B to all the S-shards in

⋃
τ∈B shard(τ) after consensus.

5 CSTxs commitment. When receiving B, each S-shard
Si ∈

⋃
τ∈B rshard(τ), which is going to be read from,

collaborates with Sm to validate every transaction in B and
aborts those that violate the serializability (elaborated in
Section III-D). We write P = ⟨Tq1 , Tq2 , . . . , Tqs⟩ (1 ≤ q1 <
. . . < qs ≤ k) to denote the remaining valid transactions. Then
each Si further extracts all CSTxs, denoted by ⟨Tp1

, . . . , Tpt
⟩

({p1, . . . , pt} ⊆ {q1, . . . , qs}), that Si is involved with, such
that Si ∈ shard(Tpj .τ) (1 ≤ j ≤ t). Finally, Si inserts
⟨Tp1 , . . . , Tpt⟩ into the next block and commits them upon
agreement, by applying the writes declared in write sets of
these transactions.

Communication primitive. In the above protocol, LightCross
needs a Byzantine-resilient primitive that enables coordination
between different parties, i.e., the R-shard, S-shards, and
executors. In a potentially hostile environment, the communi-
cation mechanism should be secure and reliable to defend
against adversarial attacks. For example, when a correct
executor requests state data from an S-shard, the communication
mechanism should promise that the correct executor can
eventually receive the correct state data even though malicious
nodes exist. LightCross leverages the built-in Merkle trees of
blockchains to validate the state data delivered from S-shards
to executors, which is a point-to-point verifiable sending (see
Appendix D in [31]). With such approach, an executor only
has to access a few nodes in an S-shard (<3 for most cases)
to obtain requested data values. Besides, we may choose any
cluster-sending protocols [34–36] to enable communication
between S-shards and the R-shard.

Advantages. The advantages of our protocol over current
approaches come from the two aspects. First, the execution
for a CSTx is centralized to a single executor. Thus, there is
no need to split the CSTx, and the logic of contracts invoked
can be arbitrarily complex. In contrast, existing approaches
require multi-round shard-to-shard communication, which is
costly and time-consuming, between the involved shards, to
process a CSTx. In LightCross, executors adopt a point-to-
point mechanism to synchronize state data, which saves a
great number of data to be transferred. Second, LightCross
amortizes the costs for a group of CSTxs by batching, as
demonstrated in the dotted rectangle in Fig. 3. Specifically,
CSTxs are concurrently executed at executors in an optimistic

S-shard 𝓢𝒊R-shard 𝓢𝒎 S-shard 𝓢𝒋

Broadcast 
ℬ = 𝒯!, … , 𝒯"

Send 𝑄# = 𝑏𝑚#
Send 𝑄$ = 𝑏𝑚$

Broadcast 𝑄 = 𝑏𝑚%

States validation

𝑸 calculation

Commitment 
& unlocking

States locking

1

2

3

4

Fig. 4: Workflow of transaction validation.

way and then R-shard finds a feasible schedule for them in
a batch. Conversely, existing approaches commonly have to
initiate such a protocol instance for every single CSTx, raising
the system burden.

The protocol presented so far does not promise the correct-
ness of the concurrent CSTx execution. For instance, a CSTx in
Tpi

may read the value d of A[κ] at a block height h. However,
before Tpi

is committed by En(A), A[κ] may be updated to
d′ by another intra-shard transaction. Subsequently, Tpi

will
miss the latest value and cannot be serialized. To address this
issue, LightCross adds a validation process into the last phase,
which we present next.

D. Transaction Validation

To prevent CSTxs that have read stale state values from being
committed, R-shard Sm validates if a state is updated after being
read. If so, Sm discards these transactions. The challenge lies
in that the validation should be lightweight enough, especially
incurring less communication overhead between S-shards and
R-shard. To this end, shards in LightCross exchange information
based on concise bitmap structures, and the validation protocol
goes through the following steps (also see Fig. 4):
1 Once B = ⟨T1, T2, . . . , Tk⟩ gets agreed in R-shard, Sm

broadcasts B to all S-shards in
⋃

τ∈B shard(τ). Each S-shard
Si ∈ rshard(τ) checks the read set R(τ) of every transaction
τ in B. For each state ⟨A, κ, h, d⟩ in R(τ), Si checks whether
the value d of A[κ] at the block height h is identical to its
latest value. If not, τ is invalid due to a stale read on A[κ].
2 S-shard Si sends a message ⟨bmi⟩ to the R-shard Sm,

where bmi is a bitmap indicating whether each transaction is
valid or not. Meanwhile, Si locks all states in the read sets of
the valid transactions in B. As a result, any other transactions,
trying to write these states, will not be processed before the
locked states are released.
3 Once Sm collects all messages {⟨bmi⟩} from S-shards

in
⋃

τ∈B rshard(τ), Sm merges all bitmaps to get the final
bitmap bmf =

∧
i bmi, which indicates every transaction is

valid or not at the final stage. Then, Sm broadcasts ⟨bmf ⟩ to
S-shards in

⋃
τ∈B shard(τ).

4 Upon receiving ⟨bmf ⟩ from Sm, each S-shard Si extracts
transactions ⟨Tp1

, . . . , Tpt
⟩ out of ⟨Tq1 , . . . , Tqs⟩, the final valid

transactions, and commits them as stated before. Finally, Si

releases all locks on states.
Apart from maintaining the validity of a single CSTx, the

R-shard should also eliminate conflicts between CSTxs in B.
In particular, if a CSTx T reads a state A[κ], while another

5



CSTx T ′ writes A[κ], they conflict with each other. A naı̈ve
solution is that Sm orders transactions corresponding to their
submitted timestamps and discards any transaction that has
read stale values. Some previous works [37] are also proposed
to derive an optimal precisely scheduling of transactions to
reduce the abort ratio. For instance, if T is scheduled ahead
of T ′, both of them can be executed correctly without causing
any abort. Any of these solutions would work and it is not the
focus of this paper.

Notably, as a part of the protocol, some states are locked
from step 2 to 4 , potentially blocking other transactions’
state write. In practice, this lock period is insignificant. First, the
bitmaps exchanged between shards only require a tiny amount
of data transmission. Second, when each S-shard achieves
consensus on CSTxs, it only performs verification with no
need of executing them. Third, the batching strategy amortizes
the overhead for each CSTx. Therefore, the lock mechanism
in LightCross is lightweight enough to incur no significant
delay. Besides, although LightCross merely employs one single
R-shard to coordinate the schedule, it will not be the system’s
bottleneck. This is because R-shard just orders and verifies
CSTxs beyond executing them, and the throughput of current
PBFT (about 8K tps) on R-shard can serve tens of S-shards.
The experimental results in Section V also confirm this view.

E. Smart Contract Migration

In most sharding blockchains, smart contracts are distributed
over all shards randomly and permanently, leading to a
high CSTx ratio. Although our cross-shard commit protocol
is lightweight, it cannot compensate for the performance
degradation due to a high CSTx ratio. Thus, some works,
e.g., BrokerChain [8] and OptChain [2], devote to lowering
the CSTx ratio. However, these solutions just work for transfer
transactions. In LightCross, we try to reduce the CSTx ratio
towards smart contract transactions. Basically, LightCross
dynamically migrates contracts, often triggered within the same
transactions, to the same S-shard. Under such conditions, many
CSTxs can be avoided and reduced to much cheaper intra-shard
transactions.

First of all, we need to model this problem formally. In
LightCross, we model the relationship between smart contracts
with a transaction call graph (Definition 1) and then convert
the smart contract migration into an offline graph partition
problem with temporal balancing.

Definition 1 (Transaction call graph). A transaction call graph
(TCG) is a graph G = ⟨V,E⟩, where each vertex in V
represents a pair ⟨A,w⟩ of contract A and its weight w, and
each edge ⟨A1, A2, cnt⟩ ∈ E connects two contracts A1 and
A2. Specifically, w is the number of transactions that trigger
A (including implicit calls) and cnt counts the number of
transactions that invoke A1 and A2 simultaneously.

We build this TCG from historical transactions and partition
it with two goals. (1) balanced workload: partition the vertices
in G into equal disjoint subgraphs approximately; and (2) low
CSTx ratio: minimize the sum of cnts of crossing edges, i.e.,

an edge whose vertices belong to two different subgraph. Then,
the vertices in a subgraph consist of a subset of contracts
and each subset should be assigned to a S-shard. Intuitively,
the edge in TCG that connects two contracts often invoked
simultaneously will be labeled with a greater weight. Thus,
the partition algorithm will prefer to put the two contracts into
the same subset, transforming the transactions that call both
contracts to intra-shard ones.

Formally, given a TCG G and m S-shards, LightCross
partitions G into m disjoint subgraphs {G0, . . . , Gm−1}, where
Gi = ⟨Vi, Ei⟩ and for any i ̸= j, Vi∩Vj = ∅. More importantly,
respecting the aforementioned goals, the partition optimizes the
two objectives. 1) The weight W(Gi) of each subgraph should
be close to W(G)/m as much as possible, where W(Gi) is
defined as W(Gi) =

∑
⟨A,w⟩∈Vi

w; and 2) we should minimize
following function:

min
∑

0≤i<j<m

EdgeCnt(Gi, Gj). (1)

In Eq. (1), EdgeCnt(Gi, Gj) sums up the cnts of cross
edges connecting Gi and Gj . This multi-objective optimization
problem in graph mining can be solved by Metis [38].

Given a partition, we should consider how to assign sub-
graphs to all S-shards to minimize the migrated data. As
stated above, all contracts in a subgraph Gi are assigned to a
single S-shard, denoted by Sσ(i), by migrating the state data
of these contracts to Sσ(i). Here, σ(·) is a permutation that
maps {0, . . . ,m− 1} to {0, . . . ,m− 1}. Let Di,j be the size
of data to be migrated from Sσ(i) to Sσ(j) against a partition.
Then we pick the optimal permutation σ̂(·) that minimizes∑

1≤i̸=j<m Di,j , the total state data to be moved.
Since the overhead of smart contract migration remains high,

LightCross uses three additional strategies to relieve this issue.
First, we introduce continuous epochs {e1, e2, . . .} and the
migration only happens at the beginning of each epoch. The
chosen epoch duration should be long enough to amortize
the migration overhead. Second, we try to reduce contract
migration and avoid moving large-size contracts. To this end,
we assign a higher weight to edges connecting intra-shard
contracts. We replace the edge weight in Eq. (1) with cnt′ =
λ·Sigmoid(d1+d2)·cnt, where λ is a coefficient, Sigmoid(·)
is the sigmoid function, and d1, d2 are the sizes of the state data
of A1 and A2, respectively. The coefficient λ is set to a number
>1 if A1 and A2 belong to the same S-shard, and <1 otherwise.
If the CSTx ratio of the previous epoch is under a reasonable
threshold rc, LightCross skips the migration procedure for
the upcoming epoch since the current contract distribution is
considered satisfactory.

Workflow. When a new epoch ek starts, R-shard Sm is in
charge of coordinating the contract migration process. Figure 5
shows an example of transaction call graph construction, graph
partition, and smart contract migration with four S-shards. The
detailed workflow is described as follows.

1 Preparation. At the end of epoch ek−1, Sm stops schedul-
ing any CSTx and notifies all S-shards to prepare for the

6



Current contract distribution

10

12

11

10

10
16

14

5

9

𝐺! 𝐺"

𝐺#
𝐺$

1

9
10

5 6

5

7

5

𝒮! 𝒮" 𝒮#𝒮$

1012

5 14

7

1
514

1

169 10 16 910
10 149

11 106 Partial 
graphs

𝑃𝐺!

𝑃𝐺"

𝑃𝐺#𝑃𝐺$

Graph partition

R-
sh

ar
d 
𝒮 '

𝜋!: , 𝒮",𝒮!
𝜋#: , 𝒮#,𝒮$
𝜋$: , 𝒮$,𝒮#

Broadcast contract 
migration transactions

Smart contract migration

𝒮%($) = 𝒮$

𝒮%(#) = 𝒮!

Merge partial graphs

𝒮%(") = 𝒮"

𝒮%(!) = 𝒮#

Fig. 5: Example of smart contract migration.

upcoming new epoch. Then each S-shard completes remaining
transactions and sends a confirming message to Sm.

2 TCG construction. To construct the TCG for ek, every
S-shard Si collects transactions that happened in ek−1 to
construct a partial graph PGi as shown at the top of Fig. 5
(the dotted cycles are contracts not in current S-shards). Then
PGi is sent to R-shard Sm. Once receiving all partial graphs
⟨PG0, . . . , PGm−1⟩, Sm merges them into a complete TCG
G. We can compress the TCG by ignoring contracts that are
rarely in, and the details can be found in Appendix B of [31].

3 Graph partition. Sm leverages the Metis algorithms [38]
to partition graph G while achieving the objectives mentioned
above. Then Sm decides the permutation σ̂(·), as well as the
contracts to be migrated. For every contract A, Sm creates a
special type of transaction πi = ⟨A,Ss,St⟩, requesting that
the ownership of contract A to be transferred from Ss to St.
Such transactions {πi} are broadcast to involved S-shards after
being agreed by the R-shard.

4 State data migration. Upon receiving every contract
migration transaction πi = ⟨A,Ss,St⟩, the S-shard Ss begins
to move the state data of the target contract A to S-shard St.

5 Service resuming. After completing contract migration
transactions, each S-shard sends a message to R-shard, indicat-
ing it can restart processing transactions. R-shard will schedule
CSTxs involved in resumed S-shards.

The state data of every contract is stored as a Merkle subtree
in LightCross like Ethereum. However, moving all structures
directly may be time-consuming and suspend the service for
a long. Instead, LightCross could move contract state data
asynchronously as proposed in [36], where every S-shard
can process transactions while contracts are being transmitted.
Besides, since the ownership of contracts varies over time,
LightCross maintains a dynamic distributed routing table to
record this information to navigate nodes to route transactions
to their entry S-shards. This part is detailed in [31].

IV. DISCUSSION AND IMPLEMENTATION

In this section, we discuss the correctness of LightCross and
present its implementation details. Due to space limit, proofs
of related theorems are presented in Appendix E of [31].

A. System Correctness Analysis

Atomicity. Essentially, the cross-shard commit protocol has to
promise the atomicity, meaning that all S-shards involved in a
CSTx should either commit, or abort without making changes
to the state. Theorem 1 ensures the atomicity of CSTx in
LightCross.

Theorem 1. If an S-shard in shards(τ) commits a CSTx τ ,
all the other S-shards in shards(τ) must commit τ eventually.

Serializability. The presence of CSTxs makes the processing of
transactions interleaved in different S-shards, i.e., a CSTx is pro-
cessed on multiple S-shards concurrently. Therefore, the cross-
shard commit protocol should promise that the results of these
concurrent executions of CSTxs are correct. Particularly, at any
time point, the results generated by committed transactions at
all S-shards should be equivalent to that of a serial execution
in some order, which is termed as the serializability. This
ensures all S-shards in LightCross operate like a single-ledger
blockchain, which executes transactions serially. Theorem 2
promises our protocol is serializable.

Theorem 2. If an S-shard commits a transaction τ (intra-shard
or cross-shard), τ will be serialized properly and eventually.

Liveness. The liveness of LightCross encompasses two aspects.
First, each S-shard can keep generating blocks and will never be
blocked at a particular block height. This is guaranteed by the
liveness of PBFT consensus protocol [18, 39]. PBFT ensures
that the consensus at each block height will terminate within a
finite period, so each S-shard can continuously produce blocks.
Second, every contract deployed on-chain is responsive, i.e.,
a user invoking the contract can eventually receive executing
results regardless of success or abort. If a transaction is intra-
shard, it is routed to its entry S-shard for execution, and the
liveness of PBFT promises it will be executed eventually. For a
CSTx τ , LightCross ensures that it will be correctly executed by
an executor E and then sent to the R-shard for commitment. To
cope with the failure of E , LightCross sets a timeout parameter
texpire. If the entry S-shard En(τ.Ar) cannot commit or abort
τ in time, En(τ.Ar) will reassign τ to another λ+1 executors,
where λ denotes the times of time expiration. This gets more
executors executing τ after every expiration, raising the success
probability.

B. Implementation

Design of S-shard and R-shard. S-shards are responsible for
managing smart contracts, performing consensus on blocks, and
executing transactions. We implemented the S-shard prototype
based on FISCO-BCOS [20], a permissioned blockchain system
with the support of EVM and built-in PBFT consensus. In each
S-shard, the state data of contracts are organized as a Merkle
tree, and the root hash is also included in the block headers as
Ethereum does. The only difference is that each S-shard only
manages a subset of all contracts. For R-shard, we leverage
PBFT consensus to order CSTxs and integrate the Metis tool
to partition transaction call graphs. Besides, R-shard adopts a

7



2 4 6 8 1 0 1 2 1 4 1 60
3 k
6 k
9 k

1 2 k
1 5 k

Th
rou

gh
pu

t

#  o f  s h a r d s

 B y S h a r d
 R i n g B F T
 L i g h t C r o s s

(a) Throughput

2 4 6 8 1 0 1 2 1 4 1 60
2
4
6
8

1 0

La
ten

cy 
(s)

#  o f  s h a r d s

 B y S h a r d   R i n g B F T
 L i g h t C r o s s

(b) Latency

Fig. 6: Impact of shards (S-shards in LightCross).

cluster-sending protocol [36] to exchange messages for cross-
shard commit protocol with S-shards.

Design of Executors. The executors in LightCross are imple-
mented with Intel SGX [40], which provides isolated hardware
enclaves and a fundamental Software Development Kit to
realize the functions. To support contract execution in these
enclaves, we employ Occlum [41], a lightweight library OS for
Intel SGX, to convert non-TEE programs to TEE programs. On
every executor, an execution engine consists of three enclaves:
1) a data enclave for data transmission between the internal
enclaves and the external environments; 2) a key enclave for
key management; and 3) an execution enclave for contract
execution. These enclaves communicate securely via the local
attestation of the Intel SGX, which guarantees mutual trust
for enclaves on the same platform. During execution, the data
enclave synchronizes necessary state data from S-shards through
a verifiable send. For a CSTx τ , the execution enclave generates
a certificate Certτ , which can be verified via remote attestation.

V. EXPERIMENTAL EVALUATION

A. Setup

Comparisons. In all experiments, we compared the perfor-
mance of LightCross against two other state-of-the-art sharding
techniques supported by the BFT protocols, namely, RingBFT
[11] and ByShard [12]. For a fair comparison, we also
implemented both systems onto the FISCO-BCOS project.

For ByShard, a reference committee is responsible for
dispatching a CSTx to all involved shards, and each shard
executes a code fragment while locking the states to be accessed,
i.e., similar to a sub-transaction that only reads or writes local
state data, independently. However, complex smart contract
transactions cannot be easily split into such independent sub-
transactions. Therefore, to apply ByShard to more complex
transactions in our experiment, we manually declare the read
set of states and the contracts to be invoked in each transaction.
During the protocol execution, once the states to be read are
locked, and all involved shards share these state values, so that
all of them can execute the entire CSTx independently.

Datasets. To test the performance of different sharding systems
on real-world workloads, we first synchronized the transactions
from the mainnet of Ethereum during the period between Jan
1, 2022 and April 30, 2022 (769,020 blocks in total). There
are 122 million transactions in total, and about 84 million of
them (69%) made contract calls, of which more than 40%
transactions invoke at least two smart contracts. To enable
large-scale experiments, we analyzed the real-world workloads

1 3 5 7 9
5 k

1 0 k

1 5 k

Th
rou

gh
pu

t

#  o f  i n v o l v e d  s h a r d s

 B y S h a r d
 R i n g B F T
 L i g h t C r o s s

(a) Throughput

1 3 5 7 90

1 0

2 0

3 0

4 0

La
ten

cy 
(s)

#  o f  i n v o l v e d  s h a r d s

 B y S h a r d   R i n g B F T  
 L i g h t C r o s s

(b) Latency

Fig. 7: Impact of involved shards (S-shards in LightCross).

to build a synthetic workload generator to generate enough
transactions.

Testbed. We evaluated the performance of LightCross on
Ubuntu 20.04.1. The experimental machine has 20 Intel(R)
Xeon(R) Silver 4210 CPUs @ 2.20GHz, 96GB memory, and
a 4TB disk. Intel SGX SDK v2.2 and Occlum v0.28.0 were
used at the time of the experiment. We deployed up to 16
S-shards and each S-shard has 22 nodes. We ran multiple (up
to 12) instances of S-shard nodes on each physical machine
to simulate more virtual nodes. Since all machines are located
at the same data center, we divided all S-shards nodes into
6 groups, simulating 6 globally distributed regions. Then we
limited the bandwidth between nodes from different regions to
simulate a real network environment (refer to Table 1 in [35]).
Besides, we deployed sufficient executors in every group to
avoid executions being the performance bottleneck.

B. Evaluation Results

Scaling number of S-shards. First, we studied the effect
of scaling the number of shards (or S-shards in LightCross).
Specifically, we selected CSTxs that can access from 2-16
shards and always ensure 30% of smart contract transactions
are CSTxs. We tested the throughput and latency of intra-shard
and cross-shard transactions with 2-16 shards in every system.
We used Fig. 6 to illustrate the throughput and latency metrics.
LightCross achieves 4× and 1.6× higher throughput than
ByShard and RingBFT in the 16 S-shard setting, respectively.
As the number of shards rises, the number of involved shards
per CSTx may increase accordingly. Then an executor needs to
communicate with more S-shards to synchronize state data, and
in other approaches, more shards engage in the execution of a
CSTx. However, shard-to-shard communication’s overhead is
higher than point-to-point communication in LightCross. From
3 to 16 shards, the latency of LightCross increases from 1.65s
to 2.4s since the overhead of point-to-point communication is
relatively low. In the case of ByShard, the overhead of state
synchronization increases quickly due to the heavy shard-to-
shard communication. Moreover, the protocols for CSTxs are
all coordinated by a special reference committee. RingBFT
scales better than ByShard, since no reference committee is
needed to lead the cross-shard commit protocols. However, we
still observe a drop in the throughput of RingBFT, because the
number of communication rounds between shards is linearly
correlated with the number of involved shards.

Varying number of involved shards. Second, we now keep
the number of shards fixed at 16 and select transactions

8



2 4 6 8 1 0 1 2 1 4 1 60

2 0

4 0

6 0
CS

Tx
 ra

tio
 (%

)

#  o f  s h a r d s

 B y S h a r d   R i n g B F T
 L i g h t C r o s s

(a) CSTx ratio

2 4 6 8 1 0 1 2 1 4 1 60
2 k
4 k
6 k
8 k

1 0 k
1 2 k

Th
rou

gh
pu

t

#  o f  s h a r d s

 B y S h a r d
 R i n g B F T
 L i g h t C r o s s

(b) Throughput

2 4 6 8 1 0 1 2 1 4 1 60
4
8

1 2
1 6
2 0

La
ten

cy 
(s)

#  o f  s h a r d s

 B y S h a r d   R i n g B F T
 L i g h t C r o s s

(c) Latency

0 2 4 6 8 1 0 1 2 1 4
0

3 k

6 k

9 k

1 2 k

1 5 k

Th
rou

gh
pu

t

#  o f  e p o c h e s

 B y S h a r d   R i n g B F T   L i g h t C r o s s

(d) Throughput over time

Fig. 8: Impact of smart contract migration.

that access 1-9 shards (or S-shards). Figure 7 illustrates
the throughput and latency metrics. As expected, all three
approaches observe a drop in performance as the number of
involved shards increases. Still, LightCross outperforms the
other two approaches. Furthermore, with more shards involved
per CSTx, the performance gap between LightCross and the
other two approaches enlarges. When the number of involved
shards is 1, all transactions access the same shard. In this case,
all three approaches achieve the same throughput and latency
as there is no CSTx, and the capability of executing intra-
shard transactions is similar for all approaches. Particularly,
they achieve 15.8K transactions per second throughput among
16 globally distributed shards. With more shards involved,
LightCross leads the throughput race over the other two
approaches with an increasing margin: from 4% to 200% (see
Fig. 7(a)). In particular, when the number of involved shards
is greater than 3, the latency of CSTx processing for ByShard
and RingBFT is increased significantly. Since both approaches
need to lock the involved states during the entire process, many
intra-shard transactions, which attempt to access these locked
states, are also blocked. Another major reason for the extra
latency is the increased communication overhead caused by
CSTxs, which has been analyzed in previous tests.

Impact of smart contract migration. Third, we studied the
impact of the effectiveness and efficiency of our smart contract
migration. In these tests, we fixed the number of shards at
16 and made 50% transactions access more than one smart
contracts. In LightCross, we configured the length of an epoch
to about 6 hours. For all approaches, every single smart contract
is assigned to a shard according to the first few bits of its
address. Figure 8 demonstrates the performance of all three
approaches against varying numbers of shards. In Fig. 8(a), as
the number of shards in systems increases, the CSTx ratio of all
approaches grows accordingly. Since ByShard and RingBFT
cannot change the ownership of contracts, the CSTx ratio
quickly reaches its peak (about 50%). Instead, the CSTx ratio
in LightCross still remains 25% with 16 S-shards. Figure 8(b)
presents the throughput of three approaches against varying
numbers of shards. As expected, the improvement for ByShard
and RingBFT is not prominent. For example, the throughput of
ByShard and RingBFT has just increased about 3× when the
number of shards increase from 3 to 16. In contrast, LightCross
achieves a 6.4× speedup because LightCross reduces the CSTx
ratio via contract migration.

Figure 8(c) reports the latency of transactions for three
approaches. As explained above, with more shards, the CSTx

ratio also increases. However, the cross-shard commit protocols
in ByShard and RingBFT are heavy-weight, which incur multi-
round shard-to-shard communication. Therefore, the latency
of transactions in ByShard and RingBFT reaches 21s and
15s, respectively, when there are 16 shards. Due to the
lightweight cross-shard commit and low CSTx ratio, the latency
of LightCross remains low (up to 3.2s). Fig. 8(d) demonstrates
the throughput of three approaches over time. At the beginning,
ByShard and LightCross perform similarly, because the initial
contract assignment leads to a high CSTx ratio. Notably,
the CSTx ratio for LightCross reduces gradually over time
due to periodical contract migrations, resulting in improved
throughput (see Fig. 8(d)). Around the end of every epoch
(or start of the next one), there is a big drop in throughput
due to smart contract migration, which finishes in 10–30
minutes. Benefiting from lazy synchronization, each S-shard can
quickly resume processing transactions during this period. Even
though LightCross does not perform such migration during
some epochs, the throughput is still relatively low. This is
because LightCross needs to notify all S-shards about the
decision while others should wait. After about six epochs, the
contract distribution in LightCross becomes stable, and the
smart contract migration is seldom triggered. In contrast, the
throughput of ByShard and RingBFT always stays low because
the ownership of contracts are static.

VI. CONCLUSION

We present LightCross, a sharding blockchain, to process
arbitrarily complex cross-shard smart contract transactions
efficiently. At its core, LightCross offloads the execution for
CSTxs from S-shards to a set of off-chain TEE-empowered
executors, without incurring multiple rounds of cross-shard
communication. To commit the CSTxs, LightCross employs
a lightweight cross-shard commit protocol with guarantees of
atomicity, serializability, and liveness. Furthermore, LightCross
integrates a dynamic smart contract migration mechanism to
reduce the CSTx ratio, avoiding a great number of CSTxs and
increasing the overall performance significantly. Finally, we
implement LightCross and the evaluation results demonstrate
the superiority of our system.

ACKNOWLEDGMENTS

This work was supported by the Nanyang Technological
University Centre for Computational Technologies in Finance
(NTU-CCTF). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NTU-
CCTF.

9



REFERENCES

[1] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding
open blockchains with smart contracts,” in 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 2020, pp. 1357–1368.

[2] L. N. Nguyen, T. D. Nguyen, T. N. Dinh, and M. T. Thai, “Optchain:
optimal transactions placement for scalable blockchain sharding,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019, pp. 525–535.

[3] H. Huang, Z. Huang, X. Peng, Z. Zheng, and S. Guo, “Mvcom: Schedul-
ing most valuable committees for the large-scale sharded blockchain,”
in 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2021, pp. 629–639.

[4] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
“Omniledger: A secure, scale-out, decentralized ledger via sharding,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp.
583–598.

[5] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 17–30.

[6] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in 16th USENIX symposium on networked
systems design and implementation (NSDI 19), 2019, pp. 95–112.

[7] M. Zhang, J. Li, Z. Chen, H. Chen, and X. Deng, “Cycledger: A scalable
and secure parallel protocol for distributed ledger via sharding,” in
2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2020, pp. 358–367.

[8] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in IEEE INFOCOM, 2022.

[9] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 931–
948.

[10] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C.
Ooi, “Towards scaling blockchain systems via sharding,” in Proceedings
of the 2019 international conference on management of data, 2019, pp.
123–140.

[11] S. Rahnama, S. Gupta, R. Sogani, D. Krishnan, and M. Sadoghi,
“Ringbft: Resilient consensus over sharded ring topology,” arXiv preprint
arXiv:2107.13047, 2021.

[12] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine envi-
ronment,” Proceedings of the VLDB Endowment, vol. 14, no. 11, pp.
2230–2243, 2021.

[13] Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A layered sharding
blockchain system,” in IEEE INFOCOM 2021-IEEE Conference on
Computer Communications. IEEE, 2021, pp. 1–10.

[14] M. Li, Y. Lin, J. Zhang, and W. Wang, “Jenga: Orchestrating smart
contracts in sharding-based blockchain for efficient processing,” in 2022
IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2022, pp. 133–143.

[15] A. Sonnino, “Chainspace: A sharded smart contract platform,” in Network
and Distributed System Security Symposium 2018 (NDSS 2018), 2018.

[16] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, 2016.

[17] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[18] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,
vol. 99, no. 1999, 1999, pp. 173–186.

[19] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[20] “FISCO-BCOS,” http://fisco-bcos.org/, 2023.
[21] I. S. Cardenas, J. B. May, and J.-H. Kim, “Automatadao: A blockchain-

based data marketplace for interactive robot and iot data exchanges
using ethermint and state channels,” Blockchain Technology for IoT
Applications, pp. 17–38, 2021.

[22] “Ethereum sharding,” https://ethereum.org/en/roadmap/danksharding/,
2023.

[23] Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou, X. Song,
B. Zhao, H. Zhang et al., “Confidentiality support over financial grade
consortium blockchain,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 2227–2240.

[24] C. Xu, C. Zhang, J. Xu, and J. Pei, “Slimchain: scaling blockchain trans-
actions through off-chain storage and parallel processing,” Proceedings
of the VLDB Endowment, vol. 14, no. 11, pp. 2314–2326, 2021.

[25] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 185–
200.

[26] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts on
bitcoin,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 801–818.

[27] J. Liu, P. Li, R. Cheng, N. Asokan, and D. Song, “Parallel and
asynchronous smart contract execution,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 5, pp. 1097–1108, 2021.

[28] K. Wüst, L. Diana, K. Kostiainen, G. Karame, S. Matetic, and S. Cap-
kun, “Bitcontracts: Supporting smart contracts in legacy blockchains,”
Cryptology ePrint Archive, 2019.

[29] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1353–1370.

[30] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, “Ace:
Asynchronous and concurrent execution of complex smart contracts,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 587–600.

[31] “LightCross Appendix,” https://sites.google.com/view/infocom24, 2023.
[32] D. Dolev, “Unanimity in an unknown and unreliable environment,” in

22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
IEEE, 1981, pp. 159–168.

[33] “Slither tool,” https://github.com/crytic/slither, 2022.
[34] J. Hellings and M. Sadoghi, “Brief announcement: The fault-tolerant

cluster-sending problem,” in 33rd International Symposium on Distributed
Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[35] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb: Global
scale resilient blockchain fabric,” arXiv preprint arXiv:2002.00160, 2020.

[36] X. Qi, “S-store: A scalable data store towards permissioned blockchain
sharding,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 1978–1987.

[37] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi,
“A transactional perspective on execute-order-validate blockchains,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 543–557.

[38] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme
for irregular graphs,” in Proceedings of the 1996 ACM/IEEE Conference
on Supercomputing, 1996, pp. 35–es.

[39] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[40] “Intel,” https://software.intel.com/sites/default/files/managed/1b/a2/
Intel-SGX-Platform-Services.pdf, 2023.

[41] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 955–970.

[42] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the xor metric,” in Peer-to-Peer Systems: First Interna-
tionalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002
Revised Papers. Springer, 2002, pp. 53–65.

[43] R. C. Merkle, “A certified digital signature,” in Conference on the Theory
and Application of Cryptology. Springer, 1989, pp. 218–238.

10



APPENDIX

A. Account Segmentation

The accounting system of LightCross is the same as in
Ethereum, including two types of accounts: user accounts
(UAs) and contract accounts (CAs). A private key controls
a UA, has no associated code and can issue transactions. A
contract account has an associated executable code. In this
paper, LightCross distributes each contract to a distinct S-shard
while dealing with UAs in another way. Commonly, there are
far more UAs than CAs in a blockchain, so many CSTxs will
arise if we distribute UAs over all S-shards. Since UAs have
no executable codes and persistent state data, a transaction can
transfer tokens to a UA or deduct tokens from it. Fortunately,
tokens are fungible, so that LightCross segments an account
into multiple sub-accounts and distributes them over all S-
shards, recognized as the account segmentation mechanism
[8].

LightCross opens a sub-account ai for an user account a in
the S-shard Si automatically if needed, which is transparent to
users. If a transaction τ transfers v tokens from smart account
A to another user account a, which is not in Si = En(τ.A)
currently, Si then creates the sub-account ai with v tokens
initially. With a sub-account ai, other transaction that tries to
transfer v tokens from a in Si can directly deduct v from ai
if its balance ai.bal is sufficient.

Segments accumulation. If the balance ai.bal is insufficient
in a transaction τ or τ has to gain the total balance of a,
LightCross will accumulate all sub-accounts into a complete
account, which can be termed as a cross-shard transaction as
well. In this case, LightCross processes τ through the cross-
shard commit protocol by gathering the balance of all sub-
accounts in the executor. Notably, LightCross will write back
the balance of a to an optimal S-shard Si, at which ai.bal is the
biggest. Besides, if τ has gathered enough balance to pay, the
executor will stop collecting balance from other sub-accounts.

B. TCG compression

As more smart contracts are deployed on-chain, the number
of vertexes and edges in TCG grows accordingly, raising the
overhead of partial TCG transmission. We can compress this
TCG by omitting contracts seldom invoked. After investigating
the existing smart contracts in Ethereum, we observe that a great
part of smart contracts is invoked so few times. When forming
TCG, each S-shard counts these contracts whose weight w is
over a threshold Thres. Then, the contracts rarely involved
in a few transactions are deducted from TCG, significantly
reducing the size of TCG. This approach will not affect the
effectiveness of contract migration because the contracts, which
are frequently invoked, attribute most to the overhead of contract
migration and CSTxs processing.

C. Transaction Routing

In LightCross, the sharding architecture is transparent to
users. Thus a user does not need to know the entry S-shard
of every contract, requiring LightCross should automatically

route submitted transactions to counterpart S-shards for further
processing. To this end, LightCross maintains a routing table
RT to record the entry S-shard of every contract. Specifically,
the routing table consists of tuples, each in the form ⟨A, γ⟩.
Here, A is the contract’s address, and γ, the distinct index of
an S-shard, such that Sγ = En(A).

We can require every S-shard reserves a full copy of RT .
However, as more contracts are deployed, it adds extra storage
overhead to each S-shard. LightCross, alternatively, partitions
the RT into m sub-tables and assigns each sub-table to a
distinct S-shard. A realistic partition is to use the modulo
approach

γ′ = A mod m

to determine the S-shard that stores tuple ⟨A, γ⟩. Upon receiving
a transaction τ invoking contract A, a node computes γ′ =
A mod m and routes τ to S-shard Sγ′ . The nodes in Sγ′ will
further route τ to its entry S-shard Sγ . During smart contract
migration, all S-shards must also update their sub-tables to
reflect the latest information. LightCross employs Kademlia
[42] routing protocol to route transactions between nodes at
the network level, like Ethereum does.

D. States Authentication

As mentioned in Section III-C, an executor has to request
relevant states to drive the execution of a CSTx from involved S-
shards. To ensure the communication is secure, a naı̈ve approach
lets the executor request the same state data from the majority
of each S-shard. However, this will cause massive messages to
be exchanged between the executor and S-shard. To avoid this,
LightCross leverages the Merkle trees to implement a verifiable
communication.

Let E be the executor that needs to request a state with key
κ in contract A from S-shard En(A). The detailed workflow
goes through following steps.

1) E sends a request to a random node Ni in En(A);
2) If Ni is correct, it responds with value d at A[κ] and a

Merkle proof Cert, which is used to authenticate d. In
particular, the construction of Cert follows the standard
approach of Merkle Patrica Tree (MPT) in Ethereum[19,
43];

3) Once receiving d and Cert, E verifies d against Cert
following the Merkle verification;

4) If the verification fails, E changes to request another node
in Si from step 1) till one responds correctly.

A drawback of Merkle verification is that the executor E
should obtain the root root of MPT, included in every block
header in the ledger of S-shard En(A) , in advance. This
causes every executor to synchronize the last roots of Merkle
trees from various S-shards. We address this issue through the
threshold signature. An (n, t)-threshold signature on a message
is a single, constant-sized aggregate signature that passes
verification if and only if at least t out of the n participants sign
the message correctly. Note that the verifier just needs to use a
threshold public key of En(A) to verify the threshold signature
and does not need to know the identities of the t signers. In our

11



scenario, we assume there are nS nodes in a S-shard and at
most fS nodes out of them are malicious, such that nS > 3fS .
Then, the S-shard En(A) creates a (nS ,nS − fS)-threshold
signature on root at each block height. Specifically, every node
broadcasts its signature on root, and then each node aggregates
received nS − fS signatures to a signature AS(root). Since
there are at most fS malicious nodes in a S-shard, as least
nS − fS honest nodes will broadcast their signatures correctly.
This will not add extra overhead because these signatures can
be attached to the messages of PBFT consensus.

Based on the threshold signature scheme, the workflow of
the data request is adjusted into follows:

1) E sends a request to a node Ni in En(A);
2) Upon receiving the request, Ni sends AS(root) and root

to E alongside d and Cert;
3) E uses the threshold public key of En(A), which is public

known, to verify AS(root);
4) E verifies d against Cert and root;
5) If the verification fails, E retries again from step 1).

By this way, the E has no need to access a majority of nodes in
En(A), deeply reducing the amount of data to be transmitted.
Moreover, E does not have to synchronize the block headers
from various S-shards.

Compared with communication between executors and S-
shards, the communication between executors and the R-shard
seems simpler. The execution results generated by an executor
are still verifiable through the attestation mechanism of TEE
as described in Section III-C. Besides, as the data enclave
at a executor has verified the input state data, R-shard Sm

does not repeatedly check the read set of each transaction.
Additionally, the communication between R-shard and S-shards,
e.g., phases 4 and 5 in cross-shard commit protocol, is
realized through a cluster-sending protocol proposed in [36].
This is the heaviest part of the communication mechanism in
LightCross. Fortunately, LightCross amortizes the overhead of
this part by processing multiple CSTxs in one batch.

E. Proof of Atomicity and Serializability

We first prove Theorem 1 that ensures the atomicity of CSTxs
in LightCross, and then prove Theorem 2 based on Lemmas
1-3 to promise the serializability of all transactions.

Theorem 1 (Atomicity). If an S-shard in shards(τ) commits
a CSTx τ , all the other S-shards in shards(τ) must commit
transaction τ eventually.

Proof. Let k = |shards(τ)| > 1. If an S-shard commits τ , it
means the R-shard has broadcast the final message ⟨bmf ⟩ (step
3 in Section III-D) to all the k involved S-shards. In this

case, the S-shards in rshard(τ) must have locked all states
in R(τ) read by τ (step 2 ). Before these k − 1 S-shards
commit τ (step 4 ), S-shards in rshard(τ) cannot unlocks
states in R(τ), promising τ cannot be aborted. This is because
τ only can be aborted when it reads state state values. The
lock mechanism ensures the values of states read by τ still
keep up-to-date till it is processed on each S-shards. On the

𝐵!,# …

CSTxs

𝐵!,# 𝐵!,$!

𝐵$,# …𝐵%,#

… …

𝐵$,%!

𝜏" 𝜏# 𝜏$

…
CSTxs

…

𝑆%: TXs proceed 𝜏"

𝑆": TXs proceed 
𝜏# and succeed 𝜏"

𝑆$: others
Remark: 𝑠 = 𝑚 − 1

Fig. 9: Illustration for the proof of Theorem 2.

other hand, the PBFT protocol ensures the liveness, i.e., all
transactions must be processed eventually. As a result, τ will
be processed by other k − 1 S-shards but not aborted. This
equally implies that τ will be committed by other S-shards in
shards(τ) eventually.

To prove the serializability, we need to give some notations
and definitions. Let Bi,j stand for the j-th block generated
by S-shard Si. Obviously, it is impossible to serialize a CSTx
τ that has not been committed by all S-shards in shards(τ),
because its commitment has not completed yet. Therefore, we
only can discuss the serializability of transactions that are
committed by all involved S-shards. To this end, we introduce
the conception of committed block as defined in Definition 1.
Based on the committed block, we define the committed
chain & committed closure as described in Definition 2. In a
committed closure, every intra-shard or cross-shard transaction
is committed correctly in shards(τ).

Definition 1 (Committed block). A block Bi,j , with no CSTx
inside, is committed when Si completes the executions for all
transactions in Bi,j . Otherwise, Bi,j , including at least one
CSTx, becomes committed if: 1) the execution for transactions
in Bi,j ends; and 2) for each CSTx τ ∈ Bi,j , all S-shards in
shards(τ) have committed it yet.

Definition 2 (Committed chain & committed closure). A chain
Φ ending with block Bi,j is a committed chain if all of Bi,j’s
ancestor blocks are committed. A set C of committed chains is
called as a committed closure as if: 1) it contains m committed
chains properly from m distinct S-shards; 2) for any CSTx
τ in one committed chain, it exactly appears in |shards(τ)|
different chains.

Next, we give some properties of committed closure in
Lemma 1 to Lemma 3, all of which illustrate the serializability
of LightCross collectively.

Lemma 1. In a committed closure C, the effect of all
transactions in C is equivalent to that of a serial execution in
some order L, which is termed as the serialization for C.

Proof. We directly construct the serialization L for C to prove
this theorem. Assume the committed chains in C end with
blocks B0,q0 , B1,q1 , . . . , Bs,qm−1

, corresponding to m S-shards
respectively, as shown in Fig. 9. Among these chains, we extract
all CSTxs, denoted by ⟨τ1, . . . , τ l⟩, where duplicated CSTxs
just count once. Note that ⟨τ1, . . . , τ l⟩ still conforms to the
order established by R-shard. Then we fill other intra-shard

12



transactions into the gap between any two consecutive CSTxs
to construct a complete serialization.

Let S0 be a set of intra-shard transactions, each of which
proceeds τ1 in exactly one committed chain in C. We assert
that S0 is serializable. The transactions in S0 can be serialized
in the format

L0 = ⟨L0, L1, . . . , Lm−1⟩
where Li is a ordered sequence of intra-shard transactions in
S0 processed by Si, and the transaction order in Li is the same
as in blocks generated by Si. We assert that the serialization for
S0 is correct because two transactions from two different Li

and Lj (i ̸= j) do not conflict. Surely, we can serialize S0 into
other orders but reserve the partial order between transactions
from the same committed chain. We construct the set S1, where
each transaction in S1 succeeds τ0 and proceeds τ2 in some
committed chain. S1 can be serialized as L1 in the same way.
We continuously construct every set Sk and serialize them
properly until Sl−1. The remaining intra-shard transactions in
C constitute the set Sl, which is serialized into Ll.

Finally, the sequence ⟨L0, τ
1,L1, τ

2, . . . ,Ll−1, τ
l,Ll⟩ is a

correct serialization L for committed closure C. In C, we ensure
each intra-shard or cross-shard transaction always reads the
latest state values generated by proceeding transactions, keeping
the same semantics as a serial execution.

Then, we discuss the inclusion relationship between two com-
mitted closures as defined in Definition 3. Moreover, we prove
the serializations for two committed closures with inclusion
relationship are consistent and compatible in Lemma 2.

Definition 3 (Committed closure inclusion). A committed
closure C1 is included in another closure C2, meaning that
every chain Φ in C1 is the prefix of a chain Φ′ in C2.

Lemma 2. Assume a committed closure C1 is included in
another committed closure C2. For every serialization L for

C1, we can always find a serialization L′ for C2, such that L
is the prefix of L′.

Proof. We prove this theorem by directly constructing the
serialization L′ for C2 with a prefix L. First, since C1 is included
in C2, every committed chain Φ ∈ C1 is a prefix of one chain
Φ′ ∈ C2. Then, we extract prefix Φ from Φ′ and let C3 =
{Φ′ − Φ} stand for remaining chains. We can assert that C3
is also a committed closure. Otherwise, at least one CSTx
τ ∈ C2 appears < |shards(τ)| times in C3. This indicates τ
must appear in C1 because it appears exactly |shards(τ)| times
in C2. However, since C1 is a committed closure, if τ appears in
C1 one time, it will appear |shards(τ)| times in C1. Therefore,
τ does not belong to C3, so that C3 is a committed closure.

Second, we serialize C3 in the same way adopted in the
proof of Lemma 1, leading to a serialization L′. Then, the
concatenation L = ⟨L,L′⟩ is the final serialization. To verify
L, we can check if L satisfies the serialization construction in
Lemma 1’s proof. Summarized, the serialization L is correct,
and the lemma holds.
Lemma 3. Every committed transaction τ will eventually be
included in a committed closure.

Proof. We prove this theorem by contradiction. If τ is not
included in any committed closure, finally, it means at least one
S-shard Si ∈ shards(τ) will not commit τ forever. However,
this violates Theorem 1, so the theorem holds.

Theorem 2 (Serializability). If an S-shard commits a transac-
tion τ (intra-shard or cross-shard), τ will be serialized properly.

Proof. According to Lemma 1 and Lemma 3, we confirm that
every transaction will eventually be appropriately serialized in
LightCross. Besides, according to Lemma 2, the serialization
for each transaction is durable and consistent with historical
serializations. Then, this theorem holds.

13


