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ABSTRACT

Termination is a crucial program property. Non-termination bugs
can be subtle to detect and may remain hidden for long before
they take effect. Many real-world programs still suffer from vast
consequences (e.g., no response) caused by non-termination bugs.
As a classic problem, termination proving has been studied for
many years. Many termination checking tools and techniques have
been developed and demonstrated effectiveness on existing well-
established benchmarks. However, the capability of these tools
in finding practical non-termination bugs has yet to be tested on
real-world projects. To fill in this gap, in this paper, we conducted
the first large-scale empirical study of non-termination bugs in
real-world OSS projects. Specifically, we first devoted substantial
manual efforts in collecting and analyzing 445 non-termination
bugs from 3,142 GitHub commits and provided a systematic classifi-
cation of the bugs based on their root causes. We constructed a new
benchmark set characterizing the real-world bugs with simplified
programs, including a non-termination dataset with 56 real and
reproducible non-termination bugs and a termination dataset with
58 fixed programs. With the constructed benchmark, we evaluated
five state-of-the-art termination analysis tools. The results show
that the capabilities of the tested tools to make correct verdicts
have obviously dropped compared with the existing benchmarks.
Meanwhile, we identified the challenges and limitations that these
tools face by analyzing the root causes of their unhandled bugs. Fi-
nally, we summarized the challenges and future research directions
for detecting non-termination bugs in real-world projects.
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1 INTRODUCTION

Termination concerns the liveness of a program, which is crucial
to software quality. A program is non-terminating if there exist
some inputs that cause the program to execute indefinitely. Non-
termination of programs may have vast consequences, especially
when employed in safety-critical environments, e.g., aerospace soft-
ware. For example, software with non-termination bugs can become
unresponsive [12], leading to degraded user experiences and some-
times denial-of-service attacks [15]. The current attempts to this
problem focus on proving termination [4, 7, 10, 20, 24, 46]. Yet,
determining program termination is shown to be an undecidable
problem [23], and a failure to prove termination does not indicate
that the program can always terminate. On the other hand, it is
also challenging to show that a program is non-terminating. The
challenge lies in the fact that the violation witnesses of a liveness
property are infinite traces, therefore, one cannot come up with a
finite oracle as in the case of a safety property.

In recent years, many advanced algorithms and techniques [5, 6,
38, 56] have been proposed to either prove termination or demon-
strate non-termination of programs. Generally, they are able to
achieve good performance on standard benchmarks, such as SV-
COMP [21] and TermCOMP [52]. These benchmarks often include
manually crafted programs, with significantly simplified language
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features and execution environments, to make the evaluation of var-
ious algorithms [14, 39, 56] easier. This brings concerns to whether
the evaluation results can truly reflect the performance of the
techniques on real-world non-termination bugs. For example, our
study shows that while UAutomizer [34] correctly handles 71.5%
(1,581/2,212) programs in SV-COMP 2021, but it cannot be directly
applied on real OSS projects, and it only successfully handles 47% of
the real-world non-terminating programs after necessary simplifica-
tions have been made. This indicates that the existing benchmarks
may not be ideal evaluation subjects when the practical values of
the non-termination checking techniques are concerned.

There have been a number of studies done on real-world soft-

ware bugs [26, 28, 30, 36, 42, 59], which play significant roles in
raising awareness and bringing new insights to software quality
assurance [35, 53, 54]. Similarly, we believe that a deep analysis
of real-world non-termination bugs will provide useful insights
to developers and guide the development of new non-termination
detection techniques. To the best of our knowledge, there is still no
such study on non-termination bugs, which motivates our work.
In particular, we would like to find out the answers to the fol-
lowing questions. How common do non-termination bugs appear in

real-world programs? What are the root causes of these bugs? How

difficult is it to find these bugs? How effective are the state-of-the-

art techniques in detecting non-termination bugs in real-world OSS

projects?

In this paper, we aim to bridge this gap by conducting a large-
scale empirical study of non-termination bugs in real-world OSS
projects. We face three main challenges in this study. First, there
is no existing dataset on the non-termination bugs from real-world
OSS projects. It is difficult to establish reasonable criteria and collect
representative non-termination bugs to build the dataset. Second,
the root cause analysis of non-termination bugs is difficult. Due
to the complexity of the real-world program logic (e.g., complex
data structure, nested loops, and recursive function) and the lack
of a test oracle, it is non-trivial to understand whether they are
real non-termination bugs and why the programs do not termi-
nate. Third, the state-of-the-art tools cannot be directly applied
to real-world OSS projects since many complex features are not
well supported, such as dependencies and complex data structures,
making it difficult to evaluate these tools on OSS projects.

To overcome these challenges, we first collect 3,142 commits
from 1,600 C/C++ projects, which are related to non-termination
bugs. Note that we selected C/C++ in our work because the pop-
ular termination analysis tools (e.g., AProVE, CBMC, and UAu-
tomizer) only support C/C++ programs. We dedicated substantial
efforts to manually investigate these commits and finally identified
445 non-termination bugs from 199 projects. Through further in-
depth analysis on the root causes of these bugs, we systematically
built a hierarchical taxonomy containing 24 categories. To evaluate
the state-of-the-art tools (i.e., UAutomizer [34], CPAChecker [9],
2LS [48], AProVE [31], and T2 [11]) on real-world programs, we
built a new benchmark including 56 non-terminating programs
and 58 fixed versions, which are extracted from the real-world non-
termination bugs. We evaluated their effectiveness and summarized
the common reasons for their failures. In general, we aim to answer
the following research questions:

• RQ1:What are the root causes of non-termination bugs in
real-world OSS projects?

• RQ2: How effective are the state-of-the-art tools in proving
the non-termination of real-world programs?

• RQ3:What are the potential root causes for the failures of
the studied tools?

By answering these questions, we characterize the real-world
non-termination bugs and provide useful insights for developers
and researchers. For example, our results reveal that infinite loops
can be caused by 10 types of common logical faults (e.g., missing
iterator update, using erroneous condition) as well as 6 other bug
types related to general programming features (e.g., overflow, type
conversion). Infinite recursions can be caused by three incorrect
recursion designs (e.g., incorrect return) and 5 types of unexpected
recursion (e.g., misusing method overloading). Our study on the
existing tools shows that they are almost completely inapplicable
to real projects. Compared to the existing benchmarks, the perfor-
mance of existing tools drop significantly on the extracted bench-
marks, indicating that they are still far from effective in discovering
real-world non-termination bugs. We also discuss and summarize
key challenges that should be addressed in future research. More
details can be found on our website.1

In summary, this paper makes the following contributions:

• To the best of our knowledge, we conducted the first com-
prehensive study on analyzing root causes of real-world
non-termination bugs. We constructed a systematic taxon-
omy of 24 bug categories and highlight their characteristics
including the distributions, root causes, fix strategies, etc.

• We constructed a new benchmark that is extracted from
different categories of real-world non-termination bugs, in-
cluding the non-termination versions and the corresponding
fixed versions. The benchmark is public available and will
be expanded continuously.

• We evaluated the state-of-the-art termination analysis tools
on the extracted benchmarks and identified their weaknesses.
We summarized the main challenges and provided future
research directions for detecting non-termination bugs in
real-world projects.

2 RELATED WORK

2.1 Termination Analysis

The general approach to prove termination is to search for ranking
functions [4, 7, 10, 20, 24, 40, 46, 55, 58]. which map a program state
to an element of some well-funded ordered set. Most termination
analysis approaches rely on static analysis and constraint solving to
synthesize ranking functions. Podelski et al. [46] proposed an auto-
mated method for proving the termination of an unnested loop by
synthesizing linear ranking functions. Cousot et al. [24] expressed
program semantics in polynomial form and automatized the Floyd/-
Naur/Hoare proof method to verify semialgebraic programs. Chen
et al. [20] reduced non-linear ranking function inference for poly-
nomial programs to semi-algebraic system solving problems. Xie
et al. [57] propose the path dependency automaton to capture the

1https://sites.google.com/view/non-termbug/home
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dependencies among the multiple paths in a loop. Ultimate Au-
tomizer [34] covers the whole set of program executions by taking
the union of the languages of several automata, each of which
is proved to be terminating by exhibiting an appropriate ranking
function. For more complex programs, more complex ranking func-
tions [4, 7, 10] are proposed to prove termination.

Although a lot of termination-proving techniques are proposed,
most of them are incomplete. The failure of proving termination
does not indicate that the program is non-terminating. Hence, this
paper mainly focuses on detecting non-termination bugs, which
cannot be directly solved by the proposed techniques. We also
aim to study real-world non-termination bugs and evaluate the
state-of-the-art tools on proving non-termination.

2.2 Non-Termination Analysis

The general approach to prove non-termination is to search for
recurrent sets. Gupta et al. [33] developed a non-termination prover
“TNT”, which proves non-termination by dynamically enumerat-
ing lasso-shaped candidate paths to search for counterexamples to
termination and search for a recurrent set for each lasso. Giesl et
al. [31] used constraint solving to find a recurrent set in a given loop
to prove non-termination of the loop. Cook et al. [22] proved non-
termination by using abstract interpretation to over-approximate
nonlinear programs and inferring linear recurrent sets. Le et al. [39]
proved non-termination by iteratively collecting executions traces
and dynamically learning conditions to refine recurrent sets. For
proving the non-termination of non-deterministic programs, closed
recurrent sets are proposed, which is a stronger notion than re-
current sets. Chen et al. [14] used a safety prover to eliminate
terminating paths iteratively until it finds a closed recurrent set in
the remaining paths. Larraz et al. [38] proved non-termination by
Max-SMT-based invariant generation.

In addition, there are other techniques that tend to identify infi-
nite states [12, 13, 16, 45]. Carbin et al. [12] used dynamical detec-
tion to record the program state at the start of each loop iteration,
and proved non-termination when two consecutive loop iterations
produced the same state. Menendez et al. [45] proposed a method-
ology to detect non-termination issues with a suite of peephole
optimizations. Chatterjee et al. [13] proved the non-termination of
non-deterministic integer programs by relying on a purely syntactic
reversal of the program’s transition system. Xie et al. [56] reduced
the non-termination analysis to a reachability problem, i.e., to find
a counterexample that reaches an infinite state.

Some efforts have been recently made to take low-level program-
ming features (e.g., overflow) into consideration, which could be
helpful for analyzing real-world projects. Schrammel et al. [48]
presented a modular termination analysis for C programs using
template-based inter-procedural summarization towards analyz-
ing real-world software with bit-precise termination arguments
that were synthesized over lexicographic linear ranking function
templates. Maurica et al. [43] transposed the termination analysis
of floating-point loops into termination analysis of rational loops
through the use of an innovative rational approximation, which
covers overflow issues.

The existing techniques are mainly evaluated on standard sim-
plified benchmarks which fail to represent most of the real-world

non-termination bugs. This paper aims to study the real-world
non-termination bugs and evaluate the practical value of the state-
of-the-art techniques while identifying potential future research
directions.

2.3 Existing Studies on Real-World Bugs

Researchers have made great efforts in exploring the root causes
of various bugs and corresponding fix strategies in real-world
projects, including Android bugs [17–19, 27, 28, 41, 44, 50], OSS fuzz-
bugs [26], buffer overflow bugs [59], deep learning bugs [36, 47],
autonomous vehicle bugs [30], etc.. These studies help developers
understand the practical relevance of different bugs and provide in-
sights through examples for researchers to develop more advanced
detection techniques. However, almost all of them focus on the
violation of safety properties, while the violation of liveness prop-
erties (i.e., non-termination bugs) are not touched. To the best of
our knowledge, our work is the first large-scale empirical study
on non-termination bugs in real-world projects. Additionally, we
constructed a new benchmark by simplifying the non-termination
bugs from real-world projects.

3 DATA PREPARATION

3.1 Data Collection

In this paper, we mainly study the non-termination bugs in C/C++
projects. We first randomly collected 1,600 C/C++ projects from
GitHub by GitHub APIs [32]. These projects are collected from two
considerations: 1) most of the code are C/C++ programs and 2) they
have different numbers of stars representing different popularity.
The collected projects cover open source projects designed for
various purposes (e.g., database, operating system, media tools, and
game). Then we chose five keywords, i.e., “infinite loop”, “endless
loop”, “long loop”, “infinite recursion”, and “deep recursion”, to
identify potential non-termination bugs from the commit messages
of these projects. Finally, we obtained 3,142 commit messages that
cover 466 out of the 1,600 projects. Table 1 shows the detailed results
from each keyword.

We spent five person-months investigating the collected com-
mits. Specifically, we manually analyzed the code snippets corre-
sponding to the 3,142 commit messages to understand the root
causes of the non-termination. Note that the key challenge is that
there is no oracle for non-termination. Due to the high complexity
of real-world code, it is difficult to understand some code in terms
of whether and why they are non-terminating. We filtered some
commits that are difficult to analyze: 1) their corresponding code
snippets do not contain a clear repeated procedure (e.g., loop struc-
ture and recursion); 2) the repeated procedures are too complex to
understand (e.g., loops with hundreds of lines of code or commits
with large changes), and 3) the non-termination can be affected by
non-C/C++ code. Finally, we kept 445 commits (i.e., non-termination
bugs) from 199 real-world projects, which cover the different num-
bers of stars and involve various types of projects. These commits
mainly belong to the following two categories: infinite loop (318)
and infinite recursion (127). To confirm these bugs, each of them
is analyzed, discussed, and confirmed by at least two authors. For
cases that they could not decide, all authors participated in the
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Table 1: Details of the collected commits.

Keywords #Projects #Commits

infinite loop 313 2,400
endless loop 127 445
long loop 9 27
deep recursion 14 17
infinite recursion 97 253
Total 466 3,142

discussion and confirmation. Note that for the commits that are
filtered, we cannot conclude that they are terminating either.

Finding 1: A large portion (29.1%) of the collected OSS projects

have non-termination issues. In particular, the confirmed non-

termination bugs mainly belong to infinite loops (71.5%) and

infinite recursion (28.5%).

3.2 Manual Labelling

Based on the 445 non-termination bugs, we performed a deep anal-
ysis on the root causes. We adopted an open card sort strategy [29]
to construct a new hierarchical taxonomy of the root causes. Three
of the authors mainly participated in the taxonomy construction.
Each participant had more than two years of experience in the
research of termination analysis.

Two authors first constructed the leaf categories for all the bugs.
Specifically, in the first round, the two participants individually
analyzed the commit messages, the original code, and the changed
code to define the root causes. In the second round, they had a
discussion to iteratively unify the two versions of the leaf categories.
If there were disagreements between them, other authors joined
the discussion until a consensus was reached. In the third round,
we randomly selected 20% of the 445 bugs, which were labeled
by the third participant based on the created leaf categories. For
results from the third participant that contradicted the labels of the
first two authors, all authors discussed them until the contradiction
was resolved by updating the leaf categories or re-labeling the
conflicting cases. Finally, all authors discussed the leaf categories
and grouped leaf categories into high-level categories to construct
the hierarchical taxonomy of the root causes. For example, the
common characteristic of “Signed Over�ow Error” and “Unsigned
Wraparound Error” is overflow, therefore, we grouped these two
leaf categories into a high-level category “Over�ow”.

Note that, as infinite loops and infinite recursion have very dif-
ferent characteristics, we adopted the same methodology described
above to establish the taxonomies for them separately.

4 ROOT CAUSES OF INFINITE LOOPS

Figure 1 shows the hierarchical taxonomy of infinite loops includ-
ing four levels of categories. Our taxonomy of infinite loops consists
of 10 inner categories (marked in grey color) and 16 leaf categories
(marked in white color). To measure the frequency of bugs ap-
pearing in each category, we counted the number of bugs in each
category and the number of projects where the bugs are located,
shown in the upper the right corner of each category in Figure 1.

In general, the root causes of infinite loops can be divided into
two categories, namely, logical errors (Category 1) that are more
related to the loop structure itself (e.g., loop condition and loop
iterator variable), and general programming errors (Category 2) that
may affect the loop execution (e.g., overflow). Specifically, most
of the infinite loops (85.8%) are caused by logical errors that are
rooted at the improper design of loops (e.g., incorrect usage of loop
iterator variable or incomplete loop condition checking), which
causes the loop to be stuck in a state. To our surprise, many infinite
loops (14.2%) are caused by general programming errors such as
improper type conversions, even if the logic of the loops is correct.
However, due to other programming errors such as integer overflow
and implicit casting, these loops can be executed infinitely. Next,
we provide detail for each category.

Finding 2: The main reasons for infinite loops are logical er-

rors (85.8% of the bugs covering 92.7% of the projects), indi-

cating the difficulty of designing loops correctly. In addition,

common programming mistakes can make logically-correct

loops execute infinitely (14.2% of the bugs covering 20.4% of

the projects), which may challenge the methods that attempt to

prove (non)termination based only on program logic.

4.1 Logical Error (Category 1)

From the program-logic perspective, the behavior of a loop iteration
depends on the loop condition, the loop iterator variables, and the
control statements (e.g., break). Specifically, the loop continues to
iterate while the condition is true, a loop iterator variable (or loop
iterator) serves as an index of the loop and may affect the value
of loop conditions, and control statements may change the flow
of loop execution. Logical errors are divided into three categories
related to these three loop elements (i.e., Category 1.1, 1.2, and 1.3).
In total, there are 10 specific leaf categories under Category 1.

Finding 3:Most of the logical errors are caused by incorrect loop

iterators (54.6%) and incorrect loop conditions (40.3%). A small

number of errors are due to incorrect control statements (5.1%).

Furthermore, 10 different root cases were identified, indicating

the diversity of logical errors.

4.1.1 Loop Iterator Error (Category 1.1). During loop execution,
loop variables are updated iteratively. A Loop iterator error refers
to an incorrect update to loop iterators, making the loop condition
to be always true. Updates to loop iterators usually involve only a
few lines of code but are error-prone when their cascading effects
span multiple iterations. We found 149 loop iterator bugs rooted in
different causes.

Category 1.1.1: Misusing Same Loop Iterator in Nested Loops.We
observed that, in nested loops, developers may confuse the loop
iterators of the inner loops with those of the outer loops. There are
six infinite loops (4.0%) that are caused by reusing the same iterator
in nested loops. For example, if the inner loop incorrectly uses the
loop iterator of the outer loop (e.g., setting it to zero), the outer loop
never terminates.
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Root Causes of Infinite Loops

Logical Error (1) 

Loop Iterator Error ( 1.1 )

Misusing Same Loop 
Iterator ( 1.1.1 )

No Update for Loop 
Iterator ( 1.1.2 )

Missing Iterator 
Update ( 1.1.2.1 )

Adding/Subtracting 
Zero ( 1.1.2.2 )

Incorrect Bit 
Calculation ( 1.1.2.3 )

Initialization Error for 
Loop Iterator ( 1.1.3 )

Missing Initialization 
( 1.1.3.1 )

Incorrect Initialization 
( 1.1.3.2 )

Incorrect Update for 
Loop Iterator ( 1.1.4 )

Loop Condition Error  
( 1.3 )

Missing Corner-case 
Handling ( 1.3.1 )

Using Erroneous 
Condition( 1.3.2 )

Incorrect Control 
Statement ( 1.2 )

General Programming Error (2)

Overflow ( 2.1 )

Unsigned 
Wraparound 
Error ( 2.1.1 )

Signed 
Overflow 

Error(2.1.2)

Incorrect Variable Type 
( 2.2 )

Type Conversion    
( 2.2.1 )

Type Conversion in Comparison   
( 2.2.1.1 )

Type Conversion in Assignment    
( 2.2.1.2 )

Misusing Variable Type 
( 2.2.2 )

Undefined Behavior 
( 2.3 )

( 318 , 137 )

( 273 , 127 ) ( 45 , 28 )

( 149 , 83 ) ( 14 , 11 ) ( 110 , 66 ) ( 15 , 14 ) ( 24 , 17 ) ( 6 , 4 )

( 6 , 6 ) ( 124 , 76 ) ( 13 , 9 ) ( 6 , 6 )

( 74 , 53 )

( 46 , 34 )

( 4 , 4 )

( 3 , 3 )

( 10 , 9 )

( 76 , 48 )

( 34 , 24 )

(  9 , 9  )

( 6 , 5 )

( 14 , 12 ) ( 10 , 10 )

( 9 , 9 )

( 5 , 5 )

Figure 1: Taxonomy of Infinite Loop.

Category 1.1.2: No Update to Loop Iterator.A large portion of errors
are caused when the loop iterators remain constant under some
conditions, making the loop stuck with no progress. Specifically, to
our surprise, there are 74 cases (59.7% of Category 1.1.2) that are due
to missing iterator updates (Category 1.1.2.1). Our analysis shows
that the iterator updating statements are missed in 54 cases which
are often due to careless mistakes of developers. The remaining 20
cases are because the iterator updates are placed incorrectly after
the continue statements, not being executed as a result. Another
group of errors (37.1%) is caused when the change made to the
iterator value is effectively zero (Category 1.1.2.2). For example,
in 𝑖+ = 𝑥 , the loop iterator 𝑖 remains unchanged when 𝑥 is zero.
Bit manipulations (Category 1.1.2.3), such as ‘&’ (AND), ‘|’ (OR),
and ‘≪’ (shift left), can also lead to such errors. Figure 2 shows an
example of Bit Operation from the project “brltty”.2 In this case,
the loop terminates only if𝑤𝑐 becomes zero. However, since𝑤𝑐 is
an extended signed character type (i.e., wchar_t), the loop makes
no progress if𝑤𝑐 is negative before entering the loop. Because of
the shift-right operations,𝑤𝑐 will eventually remain -1, causing a
non-termination.

1 wchar_t wc;

2 + + static const wchar_t mask = (1 << ((sizeof(wchar_t) * 8) - 6)) - 1;

3 do {

4 *--byte = (wc & 0X3F) | 0X80;

5 - - } while (wc >>= 6);

6 + + } while ((wc = (wc >> 6) & mask));

Figure 2: An example of Incorrect Bit Operation.

Finding 4: Most (83.2%) of the loop iterator errors are due to

no update to loop iterators. They are due to careless mistakes

2Commit: 5bec3fff0bac50f4b4d4d3b02e70161a2bf38d0f

( i.e., forgot to update iterator, 43.5%), incorrect locations of up-
date statements ( i.e., update after continue statement, 16.1%),

incorrect update to iterators ( i.e., update being zero, 37.1%) and
incorrect bit manipulations (3.2%).

Category 1.1.3: Initialization Error for Loop Iterator. Variable ini-
tialization is important but error-prone. We found 13 cases (8.7%)
that are caused by the incorrect initialization of loop iterators, such
asMissing Initialization (category 1.1.3.1) and Incorrect Initialization
(category 1.1.3.2). Uninitialized variables may lead to undefined
behaviors that can cause an infinite loop. Incorrect initialization
can also affect the loop execution, which mainly includes incorrect
positions of initialization statements (e.g., the initialization for the
outer loop is incorrectly put in the inner loop) and incorrect ini-
tialization values (e.g., the binary search may not terminate if the
variables low and high are not initialized properly).

Category 1.1.4: Incorrect Update for Loop Iterators. Incorrect up-
dates to loop iterators lead to non-termination. We identified six
infinite loops that are caused by incorrectly updated loop iterators.
Note that we distinguish this category from Category 1.1.2 because
we would like to emphasize the different effects of no update and
incorrect update. No update for loop iterator (i.e., Category 1.1.2)
causes the loop to get stuck in one state, while incorrect updates
may cause the loop to get stuck in a recurrent set of states. Figure 3
shows an infinite loop3 from the asterisk project. In each loop itera-
tion, 𝑙 is decreased by 2, which results in an infinite execution if 𝑙
is initialized to an odd number. The update should vary based on
the parity of the initial value of 𝑙 .

Finding 5:Apart from the problem of no update to loop iterators,

infinite loops can also be introduced by incorrect initializations

(8.7%), incorrect updates (4.0%), and incorrect reusing of loop

iterators (4.0%).

3Commit: 3322180d4b452e11545b70abc9b2d5af3d241361
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1 static void unpacksms16(unsigned char *i,

2 unsigned char l,..., unsigned short *ud, ...){

3 unsigned short *o = ud;

4 while (l--) {

5 int v = *i++;

6 - - if (l--)

7 + + if (l && l--)

8 v = (v << 8) + *i++;

9 *o++ = v;

10 }

11 }

Figure 3: An infinite loop bug of Incorrect Update of Loop

Iterator.

4.1.2 Incorrect Control Statement (Category 1.2). Control state-
ments are used to direct the control flow of the loop execution. In
our analysis, 14 of the logical errors (5.1%) are attributed to the
incorrect control statements (i.e., break, goto, and continue). For
example, the continue and break statements can be misused; break
statements can be placed at incorrect locations, resulting in in-
correct termination condition; and goto statements may jump to
incorrect program locations.

Finding 6: Incorrect control statements (14 bugs from 11

projects) can also introduce infinite loops, where incorrect break

statements caused the most (50.00%) non-termination bugs.

4.1.3 Loop Condition Error (Category 1.3). Loop conditions de-
termine whether the loop can start or terminate. A proper loop
condition is critical for the correctness and termination of the loop.
We observed that a large number of infinite loops (40.3%) are caused
by incorrect loop conditions.

Category 1.3.1: Missing Corner-case Handling. The loop condition
restricts the scope of states (i.e., different values of variables) that
can be reached. If the scope is not well designed, it may cause
infinite execution. We observe 76 (69.1%) bugs caused by loose
conditions that miss handling some corner-cases. 11 of them are
caused by the general incorrect comparison operators (e.g., use 𝑖 ≤ 0
rather than 𝑖 < 0). The incorrect comparison operators can miss
some boundary checking. Figure 4 shows an infinite loop caused by
the missing corner-case handling from “libssh”.4 The comparison
operator is not correct, which makes the loop condition always
satisfied. channel_read function returns 0 if no more data can be
read. The remaining 65 cases are caused by loose conditions that
are more related to the specific business logic of the programs.

1 - while ((rc = channel_read(channel, buffer, sizeof(buffer), 0)) >= 0){

2 + while ((rc = channel_read(channel, buffer, sizeof(buffer), 0)) > 0){

3 fwrite(buffer, 1, rc, stdout);

4 }

Figure 4: An example of Missing Corner-case Handling.

4Commit: 1b15896e8b29561447fff9a7bcaa028179eab51b

Category 1.3.2: Using Erroneous Condition. It is worth noting that
there are 34 bugs (30.9%) caused by the totally incorrect loop condi-
tions. These conditions may use incorrect iterator variables, incor-
rect termination logic, or TRUE condition (the value is always true),
indicating the difficulty of setting correct termination conditions
in some loops. Figure 5 shows an infinite loop from “binutils-gdb
”.5. It is obvious that the loop condition can always be true when
cached_frame->reg_count is not zero.

1 - - for (int i = 0; cached_frame->reg_count; i++)

2 + + for (int i = 0; i < cached_frame->reg_count; i++)

3 xfree (cached_frame->reg[i].data);

Figure 5: An example of Using Erroneous Condition.

Finding 7: A large part of logic errors (40.3%) are due to the

incorrect loop conditions. Most of them (69.1%) are affected by

improper corner-case handling, which reveals that developers

should be very careful on the loop conditions (e.g., the boundary).
What is more worrisome is that 30.9% of them are caused by

completely incorrect loop conditions that usually depend on the

business logic.

4.2 General Programming Error (Category 2)

In addition to the logical errors about the loop design, we observe
that general programming errors can also lead to infinite loops,
which account for 14.2% infinite loops. Specifically, integer overflow,
variable type casting and undefined behavior can affect the update
of loop iterators, resulting in non-termination. These errors are not
directly related to the loop logic. Hence, it is hard to detect them
by existing termination tools (see Section 6) that mainly focus on
the logic errors.

4.2.1 Overflow (Category 2.1). Without good consideration for
overflow, developers can misestimate the update of loop iterators
during the loop execution. We observe 15 infinite loops (4.7%) that
are caused by overflow including Unsigned Wraparound Error (Cat-
egory 2.1.1) and Signed Over�ow Error (Category 2.1.2).

Category 2.1.1: Unsigned Wraparound Error. For unsigned integer
types, wraparound operations will be executed when the value
of the variable is out of scope. For example, the result of the ex-
pression “UINT_MAX+1” will be 0, which is well-defined. Due to
the wraparound of unsigned numbers, the loop iterators can never
break the loop condition, causing infinite loops. We find 9 infinite
loops due to the wraparound of unsigned numbers, which account
for 2.83% of all infinite loops. Figure 6 shows an example infinite
loop from “mupdf”.6 𝑠𝑖𝑧𝑒_𝑡 is an unsigned type. If 𝑛 is less than 16,
𝑛 will be wrapped around to be another large positive value.

Category 2.1.2: Signed Over�ow Error. It is well-defined that
wraparound operationwill be executedwhen overflow or underflow
of unsigned integer occurs. But when overflow occurs, the results of

5Commit: 8455d26243aef72f7b827ec0d8367b6b7816de07
6Commit: ce9d4462423ac74a1dbbc4ce52c2c81cfcdda766
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1 void pdf_encrypt_data(..., size_t n){

2 while( n > 0 ){

3 size_t len = n;

4 - - n -= 16;

5 + + n -= len;

6 }

7 }

Figure 6: An example of Unsigned Wraparound Error.

signed integer types maybe various. In general, wraparound opera-
tion will be executed when overflow or underflow of signed integer
occurs, i.e., the result of expression INT_MAX+1 is INT_MIN [25].
Similarly, Signed Over�ow Error leads to the abnormal change of
loop iterators, leading to infinite execution. We totally find 6 such
bugs, accounting for 1.89% of all loop bugs.

4.2.2 Incorrect Variable Type (Category 2.2). The storage of differ-
ent types of variables is different (i.e., different ranges). Incorrect
use of variable types can also cause infinite loops by changing the
value of loop iterators abnormally. There are 24 bugs in this cate-
gory including Type Conversion (Category 2.2.1) andMisuse Variable

Type (Category 2.2.2).

1 uint16_t s,len;

2 - - for (s = seqnum; s < seqnum + len; s++) {

3 + + for (i = 0, s = seqnum; i < len; i++, s++) { // int i,len

4 ... }

Figure 7: An example of Type Conversion in Comparison.

Category 2.2.1: Type Conversion. When the types of left values
and right values do not match, the type conversion can happen
in assignment statements and comparison statements, which can
affect the value of loop iterators and loop conditions. There are
a total number of 14 bugs caused by type conversion including 9
Type Conversion in Comparison bugs (Category 2.2.1.1) and 5 Type
Conversion in Assignment bugs (Category 2.2.1.2). Figure 7 shows an
infinite loop from “owntone-server”.7 This loop will get stuck when
𝑠𝑒𝑞𝑛𝑢𝑚 + 𝑙𝑒𝑛 is greater than UINT16_MAX. In this case, bit expan-
sion will occur, and the type of the right value in the loop condition
will be a large 32-bit integer, i.e., it is greater than UINT16_MAX.
However, the maximum value of the left value (i.e., 𝑠) is less than
or equal to UINT16_MAX, indicating that the loop condition will
be always TRUE. Type Conversion in Assignment (Category 2.2.1.2)
involves the type conversion in assignment statements. For exam-
ple, the value of the loop iterator can be truncated if it is assigned
to a small type so that it never breaks the loop condition.

Category 2.2.2: Misusing Variable Type. The type of a variable
determines the range of its values. The incorrect type may limit the
range of the loop iterator, which can lead to an infinite loop. We
totally find 10 bugs caused by misusing variables, which accounts
for 3.14% of infinite loops. Figure 8 shows an infinite loop bug from

7Commit: f9bfec180f91671d8ba72a01cab1781c1f5e9999

1 - - u32 div1, div2;

2 + + int div1, div2;

3 for (div1 = 1; div1 >= 0; div1--)

4 for (div2 = 7; div2 >= 0; div2--)

5 ....

Figure 8: An example of Misusing Variable Type.

“linux_media”.8 Because 𝑑𝑖𝑣1 and 𝑑𝑖𝑣2 are unsigned variable, they
never become negative. Hence, the loop condition 𝑑𝑖𝑣1 ≥ 0 and
𝑑𝑖𝑣2 ≥ 0 will be always TRUE.

Finding 8: Not like logic errors that directly affect the loop

execution, general programming errors can also affect the loop

execution, which may be very different as expected by developers.

Specifically, over�ow (4.7%) and incorrect variable type (7.5%)

can implicitly change the value of loop iterators and loop condi-

tions, which leads to infinite loops. Furthermore, such errors are

very complex and subtle, each taking an average of an hour to

analyze and confirm.

4.2.3 Undefined Behavior (Category 2.3). During our classification,
we find some potential infinite bugs caused by undefined behavior
and the termination of these programs may be different in different
compilers and platforms. The best-known examples of undefined
behaviors [37] in programming languages come from C and C++,
which have hundreds of them, including simple local operations
(overflowing signed integer arithmetic). Undefined Behavior could
make unexpected consequences (e.g., Silent Breakage, Time Bombs),
which depends on different compilers and platforms [25].9 The
unexpected consequences can affect the termination of loops. In our
study, undefined behavior is a root cause of infinite loop, accounting
for 1.9% of all loop bugs and involving 2.92% projects.

1 uint64_t val;

2 int i, bytes = 1;

3 - - while (val >> bytes*8) bytes++;

4 + + while (val >> bytes*8 && bytes < 8) bytes++;

Figure 9: An example of Undefined Behavior.

Figure 9 shows a potential non-termination loop bug from “FFm-
peg”.10 When the value of 𝑏𝑦𝑡𝑒𝑠 is 8, 𝑢𝑖𝑛𝑡64_𝑡 >> 64 is an unde-
fined operation leading to the undefined behavior. Its value varies
in different compilers and platforms, i.e., the loop can be infinitely
executed if its value is parsed as non-zero. The confirmation of this
category of bugs is difficult. We confirmed these bugs from 1) the
commit messages that clearly point out the non-termination and
2) we reproduce them by simplifying the program. For example,
we compile the loop in Figure 9 with gcc (version 7.3.0) in Ubuntu

8Commit: 090341b0a95d1f6d762915a75c13b393366f4ab3
9These types of bugs are mainly confirmed from the commit messages
10Commit: d597655f771979c70c08f8f8ed84c1319da121e8
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Root Causes of Infinite Recursion

Incorrect Recursion Design ( 1 )

Incorrect Arguments
( 1.1 )

Incorrect Return ( 1.2 )

Deep Recursion ( 1.3 )

Unexpected Recursion ( 2 )

Incorrect Self-invoking ( 2.1 )

Misusing Namespace ( 2.1.1 )

Miscalling Inherited Method ( 2.1.2 )

Misusing Method Overloading ( 2.1.3 )

Missing undef Instruction ( 2.1.4 )

Incorrect Cyclic Invoking (2.2)

( 12 , 11 )

( 6 , 4 )

( 15 , 13 )

( 5 , 5 )

( 38 , 30 ) ( 24 , 16 )

( 62 , 43 )

( 127 , 70 )

( 65 , 40 )

( 7 , 7 )

( 25 , 18 )

( 33 , 22 )

Figure 10: Taxonomy of Infinite Recursion.

4.15.0. The value of 𝑣𝑎𝑙 was initialized to -1, thus this loop falls into
an infinite loop.

Finding 9: Undefined Behavior (1.9%) could lead to potential
infinite loop bugs, which is more difficult to confirm as it
depends on the compilers and platforms.

5 ROOT CAUSES OF INFINITE RECURSION

Recursion11 is another repeated structure that one of the steps of
the function reenters the function itself. Figure 10 illustrates the
hierarchical taxonomy of infinite recursion bugs in real-world C
and C++ projects. Generally speaking, our taxonomy of infinite
recursion bugs consists of 4 inner categories (in grey) and 8 leaf
categories (in white).

Finding 10: Infinite recursion accounts for a large portion
(28.5%) of non-termination bugs. 51.2% of the bugs are caused
by Incorrect Recursion that means the incorrect design of recur-
sions. 48.8% of the bugs are caused byUnexpected Recursion, i.e.,
developers do not intend to use recursions, but the recursions
are unexpectedly generated due to programming errors.

5.1 Incorrect Recursion Design (Category 1)

The termination of recursion mainly depends on the argument that
will be sent to the parameters of the recursive function and the
return that can determine the exit of the current iteration. In general,
the incorrect recursion is mainly caused by Incorrect Arguments

(Category 1.1), Incorrect Return (Category 1.2) and Deep Recursion

(Category 1.3).
Category 1.1: Incorrect Arguments. We observe 7 infinite re-
cursions (10.8%) in Incorrect Recursion that are caused by using the
unchanged arguments. Similar with loop, the arguments determine
the number of iterations. If the arguments keep unchanged, the
recursion gets stuck to a state (i.e., the values of arguments do not
change) leading to the infinite execution.

11Due to the space limit and the complex structure of recursion, we put more detailed
examples and discussions on our website.

Category 1.2: Incorrect Return. Most (38.5%) of the incorrect
recursions are caused by the incorrect return12. It is because of the
incomplete condition for return. For example, the current iteration
should exit, but couldn’t because of an incorrect return condition.
Category 1.3: Deep Recursion. We also find a large part of re-
cursion bugs (50.7%) in Incorrect Recursion that can cause stack
overflow rather than non-termination bugs, so are linked with a
dashed line in Figure 10. When recursion is executed, the variables
and some information need to be saved into stack. As the recursion
can be excessively deep, it causes call stack buffer overflow. The
Deep Recursion bugs are related to complex data structures (e.g.,
binary tree traversal, compilation process, and database operations).

Finding 11: 10.8% of the incorrect recursions are caused when
incorrect arguments (e.g., unchanged value) are used for the
recursions. Determining the condition for returning value is
error-prone, which accounts for 38.5% of incorrect recursions.
In addition, a large portion of bugs (50.7%) in incorrect recur-
sions are deep recursion which may lead to stack overflow
although they can terminate in theory.

5.2 Unexpected Recursion (Category 2)

Programming errors can lead to unexpected recursion that does not
terminate. Specifically, our study shows that Unexpected Recursion
involves 62 infinite recursion bugs that cover 61.4% (43/70) projects.
The major reasons include Incorrect Self-invoking (Category 2.1)
and Cyclic Invoking (Category 2.2).
Category 2.1: Incorrect Self-invoking There are 38 infinite recur-
sions (29.9%) caused by that the function invokes itself incorrectly
and unintentionally. Specifically, 12 of them are due to Misusing

Namespace (Category 2.1.1). The function𝑀 ::𝑓 intends to invoke
another function 𝑁 ::𝑓 where 𝑀 and 𝑁 are different namespaces.
However, developers forget to use 𝑁 causing it to call itself. 6 of
them are due to the Miscalling Inherited Method (Category 2.1.2). In
C++ inheritance, the method𝑚 in a child class 𝐴 intends to invoke
the method𝑚 in another child class 𝐵, However, developers forget
to use the class name 𝐵 (i.e., 𝐵::𝑚), thus 𝐴::𝑚 calls itself. 15 of them
are due toMisusing Method Overloading (Category 2.1.3). It happens
when the method𝑚 intends to invoke another overloaded function
𝑚 but it incorrectly invokes itself (i.e., using the same arguments).
5 of them are caused by Missing undef Instruction (Category 2.1.4).
For this category, developers first use #define to define an identifier
𝐴 as a function 𝐵. However, in the function 𝐵, it invokes 𝐴 (i.e.,
itself) again before undef 𝐴.
Category 2.2: Incorrect Cyclic Invoking. Compared to Category
2.1 which involves self-invoking, there are 24 of infinite recursions
(18.9%) that are caused by cyclic calling. Given two functions 𝐴 and
𝐵, if 𝐴 calls 𝐵 and 𝐵 also calls 𝐴, then the unexpected cyclic calling
is formed, causing an infinite execution.

12Without loss of generality, a recursive function that does not return anything can be
considered to return null.
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Finding 12: Our study shows that the number of infinite
recursions caused by unexpected recursion and incorrect re-
cursion are very close (65 and 62), indicating that unexpected
recursion is also important for non-termination checking. The
main reasons include the unexpected self-invoking (61.3%)
and unexpected cyclic-invoking (38.7%).

6 EMPIRICAL STUDY ON TERMINATION
ANALYSIS TOOLS

In this section, we introduce the benchmark extraction based on
the 445 non-termination bugs and conduct an assessment of the
SOTA tools based on the extracted benchmark to answer RQ2. We
then conduct an in-depth analysis for the detection failures of these
tools to answer RQ3.

6.1 Benchmark Extraction

To evaluate the performance of the state-of-the-art tools in analyz-
ing the termination of real-world programs, one important step is to
setup a ground-truth benchmark with real-world non-termination
bugs based on a series of validity criteria. This is because real-world
source code contains noises that are not relevant to non-termination
bugs, and existing tools cannot be directly applied to real-world
projects. For ensuring the representativeness of our benchmark,
we extracted and sliced our benchmark from 445 bugs based on
the following principles: (0) Bugs Filtration. The non-termination
bugs should be further filtered because most non-termination bugs
have very complex dependencies (e.g., the bugs depend on multiple
code files, complex variable types, and APIs). We keep small-size
bugs and filter complex bugs because it is more difficult for us to
guarantee the correctness of large-scale benchmarks and existing
benchmarks often cannot support complex dependencies. After
this step, we keep 56 bugs to construct our benchmark from 445
non-termination bugs and used them for assessment. (1) Context
Simplification. For infinite loop bugs, we follow four steps: First,
we identify all the loop iterations (defined in §4.1) and retain the
complete loop condition. Second, we retain instructions (e.g., if-else
branch) and objects in the source code of the project that involve
loop iterators, which can change the value of loop iterators. Then,
we retain all control instructions and date structure (e.g., circular
linked list). Finally, we remove other instructions that are extra-
neous with the loop in the project. For infinite recursion bugs, we
retain the instructions related to the value change of recursion
parameters. (2) Function Rewriting. We rewrite the function and
retain the effect and return values of the function (including API
function and custom function). For recursive bugs, we focus more
attention on retaining recursive calls between functions. (3) Reserve
Name and Type. We keep the consistent name and type of variables
and functions in our benchmark with projects. (4) Make Benchmark

Executable. We adapt the selected loops and recursion functions
by putting the loops and the first function call of recursion in a
main function and adding non-deterministic initialization for the
variables to make them executable. Note that we extracted the non-
termination benchmark based on non-termination bugs and the

1 int main(){

2 unsigned char l = __VERIFIER_nondet_uchar();

3 while( l-- )

4 if( l-- ){ //loop }

5 return 0;

6 }

Figure 11: Benchmark program extracted from Figure 3.

termination benchmark from the corresponding fixed versions rely-
ing on the above principles. We highlight that the extraction of the
recursion benchmark is more difficult than loop because it involves
more data structures and function calls. Finally, we constructed our
benchmark set, including a non-termination dataset with 56 real
and reproducible non-termination bugs and a termination dataset
with 58 fixed programs. Through our statistics, the average num-
bers of lines in SV-COMP 2021 benchmarks and our benchmarks
are 20.82 and 24.52, respectively.

Figure 3 shows an infinite loop and the corresponding extracted
benchmark is shown in Figure 11. First, based on the definition of
loop iterator in §4.1, the unsigned char variable 𝑙 is a loop iterator
in loop condition (Line 4). Therefore, we retain the source code in
Line 2, 4 and 6 (7) to our benchmark (correspond to Line 2, 3 and 4
in Figure 11). Other variables (𝑣 , 𝑖 , and �) can be ignored because
they do not impact any loop iterators and loop termination property
of this benchmark. Notice that we keep the consistent name of
variables (𝑙) and variable type (unsigned char) in our benchmark
with real-world projects and we set 𝑙 to be non-deterministic. In
addition, we set a main function to make it executable.
Correctness of Benchmark. Since the extracted benchmarks may
contain mistakes due to subjective biases (details in § 7.2), we put
lots of effort to ensuring the correctness of our benchmarks (e.g.,
whether it can terminate or not). First, we manually verify our
benchmark with at least three co-authors. Only if all the authors
confirm the benchmark, we accept the results. For non-termination
benchmarks, except for the manual confirmation, we also directly
run the program by setting the potential bug-triggering values. We
ensure that the benchmarks cannot terminate in half an hour which
could be a reasonable indicator because our program is simple and
has no huge bound (e.g., i<1000000). For terminating benchmarks,
theoretically, it is difficult to ensure that the programs can termi-
nate for all inputs. Except for our manual confirmation, we found
that existing tools also rarely determine them as non-terminating
which could be an indicator for the correctness of terminating cases.
Finally, we construct a benchmark set, including a non-termination
dataset with 56 real and reproducible bugs and a termination dataset
with 58 fixed versions. Note that 2 non-terminating programs re-
lated to undefined behavior are removed from our benchmark be-
cause they cannot be successfully reproduced.

6.2 Tool Assessment

In this section, our goal is to explore whether the termination of
programs in our benchmark can be determined correctly by state-of-
the-art termination analysis tools. In order to make our assessment
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Figure 12: Comparison results of the termination analysis

tools on the existing benchmark and ours.

more convincing, we select five existing tools for conducting our ex-
periment: UAutomizer [34], CPAchecker [9], 2LS [48], AProVE [31],
and T2 [11]. Among them, UAutomizer won the first prize in the
termination category from SV-COMP 2017 to SV-COMP 2021 [51].
CPAchecker and 2LS respectively won the silver and bronze for the
termination category in SV-COMP 2020 and SV-COMP 2021. The
performance of AProVE is demonstrated in the annual international
competition of Termination Tools, and AProVE got the top three
from SV-COMP 2017 to SV-COMP 2019. T2 is powerful and more
successful than Julia [49] and TNT [33], which is demonstrated
in [14]. Therefore, our selected five tools are representative tools
for termination analysis. The versions of these tools we used in the
experiments are: UAutomizer (0.2.2, provided version for SV-COMP
2022), CPAchecker (2.0), 2LS (0.9.5), AProVE (provided a version for
SV-COMP 2022), and T2 (2016 version). Note that, we tested these
five tools in Ubuntu 4.15.0 with a memory limit of 14.6 GiB of RAM,
a runtime limit of 15 min of CPU time, and a limit to 8 processing
units of a CPU, the same configurations used in SV-COMP.

We evaluate our benchmark on the state-of-the-art termina-
tion analysis tools, however, these tools cannot directly work on a
part of special variable types and functions in real-world projects.
Therefore, we first replace these special variable types with their
supported types and rewrite the functions with the form that can be
supported in the termination analysis tools, e.g., file type variables
are replaced by array. We find that the five tools all cannot work on
the C++ benchmark but can work on the C benchmark. Therefore,
14 recursion benchmarks involving C++ characteristics (e.g., class,
inheritance) cannot be accepted by these five tools. In conclude,
we test 100 benchmarks in C programs in total, and 90 of them are
loops, the others are recursions. We provide replication packages
(including log files, command lines, and our benchmark files) on
Zenodo13 and we make the packages available for others to allow
other researchers and practitioners to generate interesting ideas
and build upon our work.

13DOI:10.5281/zenodo.6548310

Table 2: The result of these five tools on our benchmark

involving special features. UA. refers to UAutomizer and Ap.

presents AProVE. UN refers to UNKNOWN and W refers to

WRONG.

Features (Total) Cate. UA. CPA 2LS Ap. T2 Avg. Perc.

Pointer

Manipulation (10)
UN 8 10 10 9 10 9.4 94.00%

Recursion (10) UN 5 7 7 7 10 7.2 72.00%
Array (16) UN 9 16 13 14 16 13.6 85.00%
Data Structure (14) UN 8 12 12 13 14 11.8 84.29%

Over�ow (16)
UN 10 5 10 11 8 8.8 55.00%
W 3 6 0 3 3 3.0 18.75%

Type (10)
UN 7 2 6 7 4 5.2 52.00%
W 0 4 0 1 3 1.6 16.00%

Bit Calculation (15)
UN 5 2 11 14 6 7.6 50.67%
W 3 6 0 0 4 2.6 17.33%

Total (67) UN+W 43 51 48 59 56 51.4 76.72%

Figure 12 shows the statistical results of these tools on our bench-
mark. Overall, the capabilities of these five tools to make correct
verdicts drop compared with existing benchmarks. Among them,
the capabilities of UAutomizer to make correct verdicts drop most,
from 71.47% correctly in SV-COMP 2021 [8] to 47% correctly in
our benchmark. Besides, as shown in Figure 12, all five tools pre-
fer to answer “UNKNOWN”, which indicates the complexity of
our benchmark is more than that in existing benchmarks. The
dropping in accuracy and the preference to answer “UNKNOWN”
involves two main reasons: (1) During our benchmark extraction,
we set the precondition of these programs to be non-deterministic,
which causes an over-approximation to their real preconditions
and makes termination analysis more complex. For example, in
Figure 3 and Figure 11, the value of 𝑙 depends on the value passed
when calling the function, and we set 𝑙 to be non-deterministic. (2)
The benchmark extracted from real-world projects may contain
complex computation (e.g., bit calculation, pointer manipulation),
various data structures (e.g., linked list), and data type (e.g., size_t).
Furthermore, the error rate of these tools is increased in Figure 12.
Among them, CPAchecker has the highest error rate (i.e., 14%),
more than 30 times the error rate in SV-COMP 2021 [8] (i.e., 0.45%).

We also tried to analyze the relationship between the success rate
and different categories 14. In general, these tools perform better
on the Logical Error category than General Programming Error cat-
egory, confirmed that existing tools mainly prove (non)termination
logically. For Logical Error benchmarks, since they have been man-
ually simplified from real-world projects, these tools could handle
them relatively easier. To our surprise, the non-terminating bench-
marks about Reusing Same Loop Iterator cannot be handled by all
tools although they look quite simple. For others, we could not find
a clear relation between the success rate and different leaf cate-
gories. Therefore, we further manually analyzed the failed cases
and summarized common features that revealed the weaknesses of
existing tools (refer to Section 6.3).

14Due to the space limit, more details including the results of each tool and the results
on each category can be found on our website [3].
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6.3 Analysis of the Unhandled Cases

Based on the results shown in Figure 12, compared with the results
on existing benchmarks, the error rate of four tools except 2LS
and the “UNKNOWN” rate of these five tools are raising on our
benchmark. Therefore, we further analyze these unhandled bugs
to explore the weaknesses of these existing tools.

Table 2 shows the results that the tools cannot handle bench-
marks involving special features. The first column represents the
special features that can significantly affect the results of the tools.
We also list the total number of benchmarks involving correspond-
ing features. The second column refers to the results that the tools
analyze these programs. First, all of these special features in the
first column can make the termination analysis tools prefer to an-
swer “UNKNOWN”, especially for the pointer manipulation. 94.00%
benchmarks involving pointer manipulation are unhandled by these
tools. However, these special features are commonly used in real
world, which indicates that the state-of-the-art tools are inefficient
and immature in analyzing the termination of real-world projects.

Except for making these tools prefer to answer “UNKNOWN”,
some features can affect the soundness of these tools (i.e., wrong
answers), which should be paid more attention. It is mainly because
some programming errors caused by Over�ow, Type, and Bit Calcu-

lation, which can change the ideal execution of programs, are not
well considered. For example, on average, the programs involving
Over�ow, Type, and Bit Calculation can introduce 18.75%, 16.00%
and 17.33% wrong results, respectively. This strongly indicates that
the termination analysis techniques should take these features into
account to make them sound and more practical. In addition, we
observe that 2LS does not have any wrong answers because these
potential programming errors have been considered [48].

Finding 13: We identify seven programming features that
can pose challenges to the existing termination analysis tools.
They tend to produce unknown and erroneous results (76.72%)
on the programs involving these features.

7 DISCUSSIONS

7.1 Implications

For program developers. Firstly, the findings from our study can
help avoid non-termination bugs for developers in developing pro-
grams. Specifically, when working on loops, developers should (1)
be careful with the writes to loop iterators and ensure the loop vari-
ables never end up staying constant; (2) be careful with the reuse of
loop iterators; (3) check for possible overflow and type conversion
errors, and carefully choose appropriate variable types. For recur-
sions, programmers should be careful about unexpected recursions
and pay attention to the recursion arguments and returns.

Secondly, we provide useful advice for troubleshooting non-
termination bugs. Specifically, fix strategies of infinite loops mainly
include: (1) Add missing constraints to loop conditions. This fixes
incorrectly chosen loop condition that is inconsistent with the pro-
grammers’ expectations. (2) Handle specific values. Most infinite
loops end up being stuck in one state. Developers should first iden-
tify the problematic program state and then handle specific values

(e.g., add an if statement and “break” the execution from the loop)
for the state. (3) Use loop counters. Loop counters can limit the max-
imum executions of the loop. This fix strategy is simple but may
lead to errors in subsequent procedures. It is a reasonable choice
when the value of each variable at the end of the loop has no impact
on the execution of the subsequent code. For infinite recursions, the
developers should identify if recursion is used intentionally. If so,
they mainly correct the argument as well as the return. Otherwise,
one should break from the recursive or cyclic calls.

For researchers. Based on the experimental results in § 6.2, we
noticed that these tools fail to work on real-world projects directly
and perform worse on our real-world benchmark than on exist-
ing well-established benchmarks. Therefore, existing termination
analysis tools should be improved in terms of their scalability and
applicability on real-world projects. Furthermore, general program-
ming errors, such as overflows, should be paid more attention in
future termination analysis research.

7.2 Threats to Validity

The collection of real-world projects may introduce bias. To miti-
gate this threat, we downloaded 1,600 C/C++ projects to expand
the evaluation scope with our best efforts. Furthermore, we further
selected five commonly used keywords to identify potential non-
termination-related commits. Due to the complexity of real-world
projects, the classification of the non-termination bugs inevitably
involves subjective biases. To address this, we filtered our dataset
based on well-thought-out criteria, mentioned in § 3.1. While con-
structing the non-termination benchmark, the necessary simplifi-
cation and abstractionmay change the original program behaviors.
To mitigate such a threat, each benchmark extracted was inspected
by two authors independently and any discrepancy was discussed
until a consensus was reached.

8 CONCLUSION

In this paper, we conducted a study of 445 non-termination bugs
collected from 199 real-world OSS projects. With substantial man-
ual efforts, we presented a systematic taxonomy of non-termination
bugs including 16 categories of infinite loops and 8 groups of re-
cursions, and further extracted a novel benchmark including 114
programs simplified from these bugs. Moreover, we evaluated five
state-of-the-art termination analysis tools using our newly con-
structed benchmark and identified challenges that these tools face.
Finally, we highlighted the limitations of existing termination anal-
ysis techniques and discussed new research directions.
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