TECHNOLOGICAL
UNIVERSITY

' SINGAPORE

Property-Based Automated
Repair of DeFi Protocols

Palina Tolmach “*, Yi Li *, Shang-Wei Lin "
" Nanyang Technological University
*Institute of High Performance Computing, A*STAR

ASE 2022
Oct 12, 2022

Fcrd NANYANG
TECHNOLOGICAL

% UNIVERSITY
SINGAPORE

Definitions

Blockchain:

Append-only distributed database of global state &

Smart Contract:
Program that can write into blockchain

Primary application:
“Decentralized” finance — banking, exchanges, etc.

B |

BT NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Solidity Smart Contracts & DeFi

 Computer programs running on blockchain
 Govern billions of dollars that can be stolen

contract Token {

mapping (address => uint256) public balances;

string public name;

constructor(string memory _tokenName) public payable {
name = _tokenName;
deposit();

}

degosit(_) _ _ _ _
posii function deposit() public payable {

balances[msg.se!; balances[msg.sender] += msg.value;

}

DeFi Attacks

S1.3bn lost in 2021
S1.6bn lost in 2022H1

Common Issues

* Bad practices, common mistakes
* Integer overflows
* SC-specific security issues

* Detectable by static analysis

Vasily Sidorov
@bazzilic

Is this the most expensive integer overflow in history?
$5m lost in a Pizza DeFi hack based on good ol'
overflow.

halborn.com/explained-the-...

BT NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Fidelity Issues

e “Logical” bugs

* Especially problematic in DeFi

* Impossible to find using patterns

: Kurt Barry
b @Kurt_M_Barry
Smart contracts are unforgiving of the tiniest
errors...COMP bug is a tragic case of ">" instead of

">=" (in two code locations). Two characters, tens of
millions of value lost.

Automated repair of logical issues
in DeFi smart contracts

BT NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

(Typical) Smart Contract Repair

|
|
O™
o
il
i

Buggy Fault Patch Patch Fixed
smart contract localization generation Validation smart contract
\)
Y

Pattern-based vulnerability detection and patch generation
limited to a set of predefined vulnerabilities

BT NANYANG
» < | TECHNOLOGICAL
UNIVERSITY

SINGAPORE

iToken Duplication Issue (S8M loss)

contract iToken ... {

function transfer(address _from, address _to, uint256 _value)
public returns (bool res) { :
require(_from != to);
uint256 _balancesFrom = balances[_from];
uint256 _balancesTo = balances[to];

cB &ednavior

require(_balancesFrom >= _value);

uint256 _balancesFromNew = _balancesFrom - _value;
balances[from] = _balancesFromNew;

uint256 _balancesToNew = _balancesTo + _value;
balances[_to] = _balancesToNew;

«the sum of sender and recipient’s balances
before and after transfer doesn’t change»

https://fullycrypto.com/bzx-suffers-token-duplication-incident M 6

DeFinery

* Automated property-based repair for smart contracts

BT NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

* Combining search-based patch generation with semantic inference

Symbolically executes
the trace, generates
valid and invalid test
cases

Generates patches
using AST-based
mutations, evaluates
the patches using test
cases

INPUT SEMANTIC PATCH
ANALYSIS GENERATION
1 e m e e e e mmm ==
h O Symbolic e \
Smart Execution ! 3 !
contract | Mutation- |
¢ :— based patch [€&— :
Execution @ Test Cases : generation :
_ |
trace —» Generation : L NO :
| /- ! 4 1
oropert G) Y N e TestCases | | |
roperty Equivalent? _ l\ Passed? ,l
\
} NEQ" ~~~~ A 77
v EQ
Patched
smart
contract

Checks conditional
equivalence between
original and patched
smart contracts based on
symbolic summaries

Evaluation

BT NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

e Dataset: 9 smart contracts (5 exploited DeFi protocols , 4 from SmartBugs dataset)
* Average time: 53 seconds
* Fixes: missing pre-/postconditions and variable updates, common security issues

Smart Contract Patch Proper Result
perty DeFINERY SGUARD SMARTSHIELD
1 xForce + require(result); User didn’t receive xForce if he didn’t provide any Force v X v
. - i = . User can’t withdraw more than he deposited;
2 Confused_Sign requ%re(amt >= bal[msg.senderl]); ‘ P v X X
+ require(amt <= bal[msg.sender]); he can receive a refund
3 Value + initialized = true; The staked token can’t be changed v X X
require(balance® x balancel >= Constant) product of pool reserves
4 Uranium - _res@® * _resl * 10%%2); ()P . P v X X
is non-decreasing
+ _res@ * _resl * 100x*2),;
5 Refund_NoSub + balances[msg.sender] = 0; Sum of balances is constant; the user can receive a refund v
6 Unprotected + require(owner == msg.sender); Owner can only be changed to a trusted address v
7 iToken + require(_from != _to); Constant sum of balances is preserved by a transfer v
- amp. transfer (borrower, amount);
8 cToken borrowBalance[borrower] += amount; Protocol balance can’t decrease v X X
+ amp. transfer (borrower, amount);
- msg.sender.call.value(amount);
9 EtherBank userBalances[msg.sender] = 0; User’s sum of balances is constant v v X

msg.sender.call.value(amount);

INPUT SEMANTIC PATCH
ANALYSIS GENERATION
Y @ Symbolic RS \
Smart Execution ! 3 1
contract I Mutation- 1
¢ : based patch :
; @ Test Cases ! generation !
Execution G i | 1
trace eneration : l NO :
v YES || ® !
@ . Test Cases |
Property Equivalent? " Passed?)
A Y
NEQ™~~~~~~
v EQ |
Patched
smart
contract

Main contributions

* Automated property-based repair for smart contracts

BT NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Thanks!

DX} vyi_li@ntu.edu.sg
$T @liyistc

* Combination of semantic analysis and search-based repair

* Public repository: https://github.com/polinatolmach/DeFinery

https://github.com/polinatolmach/DeFinery

