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ABSTRACT

Programming errors enable security attacks on smart contracts,
which are used to manage large sums of financial assets. Automated
program repair (APR) techniques aim to reduce developers’ burden
of manually fixing bugs by automatically generating patches for a
given issue. Existing APR tools for smart contracts focus on mitigat-
ing typical smart contract vulnerabilities rather than violations of
functional specification. However, in decentralized financial (DeFi)
smart contracts, the inconsistency between intended behavior and
implementation translates into the deviation from the underlying
financial model, resulting in monetary losses for the application and
its users. In this work, we propose DeFinery—a technique for auto-
mated repair of a smart contract that does not satisfy a user-defined
correctness property. To explore a larger set of diverse patches
while providing formal correctness guarantees w.r.t. the intended
behavior, we combine search-based patch generation with seman-
tic analysis of an original program for inferring its specification.
Our experiments in repairing 9 real-world and benchmark smart
contracts prove that DeFinery efficiently generates high-quality
patches that cannot be found by other existing tools.
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1 INTRODUCTION

Smart contracts are computer programs that are executed on top
of blockchain. In this work, we focus on smart contracts that are
implemented in Solidity—the most popular smart contract pro-
gramming language. One of the most prominent applications of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559560

smart contracts is Decentralized Finance (DeFi). DeFi protocols are
blockchain-based applications that enable a wide range of crypto-
financial services, allowing users to obtain and manage digital
assets, usually tokens [29]. Listing 1 shows an implementation of a
transfer functionality in a token smart contract. By invoking the
internalTransferFrom function, a user can send some of the
tokens he/she owns to another blockchain address.

With more than $54 billion locked in DeFi smart contracts [21],
it becomes critical to ensure that their implementations are free
from bugs and vulnerabilities. Yet, the adoption of DeFi protocols
is accompanied by numerous security exploits leading to billions of
dollars being stolen from the underlying smart contracts. According
to a recent report [12], as much as $1.3 billion were lost in smart
contract hacks in 2021. Many of these attacks were enabled by
software bugs or security issues left in the smart contract code [3,
5, 13, 16, 22]. With automated program repair (APR), many of such
bugs could be fixed automatically. However, the vast majority of
existing work on smart contract repair is focused on template-
based patching of common security issues, which are identified as
patterns in smart contract code through static analysis or symbolic
execution [15, 19, 23, 33]. For example, SmartShield [33], deploys
pre-defined rectification strategies if a smart contract contains one
of the three code patterns: state changes after external calls, missing
checks for out-of-bound arithmetic operations, and missing checks
for failing external calls. If unaddressed, these issues may cause
reentrancy, integer over- and underflow, and “unchecked send”
vulnerabilities that have been extensively studied [1, 4, 30].

1 contract iToken ... { ...

2 function _internalTransferFrom(

3 address _from , address _to ,

4 uint256 _value , ...) internal { ...

5 + require(_to != _from);

6 uint256 balancesFrom = balances[_from];

7 uint256 balancesTo = balances[_to];

8
9 require(balancesFrom >= _value);

10 uint256 balancesFromNew = balancesFrom - _value;

11 balances[_from] = balancesFromNew;

12 uint256 balancesToNew = balancesTo + _value;

13 balances[_to] = balancesToNew;

14 }

15 }

Listing 1: Simplified source code of iToken [20]

While many attacks are indeed attributed to well-known smart
contract vulnerabilities, numerous exploits happened due to se-
mantic (logical) bugs in smart contract code that are unlikely to
be captured by a universal vulnerability pattern. Preventing logi-
cal issues is especially important for DeFi smart contracts, which
encode the financial model of the application, thereby regulating
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the interactions between economic agents in the DeFi ecosystem—
regular users and other DeFi protocols. Discrepancy between the
intended behavior and smart contract implementation may, there-
fore, enable harmful user behaviors, such as buying tokens at an
abnormal exchange rate [13] or getting them for free [3], borrowing
more tokens than should be allowed [5], and many others. Some of
these issues only manifest in a violation of a high-level functional
specification defined for a specific DeFi protocol, and cannot be
encoded as a low-level code pattern. Likewise, these bugs cannot be
fixed by existing pattern-based analyses and patching techniques
that do not capture behavioral aspects of smart contract operations.

One example of such issue is the iToken hack [16] that we use
to illustrate our technique (Listing 1). Due to the specifics of users’
balance update (lines 10-13), the implementation (twice audited by
top security firms) is prone to token duplication if the parameters
“ from” and “ to” are equal. An attacker used this issue to artifi-
cially increase his iToken balance, which resulted in $8 million lost
from the attack [16]. Although being difficult to detect through the
existing vulnerability patterns, this issue can easily be identified as
a violation of a basic token transfer invariant: “the sum of sender
and recipient’s balances should remain constant”.

At the same time, as important as it is to remove the problematic
behavior from a smart contract, it is equally critical that the remain-
ing valid behavior satisfying the property is preserved by the patch.
Code modifications that are too restrictive can remove essential
functionality from a smart contract, breaking its core logic and
introducing additional issues. For example, adding an unsatisfiable
assertion, e.g., require(false) as line 5 in Listing 1 would have
prevented the exploit of the token duplication issue. But it would
also deprive the users and the smart contract itself of the ability to
execute the key operation on a token, damaging its usability.

In this work, we propose an approach that enables property-based
automated repair of a smart contract while providing formal correct-
ness guarantees w.r.t. its original valid behavior. Given (1) a smart
contract (or a set of smart contracts with one of them known to be
vulnerable), (2) a property, and (3) a trace leading to its violation,
our tool DeFinery generates a patched version of a smart contract
which satisfies the property at all times but is conditionally equiv-
alent to the original version under valid, i.e., non-bug-triggering,
inputs. To find a smart contract modification that satisfies these con-
straints, we need a high level of flexibility in the patch generation
process—as can be seen in Sect. 4, DeFi smart contract issues in-
clude missing or incorrect pre- and postconditions, missing variable
updates, etc. Since this level of flexibility is hard to obtain using pre-
defined fixing strategies, we perform search-based patch generation
that mutates the original smart contract using genetic algorithm
search. To maintain the readability of a smart contract and improve
the efficiency of our technique, our patch generation prioritizes
smaller changes as well as modifications that are more likely to fix
a smart contract issue. To assess validity of a patch, we perform
equivalence checking between semantic information inferred from
valid executions of an original smart contract and executions of
a patched smart contract under similar—valid—inputs. We gather
these semantic information using symbolic execution—a program
analysis technique for evaluating the behavior of a program on
all possible inputs by assigning symbolic (instead of concrete) val-
ues to input parameters. By striking the balance between scalable
exploration of diverse patches and strong correctness guarantees,

DeFinery generates one of the correct fixes for the iToken example:
adding a check that does not allow parameters “ from” and “ to”
to be equal (line 5, equivalently can be inserted after line 13).
Contributions.We summarize our contributions as follows:
• We introduce a novel automated repair approach for smart con-
tracts that can fix violation of functional specification expressed
as a property while providing solid correctness guarantees.

• We propose a set of functional properties that help identify and
fix executions violating technical and/or economical security [3,
5, 13, 16, 22] of a smart contract.

• We implement the approach as a tool and evaluate it on a dataset
of 9 vulnerable smart contracts constructed from previously ex-
ploited DeFi protocols and a SmartBugs benchmark dataset [8].

2 RELATEDWORK

The majority of the existing tools for smart contract repair are
only able to patch a number of well-known vulnerabilities. These
tools include SmartShield [33], sGuard [19], EVMPatch [23],
Elysium [31], Aroc [15], and HCC [11]. Most of them rely on static
analysis or symbolic execution tools to identify whether a smart
contract contains a specific vulnerability and choose a fixing pattern
accordingly. SCRepair [32]—a genetic mutation-based APR tool,
also relies on a static vulnerability detector for fault localization. It
also utilizes a set of test cases as a weak correctness criteria, while
they may not be available for smart contracts and may cause test
overfitting of the generated patches. Different from all these tools,
our approach enables automated repair of semantic smart contract
issues that result in violation of functional specification and, thus,
financial losses. DeFinery provides strong correctness guarantees
for the generated patches, while not requiring access to test cases
or historical transaction data, which may not always be available.

Adjacent lines of work address the problem of updating a vul-
nerable smart contract that has already been deployed [18] or en-
forcing runtime validity of smart contracts with respect to the
user-provided invariant [17]. However, these techniques do not
perform automated repair of a smart contract.

3 METHODOLOGY

Figure 1 shows a high-level overview of DeFinery architecture. It
comprises two main components: a semantic analysis module and
a patch generation module. (1) First, semantic analysis (SA) module
symbolically executes an input smart contract w.r.t. a property and
a sequence of functions leading to its violation, which we refer to
as a trace. We assume the property is provided by the user, while
the trace can be generated by a smart contract verification tool. (2)
For each execution path, we generate a “test case” by setting sym-
bolic variables to concrete values generated by Z3 SMT-solver [6].
Concrete values restrict the execution of the contract towards a spe-
cific execution path, which allows faster checking of whether the
modified code behaves similarly to the original for given concrete
inputs. To enable more thorough assessment of patches, DeFinery
also summarizes the observed valid behaviors of an input contract
in a symbolic summary—a first-order logic (FOL) formula over a
set of input and output variables. (3) Given a set of function names
appearing in the trace, test cases, and a symbolic summary—all
generated by the SA module, the patch generation (PG) module
mutates these functions’ code using a genetic algorithm and a set of
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Figure 1: Tool architecture.

heuristics. (4) For each generated candidate, it invokes the symbolic
execution component to check the test cases. If all test cases pass,
the patch might be plausible. In this case, (5) the SA module is used
to build a symbolic summary for a patched smart contract. Z3 is
then used to perform conditional equivalence checking between the
original and the patched symbolic summaries under valid inputs.
Symbolic Analysis. We perform symbolic analysis using our
own source-level symbolic execution engine for Solidity smart
contracts developed in C++. Binary is available in supplementary
material [28]. To perform symbolic execution, we construct a har-
ness function that orchestrates functions of the contracts as call
sequences, based on the trace provided as input. This function is
defined in a separate Main smart contract. The harness for iTo-
ken (Listing 1) is shown in Listing 2. We define a smart contract
named User with a function transferTo(), which, in turn, calls
internalTransferFrom() of iToken. The parameter from in
the latter function, then, becomes User’s address. For simplicity,
we assume that to can be an address of one of three smart con-
tracts: User, Main, and iToken. This assumption is represented by
a constraint on the symbolic variable TO in line 4 of Listing 2. Pa-
rameter value corresponds to a symbolic variable VAL, which is
any positive unsigned integer. The harness ends with a declaration
of a property in the form of an assertion, which can be built from
variables visible in the Main contract and Solidity operators. To
check that the sum of the token balances is constant (line 9), we
record the balances of mentioned three contracts before (lines 2-3)
and after (lines 7-8) the execution of transferTo() (line 6).

1 function _harness_ () { ...

2 uint256 init_sum = balances[User] + balances[Main]

3 + balances[iToken ];

4 assume(TO == User || TO == Main || TO == iToken);

5 // Test Case: TO = Main; VAL = 100;

6 User.transferTo(TO, VAL);

7 uint256 res_sum = balances[User] + balances[Main]

8 + balances[iToken ];

9 declare_property(init_sum == res_sum);

10 }

Listing 2: Harness function example

For the iToken example, symbolic execution generates 5 valid
execution paths that satisfy the property and 1 invalid path that
violates it. For each path, DeFinery generates a test case by assign-
ing concrete values to symbolic variables in the harness . Line 5 in

Listing 2 shows one such instrumentation corresponding to a valid
path. While this test suite is insufficient as a correctness criteria, it
helps to quickly discard some incorrect patches before moving on to
a more rigorous correctness check relying on symbolic summaries.

To build a symbolic summary S of the trace, our symbolic engine
maintains a symbolic state for each possible path storing a path
condition—a FOL formula describing the conditions satisfied by the
branches taken along that path, and effect—a mapping of variables
to symbolic values or expressions. A symbolic summary of a path is
a conjunction of its path condition and symbolic state. For example,
a summary of the path captured by the values shown in line 5
of Listing 2 is shown in line 1 (path condition) and line 2 (effect)
in Eq. (1). Line 3 in Eq. (1) summarizes a path that does not satisfy
a check in line 9 of Listing 1—the execution reverts, and no effects
are recorded. A summary S of the trace is a disjunction of its path
summaries, as partially shown in Eq. (1). The information about
invalid paths, e.g., for (TO == User ∧ balancesFrom ≥ VAL), is not
included in a summary but is recorded for future use.

S = (TO == Main ∧ balancesFrom ≥ VAL ∧
balances[ from] −= VAL ∧ balances[ to] += VAL) ∨
(TO == Main ∧ balancesFrom < VAL) ∨ ...

(1)

To facilitate fixing reentrancy [30], we also label traces that exhibit
reentrant behavior, i.e., contain an external call and a callback to
the same or another contract. This pattern helps efficiently handle
both same- and cross-contract reentrancy, as shown in Sect. 4.
Patch Generation. The patch generation module of DeFinery is
based on SCRepair [32]. DeFinery extends a set of statements that
are synthesized by SCRepair, integrates our semantic analysis mod-
ule for patch evaluation, and adds heuristics for selecting changes
that would likely fix the issue. We use three mutation operators:
• Insert(St) generates a statement St of one of three types in the
following order: (1) a require() statement, (2) an assignment, (3)
any expression appearing in the same function. For optimization
purposes, we only insert statements at the beginning or the end
of the block: a body of a function or of an if-else statement.

• For the same reason, we only select expressionswithin a require()
statement as a target for Replace(Exp), which replaces an ex-
pression Exp with another expression of the same type;

• Move(St) moves the statement St to the beginning or the end
of the block. For most of our experiments, using only Insert,
Replace operators and their combination has been proven most
efficient, unless an invalid trace falls into the reentrancy pattern.
In this case, we fix the contract by enforcing the Check-Effect-
Interaction pattern, i.e., by moving the function call to the end of
the block following the state update (see rows 8–9 of Table 1).
These heuristics were proved efficient for our experimental

dataset, but we leave extending the patch search space for future
work. To guide the search, we use two fitness functions: (1) the
number of invalid traces that were fixed and (2) the number of valid
traces that remain valid. We also use the patch simplicity fitness
function from SCRepair prioritizing patches with less mutations.
Conditional Equivalence Checking. To ensure that a patched
version behaves similarly to the original smart contract, we compute
a symbolic summary S′ of its executions under the inputs, for which
the original contract shows valid behavior. To determine if a patched
contract’s path corresponds to such valid inputs, we conjunct its
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Table 1: A summary of DeFinery evaluation.

# Smart Contract Patch Property Result
DeFinery sGuard SmartShield

1 xForce [10] + require(result); User didn’t receive xForce if he didn’t provide any Force ✓ ✗ ✓

2 Confused Sign [24] - require(amt >= bal[msg.sender ]);

+ require(amt <= bal[msg.sender ]);

User can’t withdraw more than he deposited;
he can receive a refund ✓ ✗ ✗

3 Value [7] + initialized = true; The staked token can’t be changed ✓ ✗ ✗

4 Uranium [14]
require(balance0 * balance1 >=

- _res0 * _res1 * 10**2);

+ _res0 * _res1 * 100**2);

(Constant) product of pool reserves
is non-decreasing ✓ ✗ ✗

5 Refund NoSub [26] + balances[msg.sender] = 0; Sum of balances is constant; the user can receive a refund ✓ ✗ ✗

6 Unprotected [27] + require(owner == msg.sender); Owner can only be changed to a trusted address ✓ ✗ ✗

7 iToken [20] + require(_from != _to); Constant sum of balances is preserved by a transfer ✓ ✗ ✗

8 cToken [9]
- amp.transfer(borrower , amount);

borrowBalance[borrower] += amount;

+ amp.transfer(borrower , amount);

Protocol balance can’t decrease ✓ ✗ ✗

9 EtherBank [25]
- msg.sender.call.value(amount);

userBalances[msg.sender] = 0;

+ msg.sender.call.value(amount);

User’s sum of balances is constant ✓ ✓ ✗

path condition with negated path conditions of invalid trace(s). If
the resulting clause is satisfiable, this path does not correspond
to bug-triggering inputs and the updated set of path conditions is
added to a path summary. For example, the (partial) summary S′ for
the patched version shown in Listing 1 is demonstrated in Eq. (2).

Then, we build an equivalence assertion between symbolic sum-
maries of the original and patched versions—S (Eq. (1)) and S′ (Eq. (2)),
respectively. An equivalence assertion is a FOL formula Φ that helps
determine logical and, thus, functional equivalence between S and
S′: Φ = ¬(S ⇔ S′) [2]. We provide this formula to Z3, which either
proves that Φ cannot be satisfied, meaning that the executions are
equivalent and the patch is correct, or finds a counterexample indi-
cating that smart contracts produce different outputs for at least
one input—in this case, we continue with the patch generation.

S′ = (TO == Main ∧ TO ≠ User ∧ balancesFrom ≥ VAL ∧
¬(TO == User ∧ balancesFrom ≥ VAL) ∧
balances[ from] −= VAL ∧ balances[ to] += VAL) ∨
(TO == Main ∧ TO ≠ User ∧ balancesFrom < VAL ∧
¬(TO == User ∧ balancesFrom ≥ VAL)) ∨ ...

(2)

4 PRELIMINARY EVALUATION

In this section, we report the results of our evaluation on 9 smart
contracts that include 5 previously exploited DeFi smart contracts
and 4 smart contracts from the SmartBugs dataset [8]. The choice
of experimental subjects aims to prove that DeFinery is applicable
to both DeFi and regular smart contracts. It also shows that issues
caused by typical vulnerabilities can be fixed by DeFinery too. We
simplified some smart contracts to allow processing them with our
symbolic engine. Their source code and results are available on our
website [28]. We ran the experiments on MacOS Monterey v.12.3.1,
32GB RAM and 2 GHz quad-core Intel Core i5 processor.

Table 1 summarizes the evaluation of our tool on 9 smart con-
tracts, showing the correct patch found by DeFinery and the prop-
erty that was used. The results show various patches that fix both

common smart contract issues (“unchecked send” (1), reentrancy
(8,9)) as well as missing or wrong pre- and post-conditions (2,4,6,7)
and variable updates (3,5). On average, it took DeFinery 53 seconds
to find a correct patch. We repeated each experiment 5 times.

We compare DeFinery to sGuard [19] and SmartShield [33].
Two other tools, EVMPatch [23] and Elysium [31], are not available
at the time of the evaluation. While we reused part of SCRepair
[32], we had to modify its implementation for it to compile, thus,
we could not use it for comparison. sGuard and SmartShield
can only fix common vulnerabilities and cannot repair most smart
contracts in our dataset. sGuard can only repair reentrancy in the
EtherBank smart contract (9) after minor modification of the code.
SmartShield fixes only the “unchecked send” issue in xForce (1).

The $50M bug in Uranium (4) caused by using a wrong con-
stant [13] is one of the issues that can be fixed by DeFinery but
not existing tools. It cannot be found or fixed by a pattern, but even
if the faulty statement is localized, SCRepair will try to replace it
with a completely new one, which is inefficient due to the com-
plexity of the correct statement. In closing, our evaluation shows
that DeFinery can efficiently repair smart contracts that cannot be
fixed by other tools, while preserving correctness of the remaining
behavior.

5 CONCLUSION AND FUTUREWORK

In this work, we formulate the problem of property-based auto-
mated repair of smart contracts. We propose an approach that
makes a first attempt at fixing violations of functional specification
in smart contracts. We also demonstrate that combining semantic
inference with search-based patch generation is a promising direc-
tion for smart contract repair. Our future work includes extending
the considered patch search space and improving fault localization
to enable more effective patch generation. We plan to expand the
experimental dataset and evaluate the impact of our patches on gas
consumption. We also consider integrating a verification tool that
can automatically find the trace leading to the property violation.
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