
VULTRON: Catching Vulnerable Smart Contracts
Once and for All

Haijun Wang∗, Yi Li∗, Shang-Wei Lin∗, Lei Ma†, Yang Liu∗
∗Nanyang Technological University, Singapore. {haijun.wang,yi li,shang-wei.lin,yangliu}@ntu.edu.sg

†Kyushu University, Japan. malei@ait.kyushu-u.ac.jp

Abstract—Despite the high stakes involved, smart contracts are
often developed in an undisciplined way thus far. The existence
of vulnerabilities compromises the security and reliability of
smart contracts, and endangers the trust of participants in their
ongoing businesses. Existing vulnerability detection techniques
are often designed case-by-case, making them difficult to gener-
alize. In this paper, we design general principles for detecting
vulnerable smart contracts. Our key insight is that almost all
the existing transaction-related vulnerabilities are due to the
mismatch between the actual transferred amount and the amount
reflected on the contract’s internal bookkeeping. Based on this, we
propose a precise and generally applicable technique, VULTRON,
which can detect irregular transactions due to various types of
adversarial exploits. We also report preliminary results applying
our technique to real-world case studies.

I. INTRODUCTION

Smart contracts are computer programs that execute on
top of blockchains to manage large sums of money, carry
out transactions of assets, and govern the transfer of digital
rights between different parties. They provide a mechanism to
automatically perform transactions in a trackable and immutable
way without an authorized third party. Due to these unique
advantages, smart contracts are gaining a lot of popularity and
attraction in recent years. Many believe that this technology has
the potential to reshape a number of industries, e.g., banking,
insurance, supply chains and financial exchange.

Although smart contracts are promising, an increasing
number of high-profile attacks resulting in financial losses have
been reported recently. Such attacks become possible due to the
fact that many smart contracts are developed in an undisciplined
way, resulting in vulnerabilities easily exploited by adversaries.
One notorious example is the “DAO” attack, i.e., an attacker
stole more than 3.5 million Ether (equivalent to about $45
million USD at that time) from the “DAO” contract [1].

Since then, a lot of attempts were made to detect vul-
nerabilities in smart contracts [1], [2], [3]. However, these
techniques all follow a case-by-case manner: contract programs
are analyzed and matched with attack patterns observed before.
Therefore, the precision and recall of these techniques largely
depend on how well the patterns are specified and how
comprehensive the pattern collections are. ContractFuzzer [3]
proposes seven specific patterns observed in contract programs
to detect seven kinds of vulnerabilities. Since the collected
patterns are limited and they are modeled at the syntactic-
level, the analysis suffers from both false negatives and
false positives. For example, the pattern used for detecting
inconsistencies in exception handling (so called exception

disorder [3]) only checks whether functions in a nested call
chain throw exceptions. It is considered a vulnerability if the
root function does not throw the exception but the subsequent
calls do. This produces false positives if all exceptions are
properly handled along the call chain. Oyente [4] formulates
previously known vulnerabilities as intra-procedural properties,
and then uses symbolic execution to verify these properties.
Similarly, Zeus [5] relies on model checking to discharge
the properties derived from previously known vulnerabilities
and user-specified policies. A more recently proposed tech-
nique, Securify [2], performs a domain-specific verification on
smart contracts. Again, it assumes that domain patterns for
specific types of vulnerabilities are provided in advance. Other
works [1], [6], [7] in the same direction all require existing
patterns being provided in one way or another.

To overcome these issues, our key insight is that almost all
the existing vulnerability patterns (defined at the syntactic-level)
can be traced back (semantically) to the mismatch between
the actual transferred amount in a transaction and the amount
reflected on the contract’s internal bookkeeping. Based on this,
we propose VULTRON, a precise and general smart contract
vulnerability detection technique, which allows to drill down
to the very root of the problem. The essence of VULTRON
is to build an oracle that can effectively distinguish irregular
transactions (usually results of malicious exploits) from normal
ones. Our oracle is general enough to cover the previously
reported vulnerabilities without the limitation to any particular
smart contract programming language or blockchain technology.
We demonstrate our approach on Ethereum platform [8],
however, the principles behind our approach can be easily
adapted and implemented on other platforms. The proposed
oracle improves and enables a wide spectrum of downstream
analysis techniques, including static analysis such as symbolic
execution [1], program verification [5], and dynamic techniques
(e.g., testing and fuzzing [3], [7]).

II. TOWARDS A VULNERABILITY DETECTION ORACLE

Vulnerabilities in smart contracts are usually caused by
inconsistencies between the implementations and the intended
semantics [5]. Transaction-related vulnerabilities can be (most
of them have already been) exploited to carry out attacks, e.g.,
stealing funds from vulnerable contracts. In this section, we
discuss the fundamental principles and specific challenges for
detecting transaction-related vulnerabilities in smart contracts.

A. A Simple Contract Model

For demonstration purpose, we consider a simplified model
of smart contract. A contract can be abstracted as a tuple
C := 〈a, bal, P,M〉, where a ∈ Addr is a unique address
identifying the contract, bal ∈ N is the balance of the contract,
P ∈ 2Addr is a set of account addresses of participants, and
M : P 7→ N is an internal bookkeeping variable recording the
account balances of participants. A transaction t := 〈s, r, v〉,
if performed successfully, deducts v amount from the sending
account’s balance (s.bal where s ∈ Addr) and transfers the
funds to a receiving account at address r ∈ Addr. We denote
the values of a variable x before and after the transaction as
pre(x) and post(x), respectively.

Note that in Ethereum’s case, each contract has a contract
balance (bal) representing the total amount of funds remaining
in the contract, which is out of the contract program’s control.
Apart from that, contracts managing shared assets also need to
keep track of participants’ individual account balances, called
the bookkeeping balances. Contract programs uses an internal
bookkeeping variable (e.g., balances in Fig. 1), which is
modeled as M , to record the bookkeeping balances.

B. Balance and Transaction Invariants

Ethereum smart contracts are similar to traditional computer
programs in the sense that they are written in a Turing-complete
language, e.g., Solidity [9]. However, smart contracts also
have very special properties due to their particular usecases.
Smart contracts are mainly used to manage the transfer of
assets and perform bookkeeping [10]. Furthermore, all contract
vulnerabilities which have direct financial implications are due
to inconsistencies happened during transactions. Therefore,
given that the majority of smart contracts share very specific
data structures and underlying business logics, it is possible to
come up with common invariants for them, whereas this is not
possible to do for general purpose computer programs. More
specifically, the reasonable smart contracts usually satisfy the
following two invariants for their transactions.
Definition 1 (Balance Invariant). For every contract
〈a, bal, P,M〉,

∑
p∈P M(p)−bal = K, where K is a constant.

The balance invariant requires that the difference between
the contract balance and the sum of all participants’ bookkeep-
ing balances remain constant, before and after a transaction.
This invariant is defined within a single contract, i.e., intra-
contract, and it ensures the integrity of the bookkeeping
balances. If the bookkeeping balances are not updated correctly
after a transaction (which violates the balance invariant), then
it indicates that an irregular event has happened during that
transaction. For example, when an underflow happens during
an outgoing transaction, the contract balance naturally goes
down while the bookkeeping balances go up instead.
Definition 2 (Transaction Invariant). For every outgoing
transaction 〈C.a, r, v〉, ∆(M(r)) + ∆(r.bal) = 0, where
∆(x) = post(x)− pre(x).

The transaction invariant requires that the amount deducted
from a contract’s bookkeeping balances is always deposited into

the recipient’s account. This invariant is inter-contract, and it is
important for ensuring the consistency between the both ends of
a transaction. Note that the consistency of incoming transactions
can be guaranteed by the balance invariant or other contract’s
outgoing transaction invariant. In some cases, a transaction
may fail in the middle and funds are not transferred, but it
may not be captured by the contract’s bookkeeping variables,
resulting in a vulnerability.

C. Challenges

Now we discuss the challenges involved in materializing
the proposed invariants as an oracle and automated tool for
detecting irregular transactions due to vulnerabilities.

Identifying Bookkeeping Variables. The key ingredient of
both invariants is the bookkeeping variable M . Almost all
contracts performing meaningful transactions among multiple
parties contain such a variable, usually coming with the name
balances or balanceOf. Some contracts do not have
bookkeeping variables, e.g., King of the Ether [11]. In these
cases, a ghost variable and its corresponding updates can
be inserted by our analysis. The bookkeeping variable can
either be given by the user as an input to our approach or be
automatically identified using taint analysis [12]. The idea is
to first perform several normal transactions and observe how
all the global variables in the contract program change, to find
one that always matches with the performed transactions.

Handling Non-Currency Assets. The bookkeeping balances of
some contracts may not refer to the crypto-currency directly.
This is often the case in ERC20-compliant contracts. In these
contracts, participants’ digital assets are reflected in terms of
the number of available tokens rather than Ether. These non-
currency assets can be converted to Ether by multiplying
with their prices. The current price of the said assets is stored in
some location (e.g., the variable price), which can be identified
with similar techniques used for locating bookkeeping variables.

Verifying Invariants. The invariants are then translated to
program assertions and then be verified either statically or
dynamically. The gas consumption of a transaction should also
be taken into account in the translation, which is not included
in our contract model and invariants. The assertions can be
inserted into the compiled Ethereum Virtual Machine (EVM)
bytecode, at the end of every function, which can then be
checked by existing verification tools [2], [5]. Alternatively,
we can instrument the EVM itself to enforce the invariants at
runtime. This will prevent irregular transactions from happening
even if the deployed contract programs are vulnerable.

III. VULTRON ON EXISTING VULNERABILITIES

We have implemented a prototype for our approach, and
tested it on the Truffle Suite [13]. Then, we review the previ-
ously reported vulnerabilities of Ethereum smart contracts and
show how our approach can help detect these vulnerabilities.

Reentrancy. The atomicity and sequentiality of transactions may
let programmers believe that, when a non-recursive function
is invoked, it cannot be re-entered before its termination.

1: contract SimpleDAO {
2: mapping (address => uint) public balances;
3: function donate(address to) {
4: balances[to] += msg.value;
5: }
6: function withdraw(uint amount) {
7: require(balances[msg.sender] >= amount);
8: msg.sender.call.value(amount)();
9: balances[msg.sender] -= amount;
10: }
11: ...
12: }

Fig. 1. A simple contract susceptible to the “DAO” attack.

1’: contract Attacker {
2’: SimpleDAO public dao = SimpleDAO(0x354...);
3’: ...
4’: function () public payable {
5’: dao.withdraw(...); //Reentrancy
6’: }
7’: ...
8’: }

Fig. 2. Reentrancy attack on the simple “DAO” contract.

However, this is not always the case, due to the fallback
function introduced by Solidity. Take the simplified DAO
attack for example. Two contracts, SimpleDAO (the victim,
in Fig. 1) and Attacker (in Fig. 2), are deployed on the
blockchain. The reentrancy vulnerability of SimpleDAO can
be exploited by Attacker as follows. (1) Attacker invokes
the donate function of SimpleDAO to donate 1 wei, and the
balance of SimpleDAO is increased by 1 wei automatically
and implicitly. Then, the bookkeeping balance of Attacker
is increased by 1 wei accordingly (Line 4). (2) Attacker
invokes the withdraw function to withdraw 1 wei. The
withdraw function first checks whether the bookkeeping
balance of Attacker is sufficient (Line 7), and then transfers
1 wei to Attacker (Line 8). Due to the fallback function
mechanism, since Attacker receives money, its fallback
function (the one with no name at Lines 4′–6′) will be triggered,
and it invokes the withdraw function of SimpleDAO to
withdraw money again. Note that balances update at Line
9 is still not executed. (3) The withdraw function is re-
entered before the bookkeeping balance of Attacker is
updated correctly in its first invocation (Line 9). Thus, in the
second invocation, the condition checking at Line 7 still passes,
which is not supposed to happen, and the money transfer at
Line 8 proceeds, which is not supposed to happen as well. This
behavior recursively draws out all the money in SimpleDAO.

The proposed balance invariant, formulated in Definition 1,
can help detect the reentrancy attack. Suppose, initially, the
balance of SimpleDAO is 10, and the bookkeeping balances
of all participants are initialized to zero. Thus, the difference
K is 10. After the attack step (1), K is still 10 because the
SimpleDAO’s balance is increased by 1, so as the bookkeeping
balance of Attacker. After the attack step (2), the balance
invariant is violated because the SimpleDAO’s balance is
decreased by 1, but the bookkeeping balance of Attacker
does not change, i.e., the difference K becomes 9. Once the
proposed balance invariant is violated, we can conclude that
the contract is vulnerable.

Exception Disorder. The issue of exception disorder is due to
inconsistencies in exception handling. In Solidity, exceptions
may be raised in several situations, e.g., the execution runs

1: contract KotET {
2: ...
3: function withdraw(address to, uint amount) {
4: to.send(amount); //Gasless Send
5: }
6: function() {
7: ...
8: king.call.value(...)(); //Exception Disorder
9: king = msg.sender;
10: ...
11: }
12:}

Fig. 3. Example of exception disorder and gasless send.

1: contract UnderflowAttack {
2: ...
3: function withdraw (uint amount) public {
4: require(balances[msg.sender] - amount > 0);
5: msg.sender.transfer(amount);
6: balances[msg.sender] -= amount; //Underflow
7: }
8: ...
9: }

Fig. 4. The underflow attack example [14].

out of gas, the command throw is executed, etc. However,
Solidity is not uniform in handling exceptions. Within a chain
of nested calls, there could be two types of exception handling
mechanisms [15]: (1) If all the functions in the chain are direct
calls, the execution stops and all side effects are reverted,
including transfers of Ether. (2) If a function in the chain
is a call (the same for delegatecall and send), the
exception is propagated along the chain, reverting all side
effects, until it reaches the call. From that point on, the
execution is resumed with call returning false.

Programmers not familiar with the exception mechanism
may handle exceptions incorrectly. The transaction invariant,
as formulated in Definition 2, can help detect the exception
disorder vulnerability. For example, Fig. 3 is a simplified
version of “King of Ether Throne”, where Line 8 may cause
an exception disorder. In this example, there is no bookkeeping
variable and hence we insert a ghost variable into the contract.
If the return value (Line 8) is used as a branch condition of a
if-statement, we update the ghost variable in its True branch.
Otherwise, we update the ghost variable immediately after Line
8. Suppose KotET attempts to transfer 10 wei to an account r
and this transfer fails. The ghost variable (i.e., M(KotET)) is
deducted by 10, but r.bal is not increased, which violates
the transaction invariant.

Gasless Send. When transferring Ether from one contract to
another with the send function, it may end up with an out-
of-gas exception. For example, the KotET contract (in Fig. 3)
sends Ether to a target contract at Line 4 and this triggers
the target’s fallback function. If the fallback function contains
too many instructions, it may lead to an out-of-gas exception
and result in a gasless send. If such exception is not handled
appropriately, the adversary can keep Ether wrongfully while
being seemingly innocent. Our proposed transaction invariant
can help detect the gasless send vulnerability by instrumenting
with a ghost variable, as in the case of exception disorder.

Integer Overflow/Underflow. Smart contracts primarily operate
upon arithmetic operations, e.g., manipulating participants’
balances. However, these data are usually strongly typed,
and thus their arithmetic operations are susceptible to integer

TABLE I
A COMPARISON OF VULNERABILITY DETECTION TECHNIQUES.

Types Comparison on Related Techniques
Z*[5] O*[4] S*[2] C*[3] VULTRON

Reentrancy # # # # �
Exception Disorder � # # �
Gasless Send # � # # �
Overflow/Underflow � �

overflow/underflow. For example, in Fig. 4, the variable
balances[msg.sender] and amount are both unsigned
integers. If the variable balances[msg.sender] is less
than amount, the check at Line 4 will pass due to underflow,
leading to another underflow at Line 6. Our proposed balance
invariant can effectively detect this kind of vulnerability.
Suppose the variable balances[msg.sender] is 1 and
amount is 2. After Line 6, balances[msg.sender]
becomes 2256 − 1, which violates the balance invariant.

To sum up, our approach can detect all the vulnerabilities
mentioned above, as summarized in Table I. We use � to
denote that the technique can precisely detect the vulnerability,
to denote that the detection is partial or imprecise, and blank
to denote that the technique cannot detect the corresponding
vulnerability. Notably, VULTRON precisely detects all variants
of the reentrancy vulnerability, the most infamous one in
2018 [14], while all the other techniques may produce false
negatives and false positives.

IV. POTENTIAL APPLICATIONS OF VULTRON

The fundamental difficulty when applying traditional security
analysis techniques (e.g., testing, verification, monitoring and
automated repair) on smart contracts is the lack of general
purpose test oracles. This is again attributed to the particular
way how smart contracts work – they do not crash and the
execution may be silently reverted in cases of irregularities. In
this section, we show how VULTRON will enable and improve
these techniques when applied to smart contracts.

Testing and Verification. Testing and fuzzing are important
dynamic techniques for detecting security vulnerabilities, both
of which require a test oracle to determine if a program exe-
cutes according to the expected behaviors. Similarly, program
verification relies on a set of given properties to check if
the program aligns with the properties. Coming up with such
oracles and properties for general purpose computer programs
can be cumbersome and requires significant expertise. For smart
contracts, our proposed invariants can easily be translated to
oracles and assertions which enable the downstream analyses
without additional efforts. We also envision that fuzzing, when
equipped with VULTRON, may discover new types of attacks,
because our test oracles are general and drill down to the very
roots of transaction-related vulnerabilities.

Monitoring and Repair. As mentioned in Sect. II, we can
instrument EVM with the appropriate checks to enable the
runtime monitoring of contract execution. Upon failures being
detected during the execution, we may block the ongoing trans-
actions and even perform repair for the vulnerable contracts.
The oracles generated by VULTRON can be used to guide the

automatic program repair techniques [16] to construct patches
for the detected vulnerabilities.

Beyond Vulnerability. The future of VULTRON is beyond de-
tecting vulnerable contracts. There is another type of contracts
which are intentionally designed to take advantage of the
participants. We categorize them as the malicious contracts
(sometimes called unfair contracts in the literature [5]). Despite
the fact that such contracts are publicly available, most of
the participants have no ability to scrutinize and analyze the
contract code in order to discover all malicious behaviors in
advance. A commonality of such contracts is that some players
(usually the contract owner) have significant advantages over
the rest of the participants, and this is disguised behind the
obscure language syntax and contract logics. VULTRON may
be extended to take into account the fairness aspects, which
brings analysis of smart contracts to a whole new dimension.

V. CONCLUSION

We propose VULTRON, a general purpose vulnerability
detection oracle for smart contracts. Different from previous
work, the proposed invariants capture the very roots of
transaction-related vulnerabilities, and thus they are not specific
to any particular attack pattern. We have demonstrated that these
invariants enable to cover the previously reported vulnerabilities.
We also believe that our approach can easily be generalized and
serves as the driving wheels for a wide range of downstream
analysis techniques.

VI. ACKNOWLEDGEMENTS

The authors acknowledge support from grant MOE2018-T2-
1-068 (Tier-2, Ministry of Education (MoE), Singapore) and
grant NRF2017EWT-EP003-023.

REFERENCES

[1] J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang, “sCompile: Critical
path identification and analysis for smart contracts,” arXiv, 2018.

[2] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in CCS, 2018.

[3] B. Jiang, Y. Liu, and W. Chan, “ContractFuzzer: fuzzing smart contracts
for vulnerability detection,” in ASE, 2018, pp. 259–269.

[4] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in CCS, 2016.

[5] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in NDSS, 2018.

[6] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” arXiv, 2018.

[7] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “ReGuard:
finding reentrancy bugs in smart contracts,” in ICSE, 2018.

[8] “Ethereum project,” https://www.ethereum.org/, accessed 2018.
[9] “Solidity,” https://solidity.readthedocs.io/en/v0.4.25/, accessed 2018.

[10] K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis
of smart contracts,” in European Symposium on Programming, 2018.

[11] “King of the Ether,” https://github.com/kieranelby/KingOfTheEtherThrone/,
accessed 2018.

[12] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++: dynamic
taint analysis with targeted control-flow propagation.” in NDSS, 2011.

[13] “Truffle Suite,” https://truffleframework.com/, accessed 2018.
[14] “Underflow example,” http://www.dasp.co/, accessed 2018.
[15] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum

smart contracts (sok),” in Principles of Security and Trust, 2017.
[16] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch

correctness in test-based program repair,” in ICSE, 2018.

