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Oracle-Supported Dynamic Exploit Generation
for Smart Contracts

Haijun Wang, Ye Liu, Yi Li, Shang-Wei Lin, Cyrille Artho, Lei Ma, and Yang Liu

Abstract—Despite the high stakes involved in smart contracts, they are often developed in an undisciplined manner, leaving the security
and reliability of blockchain transactions at risk. In this paper, we introduce ContraMaster—an oracle-supported dynamic exploit
generation framework for smart contracts. Existing approaches mutate only single transactions; ContraMaster exceeds these by mutating
the transaction sequences. ContraMaster uses data-flow, control-flow, and the dynamic contract state to guide its mutations. It then
monitors the executions of target contract programs, and validates the results against a general-purpose semantic test oracle to discover
vulnerabilities. Being a dynamic technique, it guarantees that each discovered vulnerability is a violation of the test oracle and is able to
generate the attack script to exploit this vulnerability. In contrast to rule-based approaches, ContraMaster has not shown any false
positives, and it easily generalizes to unknown types of vulnerabilities (e.g., logic errors). We evaluate ContraMaster on 218 vulnerable
smart contracts. The experimental results confirm its practical applicability and advantages over the state-of-the-art techniques, and also
reveal three new types of attacks.

Index Terms—Smart contract, test oracle, security vulnerability, fuzzing.
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1 INTRODUCTION

SMART contracts are computer programs that execute on
top of blockchains (e.g., Bitcoin [1] and Ethereum [2]) to

manage the flow of funds, exchange of assets, and transfer
of digital rights between various parties [3], [4]. Transactions
through smart contracts are stored persistently on the
blockchain and thus immutable, without requiring a central
third party to validate them. Due to these unique advantages,
smart contracts have gained a lot of popularity and attention
in recent years. Many believe that this technology has the
potential to reshape a number of industries, e.g., banking,
insurance, supply chains, and financial exchanges [5].

The role of smart contracts in managing shared assets
(often cryptographic currencies) requires a high level of
security and reliability. Yet, an increasing number of high-
profile attacks have occurred, resulting in great financial
losses. Such attacks are facilitated by the lack of a rigorous
development and testing process. One notorious example
is the “DAO” attack, where attackers stole more than 3.5
million Ether (equivalent to about $45 million USD at that
time) from “DAO” contract [6].

These incidents have spurred activities in detecting
vulnerabilities in smart contracts [6], [7], [8], [9], [10], [11],
[12]. Existing techniques usually detect smart contract vul-
nerabilities based on rule-based approaches: the contract
behaviors are matched to a limited set of vulnerability patterns
identified beforehand. The precision and recall of these
techniques largely depend on the size and quality of their
collections of vulnerability patterns. Most such patterns are
defined at the syntax level such as particular statements/calls
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sequences, ignoring their actual effects on contracts and
resulting in false positives. For example, Zeus [11] treats
the refund function in the DaoChallenge [13] contract
(shown in Fig. 9) as vulnerable, because it may potentially
be reentered. However, such reentrancy behavior cannot
be exploited in stealing Ether from it, since the authors
have incorporated defensive mechanisms to prevent from
transferring unauthorized Ether (c.f. Sect. 5.6.2). Similar
problems exist in how ContractFuzzer [8] detects exception
disorder (more details in Sect. 5.6.2).

To address above issues, we propose to dynamically
execute transactions and observe their actual effects on the
contract states in order to detect exploitable vulnerabilities.
Our key insight is that almost all the existing (syntactical)
vulnerability patterns result in a (semantic) mismatch be-
tween the externally visible events (e. g., amount transferred
and contract balance changed) and the internal contract
states (e. g., amount maintained in the contract’s internal
bookkeeping) in a transaction. As a result, the internal
bookkeeping becomes inconsistent, indicating a successful
exploit. Based on this observation, we define a general-
purpose semantic test oracle, which can be used to detect
such mismatches at runtime.

Our technique is dynamic and works on target contracts
that run on a realistic test environment. Thus, it does not
suffer from the imprecision faced by most static techniques.
All the vulnerabilities detected by our approach can be
successfully reproduced. When generating attack inputs, we
take into account the unique characteristics of smart contracts
which make traditional fuzzers ineffective. For example,
attackers need to synthesize a sequence of transactions to
successfully mount an attack (e.g., the transaction sequence
“deposit → withdraw” is required for the DAO attack) [14].
In contrast, traditional fuzzers such as AFL [15] focus on
vulnerabilities triggered by a single test case. We extend tradi-
tional grey-box fuzzers with mutation operators customized
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for smart contracts, including transaction sequences, gas limits,
fallback functions, and contract states, apart from function inputs.
We also develop the novel feedback mechanisms to guide the
fuzzing process, by considering the data-flow and dynamic
contract state information, together with the control-flow
information.

We implemented our approach in ContraMaster and
evaluated it on 218 vulnerable smart contracts reported
by ContractFuzzer [8] and Zeus [11]. We found that, of
these potentially vulnerable contracts, only 28 (12.84 %) are
exploitable, and the remaining (87.16 %) are not. In addition,
ContraMaster detected 26 hitherto unknown vulnerabilities,
which could not be detected using previously identified
vulnerability patterns.

In this paper, we make the following novel contributions:
• We design a general-purpose semantic oracle, which can

be used to detect a wide range of vulnerabilities, such as
reentrancy, exception disorder, gasless send and integer
overflow/underflow.

• We develop an oracle-supported dynamic exploit gen-
eration framework for smart contracts—ContraMaster.
Specifically, we design customized mutation operators
and feedback mechanisms, which are shown useful at
improving the effectiveness of vulnerability detection.

• We evaluate ContraMaster on 218 smart contracts and
demonstrate its advantages in discovering exploitable vul-
nerabilities over state-of-the-art techniques. Among the 218
vulnerabilities reported by the state-of-the-art techniques,
only 28 are exploitable, and ContraMaster detects all of
them without false positives.

• We present our findings on the 26 newly identified vulner-
abilities, which cannot be detected by previously identified
vulnerability patterns.

The rest of this paper is organized as follows. Section 2
provides the necessary background and definitions for the
rest of the paper. Section 3 illustrates our semantic test
oracle. Section 4 introduces the technical details of our oracle-
supported fuzzing and automated exploit generation. Sec-
tion 5 discusses challenges for implementing ContraMaster
and the evaluation results on real Ethereum smart contracts.
Finally, we discuss related work and conclude in Sects. 6
and 7, respectively.

2 PRELIMINARIES

In this section, we provide the necessary background and
definitions for the rest of the paper.

2.1 Blockchain and Smart Contract

A blockchain is a shared, transparent distributed ledger, and is
maintained by a decentralized network of peers (miners) [16].
The miners perform the mining process of adding a block
and verifying the validity of transactions through a proof-
of-work (PoW) [17] or other consensus protocols, such as
proof-of-stake (PoS) [18]. Thus, a blockchain can be consid-
ered as an ever-growing list of blocks, each encoding a
sequence of transactions, always available for inspection and
safe from tampering. Each block contains a cryptographic
signature of its previous block. No previous block can be
changed or rejected, unless 51% of miners are controlled

and all its successors are changed or rejected. With this
structure, blockchain achieves decentralization, traceability,
transparency, and immutability.

A smart contract is computer program which allows
users to define and execute transactions automatically on
the blockchain [19]. A smart contract resides at a specific
address on the blockchain, providing a number of publicly
accessible functions and fields. Moreover, a special balance
variable records the cryptocurrencies owned by the contract
address and cannot be freely altered by programmers. When
a function of the smart contract is invoked, the current state
of the contract is retrieved from the blockchain, and the
updated state of the contract is stored back on the blockchain
after execution.

A transaction is carried out in the form of a message
sent to a particular address on the blockchain, which can
either be a normal user account address or a contract address.
A user sends transactions to the blockchain in order to: (1)
create new contracts, (2) invoke a function of a contract,
or (3) transfer cryptocurrencies to contracts or other users.
All the transactions sent by participants, called external
transactions, are recorded on the blockchain. Upon receiving
an external transaction, a contract can also trigger some
internal transactions, which are not explicitly recorded on the
blockchain, but still have effects on the balance of participants
or contracts.

The Ethereum Virtual Machine (EVM) [2] is a stack-
machine with an instruction set including standard arith-
metic instructions, conditional and unconditional jump
instructions, basic cryptography primitives, and primitives
for gas computation. The data is stored on the persistent
memory area storage (a key-value store that maps 256-
bit words to 256-bit words), the contract-local memory (a
contract obtains a freshly cleared instance for each message
call), or a stack (since the EVM is not a register machine but a
stack machine, all computations are performed on the stack).
When Ethereum smart contracts are compiled and deployed,
they are run on the EVM.

Gas is a unit used to measure the amount of computa-
tional effort taken to execute certain operations on EVM,
e.g., storage and read. The fees paid to miners to execute an
operation can be calculated by the amount of gas multiplied
by the gas prices. Higher fees would attract more miners
into the system, and make the system as profitable and
alluring as possible for miners. Besides, they can prevent
malicious adversaries from launching DoS attacks, since each
transaction incurs a cost. However, if the provided gas is not
enough, the transaction execution would be terminated and
exception is thrown once gas is burnt out. If we do not handle
such exception correctly, it may introduce vulnerabilities (e.g.,
gasless send, c.f. Sect. 3.3).

Fallback function is an unnamed function in Ethereum
smart contracts. This function is externally visible and does
not have any argument or return anything. It is executed on
a call to the contract if none of the other functions match the
given function identifier [20]. Specially, if the contract receive
the plain Ether (without data supplied), the fallback function
would be executed. In the worst case, its implementation
can only rely on 2,300 gas being available. For example, in
order to avoid reentrancy (c.f. Sect. 3.3) when the send or
transfer function is used to transfer Ether, only 2,300 gas
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Fig. 1: Illustration of Ethereum smart contracts running on
blockchains.

is pre-allocated for the fallback function so that it cannot call
another function.

Figure 1 is a schematic representation of the Ethereum
smart contracts running on blockchains. When participants
submit transactions to the blockchain, they may be mined by
a miner m and executed on m’s EVM. When the transactions
are finished, the transactions and their execution results
are sealed in a new block appended to the block list and
propagated over the blockchain network. At this point, other
miners, such as a miner m+ 1, may discover the new block
and validate it. When majority of the miners validate and
agree on the new block, it becomes the confirmed block, and
cannot be tampered.

2.2 A Customized Semantic Model

Smart contracts are similar to general computer programs in
the sense that they are written in a Turing-complete language,
e. g., Solidity [21]. Various formal semantic models of Solidity
have been proposed in previous work [11], [22], to enable
formal verification of smart contracts. Since our goal in this
paper is to perform dynamic analysis for Solidity contracts
and verify runtime contract states against our test oracle,
we propose a customized semantic model that is simple but
expressive enough to capture the transaction-related contract
behaviors. We define contract state and transaction as follows.

Definition 1 (Contract and Contract State). A contract can
be abstracted as a tuple C := 〈c, bal , A, σ〉, where c ∈ Addr is a
unique address identifying the contract, bal ∈ N is the externally
visible balance of the contract, A ∈ 2Addr is a set of account
addresses of participants, and σ is the internal contract state.
A contract state σ is a type-consistent valuation of the global
variables (V ).

The set of all states is denoted by Σ ∪ {Err}, where Err
is a special state indicating an error state. For a given state
σ ∈ Σ and an expression e, eσ denotes the evaluation of e
in that state. The semantics of a contract program is a set of
execution traces, where a trace corresponds to a sequence of
internal contract states. In Ethereum, each contract also has
an externally-visible contract balance (bal ) representing the
total amount of funds in the contract, which is a part of the
blockchain state (as opposed to the contract state).

Definition 2 (Transaction). A transaction t := 〈s, r, v〉,
if performed successfully, deducts amount v from the sending
account’s balance (s.bal where s ∈ Addr ) and transfers the funds
to a receiving account at address r ∈ Addr . We denote the values
of a variable g before and after the transaction as pre(g) and
post(g), respectively.

A transaction usually alters the blockchain state, reflected
as updates on the contract balance. In this case, the caller and
callee contracts of a transaction correspond to the sending
and receiving accounts, respectively.

2.3 Threat Model
To study the potential vulnerabilities of smart contracts, an
important guarantee of a securely implemented contract
is that it only allows authorized accounts to transfer the
authorized amount of Ether [23]. For example, the DAO
contract, if implemented correctly, should only allow users
to withdraw the amount of Ether have been deposited
previously. We assume that a regular user with no special
capabilities attempts to break through this guarantee. A
smart contract is vulnerable, if adversaries can bypass au-
thorization and steal more Ether from the contract than
allowed, resulting in a loss for the contract owner, or victims
store Ether in the contract but receive a lower level of
authorization than intended, resulting in a loss for the
participants [23].

Besides, vulnerabilities may happen due to the inter-play
of multiple smart contracts. We do not limit the number
of contract files under test, whether they are (1) compiled
and deployed at the same address, (2) deployed at different
addresses and communicate through delegate calls, or (3)
deployed at different addresses and communicate through
transfer messages. For (2) and (3), we consider attacks which
involve only a two-way communication. In other words,
when there are a group of contracts interacting with each
other, the attacker in our attack model picks one of them as
the direct target to communicate with. This is enough for
modeling most of the commonly seen vulnerability types
from the literature.

3 SEMANTIC TEST ORACLE

The fundamental difficulty in detecting smart contract vul-
nerabilities is the lack of a general-purpose test oracle. This is
because smart contracts do not crash like general computer
programs, and their execution may be silently reverted in
cases of irregularities. To address this issue, we propose a
test oracle which detects irregularities in smart contracts at
the semantic-level. Our semantic test oracle implements two
types of invariants that transactions must comply with.

3.1 Balance and Transaction Invariants
Smart contracts are mainly used to manage the transfer
of assets and perform bookkeeping [24], thus they need
to keep track of participants’ individual account balances,
called the bookkeeping balances. Contract programs use an
internal bookkeeping variable (e. g., balances in Fig. 2) to
record the bookkeeping balances. Suppose a bookkeeping
variable m : Addr 7→ N is given.
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Definition 3 (Balance Invariant). For every contract
〈c, bal , A, σ〉,

∑
a∈Amσ(a)− bal = K , where K is a constant.

The balance invariant requires that the difference be-
tween the contract balance and the sum of all participants’
bookkeeping balances remains constant, before and after
a transaction. This invariant is defined within a single
contract, i. e., intra-contract, and it ensures the integrity of the
bookkeeping balances. If the bookkeeping balances are not
updated correctly within a transaction, then the violation of
this invariant indicates that an irregular event has happened.
For example, when an integer underflow happens during a
transaction, the contract balance naturally goes down while
the bookkeeping balances go up instead.

Definition 4 (Transaction Invariant). For every outgoing
transaction 〈c, r, v〉 where c is the sending contract’s address,
∆(mσ(r)) + ∆(r.bal) = 0, where ∆(x) = post(x)− pre(x).

The transaction invariant requires that the amount de-
ducted from a contract’s bookkeeping balances is always
deposited into the recipient’s balance. This inter-contract
invariant ensures the consistency between the both ends
of a transaction. Note that the consistency of incoming
transactions can be guaranteed by the balance invariant
or other contract’s outgoing transaction invariant. In some
cases, a transaction in progress may fail and funds are not
transferred. If the failure is not be captured by the contract’s
bookkeeping variables, the contract may become vulnerable
(e. g., exception disorder).

3.2 Runtime Invariant Checking

Since the invariants are supposed to hold for each transaction
among contracts involved, the test oracle can be implemented
as a set of runtime checks before and after each transaction.
Notice that the runtime checks mentioned here are on the
transaction-level, in which multiple contracts are involved.
Thus, adding assertions in contracts does not work since
assertions in each contract cannot express inter-contract
properties. The biggest challenge of implementing such
runtime checks is to automatically identify the bookkeeping
variables.

Identification of Bookkeeping Variables. Most contracts
performing meaningful transactions among multiple par-
ticipants contain a bookkeeping variable, usually with the
name balances or balanceOf. The bookkeeping variable
has a few characteristics distinguishing it from the others:
(1) it is a mapping from account addresses to unsigned
integers, i.e., mapping(address => uint*) (there are a
few exceptions which are explained in Sect. 5); (2) it is at least
updated once in a payable function; and (3) in a normal
transaction, the amount received from an account address
should be reflected as a balance increase for that address.

Based on these observations, we design an algorithm
for the automatic identification of bookkeeping variables.
For every mapping variable updated in payable functions,
we send several transactions with randomly chosen values
(including extremely large and small amounts). We then
observe the increased amount at the sender’s address. If the
increases always match with the amounts being sent, we
record the variable as a bookkeeping variable.

1 contract SimpleDAO {
2 mapping (address => unit) public balances;
3 function donate(address to) {
4 balances[to] += msg.value;
5 }
6 function withdraw(uint amount) {
7 require(balances[msg.sender] >= amount);
8 msg.sender.call.value(amount)(); // E x c e p t i o n D i s o r d e r
9 balances[msg.sender] -= amount;

10 }
11 function another_withdraw(uint amount) {
12 require(balances[msg.sender] >= amount);
13 msg.sender.send(amount)(); // G a s l e s s S e n d
14 balances[msg.sender] -= amount;
15 }
16 }

Fig. 2: A simple contract susceptible to the “DAO” attack.

1 contract attackDAO {
2 SimpleDAO public dao;
3 constructor(address _dao){
4 dao = SimpleDAO(_dao);
5 }
6 function donate(address to){
7 dao.donate.value(msg.value)(to);
8 }
9 function withdraw(uint amount){

10 dao.withdraw(amount);
11 }
12 ......
13 function () public payable {
14 dao.withdraw(...); // R e e n t r a n c y
15 }
16 }

Fig. 3: Reentrancy attack on the simple “DAO” contract.

The bookkeeping variables in some contracts may not
refer to the amount of Ether. This is often the case in ERC-20
and ERC-721 contracts [25]. In these contracts, participants’
digital assets are reflected in terms of the number of available
tokens rather than Ether. In such cases, standard APIs for
getting individual account balances (balanceOf) and total
contract balances (totalSupply) in terms of tokens are
provided and can be directly used to implement the runtime
checks.

3.3 Detecting Vulnerabilities with the Test Oracle

Now we discuss how previously reported vulnerabilities [7],
[10], [16], [26] can be detected by our test oracle.

Reentrancy. Programmers often believe that, when a non-
recursive function is invoked, it cannot be re-entered be-
fore its termination. However, this is not always the case,
due to the fallback function introduced by Solidity. Take
the simplified “DAO” attack for example. Two contracts,
SimpleDAO (the victim, in Fig. 2) and attackDAO (in
Fig. 3), are deployed on the blockchain. The reentrancy
vulnerability of SimpleDAO can be exploited by attackDAO.
When attackDAO withdraws from SimpleDAO via Line 10
of Fig. 3, it will execute Lines 7–8 of Fig. 2. Then, due to
fallback function mechanism, Line 8 of Fig. 2 executes Line
14 of Fig. 3, which further executes Lines 7–8 of Fig. 2 again
and thus generate recursive calls. Notice that, the execution
of Line 9 of Fig. 2 is delayed.

The consequence of reentrancy is that Line 9 of Fig. 2
may be executed more times than allowed, and it leads to the
integer underflow of bookkeeping variable balances. The
underflow will produce the incorrect values for balances,
which violates the balance invariant (Definition 3).
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1 contract another_attackDAO {
2 ......
3 function () public payable {
4 throw; // N o r e e n t r a n c y
5 }
6 }

Fig. 4: Exception disorder example.

1 contract UnderflowAttack {

2 ...

3 function withdraw(uint amount) public {

4 require(balances[msg.sender] - amount > 0);

5 msg.sender.transfer(amount);

6 balances[msg.sender] -= amount; // U n d e r f l o w

7 }

8 ...

9 }

Fig. 5: The underflow attack example [27].

Exception Disorder. Solidity is not uniform in handling
exceptions. Within a chain of nested calls, there are two types
of exception handling mechanisms [26]: (1) If a function in
the chain is a call (the same for delegatecall and send),
the exception is propagated along the chain, reverting all
side effects, until it reaches the call. From that point on, the
execution is resumed with the call returning false. (2) If
all the functions in the chain are direct calls (not via call,
delegatecall and send), the execution stops and all side
effects are reverted, including the transfers of Ether.

Developers may handle exceptions incorrectly. For ex-
ample, Line 8 of Fig. 2 tries to transfer Ether to ac-
count msg.sender. If this account is a contract, this trans-
fer may fail, resulting in an exception. Since this excep-
tion is not properly handled, the balance of this account
(balances[msg.sender]) is decreased but it does not
actually receive Ether. Thus, this transaction will violate
the transaction invariant (Definition 4).

Gasless Send. Gasless send is a special case of exception
disorder. When transferring Ether from one contract to
another with function send, it may lead to an out-of-
gas exception. The default gas limit for function send is
2,300 Wei. If the recipient’s fallback function contains too
many instructions, it may lead to an out-of-gas exception for
function send, resulting in a gasless send. For example, at Line
13 of Fig. 2 the attacker (whose address is msg.sender) may
have an expensive fallback function and the send function
may fail. Since gasless send is a special case of exception
disorder, it can also be detected by the transaction invariant
(Definition 4).

Integer Over/Under-flow. Smart contracts heavily use
integer arithmetic operations to manipulate partici-
pants’ balances. However, these variables are sus-
ceptible to integer over/under-flow, e.g., in Fig. 5,
balances[msg.sender] and amount are both unsigned
integers. If balances[msg.sender] is less than amount,
the check at Line 4 will pass due to integer underflow,
leading to another underflow at Line 6. This produces the
wrong value for the bookkeeping variable, which violates
the balance invariant (Definition 3).

Other Vulnerabilities. In this work, we focus on contracts
used for managing funds of multiple participants and han-
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dling monetary transactions among them, which constitute
the majority of the Ethereum smart contracts. For example,
our proposed balance and transaction invariants apply for all
standard token-based contracts, e.g., ERC-20 and ERC-721,
as well as many other contracts with the identification of the
bookkeeping variables.

There are a few other types of vulnerabilities, including
the timestamp dependency, block number dependency, and freezing
ether [26]. Exploiting vulnerabilities such as timestamp and
block number dependencies requires the cooperation of
miners, therefore cannot be easily realized at the contract-
level. In model checking [28] terms, freezing ether is an
violation of the liveness property, while our dynamic approach
can only detect violations of safety properties.

It is possible to extend the test oracles to handle more
types of contracts and vulnerabilities. For example, invariants
on proportional token distribution [29], i.e., the values of two
exchanged tokens are proportional, have been proposed to
cover a more general case. Our fuzzing framework (see
Sect. 4) is independent from the test oracles and thus can also
be to extended with other user-defined invariants to detect
more types of vulnerabilities.

4 ORACLE-SUPPORTED FUZZING

Figure 6 shows the overview of ContraMaster, which is
driven by a grey-box fuzzing loop [15], [30]. Given a set
of initial seeds, ContraMaster randomly synthesizes a set
of transaction sequences and picks one from the pool in
each iteration of the fuzzing loop. ContraMaster runs each
transaction in sequence on an instrumented EVM. When the
transaction is finished, ContraMaster verifies the contract
state against our semantic test oracle (details in Sect. 3). If a
violation is detected, ContraMaster reports a vulnerability
and presents the generated attack contract and transaction
sequence which can be used to reproduce the exploit. Other-
wise, ContraMaster collects runtime execution information
to guide the test sequence generation for the next iteration.
The information collected mainly includes control-, data-flow
graph and contract state information.

Furthermore, ContraMaster is equipped with a number
of new mutation operators customized for smart contracts
(c.f. Sect. 4.1). In addition to function inputs used in traditional
fuzzers, we also use gas limits, fallback functions, transaction
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sequences and contract states as the mutation targets. Many
vulnerabilities in smart contracts require the interplay of
several contracts and can only be exploited by a particular
transaction sequence with the correct gas limit [31]. There-
fore, the customized mutation operators are important for
triggering vulnerabilities. The newly generated inputs are
added to the pool and the fuzzing process continues until it
exceeds the allocated resource limits.

4.1 Oracle-Supported Fuzzing Algorithm
The goal of the fuzzing component is to automatically
generate transaction sequences that violate the test oracle.
Algorithm 1 presents its high-level idea. Given a contract
program C and a set of initial seeds T , it first generates a
set of initial transaction sequences TS from T (Line 1). In
every iteration of the fuzzing loop (Lines 2 to 22), we select
a transaction sequence ts from TS (Line 3), and initializes
the current execution trace sequence (E) and contract state
dictionary (dict) as empty (Line 4). ContraMaster then
executes each transaction ti ∈ ts (Lines 5 to 10), and collects
its execution trace ei (Line 6). It would also stores observed
contract states (e.g., the values of bookkeeping variables
and contract balances) into dictionary (Line 7), similar to
what is done in traditional fuzzers such as VUzzer [32]. The
dictionary values are later used in generating function inputs.
The execution trace of each transaction ei is concatenated
to form a transaction sequence trace E (Line 8). After that,
ContraMaster checks whether the test oracle is violated. If so,
it adds the current transaction sequence ts into the output
TS ′, which is a script exploiting the vulnerability (Line 10).

ContraMaster performs mutations at both the level of
single transaction (Lines 11 to 18), and at the level of
transaction sequences (Lines 19 to 22). If ti achieves new
branch coverage, we perform mutations on the function
inputs and gas limit (Lines 13 to 14). When fallback function
is called in the transaction, we also perform mutations on
fallback functions at Line 17. If the transaction sequence’s
trace E has new data dependence coverage, we perform
transaction sequence mutation (e.g., switching the order of
transactions) at Line 20. In the end, we randomly reset the
whole smart contract states by contract state mutation at
Line 22. More details about each mutation strategy are given
in Sect. 4.2.

The highlighted code in Algorithm 1 shows the differ-
ences of ContraMaster from traditional grey-box fuzzing
approaches such as AFL [15]. To summarize, traditional
fuzzing techniques work on a single call, while ContraMaster
works on a transaction sequence. The reason is that a lot
of vulnerabilities can only be triggered by a sequence of
transactions. To effectively generate such sequences, we use
data-flow information to guide its mutation, which cannot be
achieved by control-flow information. Another important
difference is that ContraMaster performs mutations on
fallback functions, through which the attack contracts may
interact with the target contract.

4.2 Mutation Strategies
In this section, we present our five mutation strategies,
namely, the mutation of function inputs, gas limit, fallback
function, transaction sequence, and contract state.

Algorithm 1: Oracle-Supported Fuzzing
input : a contract program C, a set of initial seeds T
output : transaction sequences TS ′ violating the test

oracle

1 TS ← generate initial transaction sequences from T ;
2 while time budget not reached and abort signal not received

do
3 ts ← selectNext(TS) ;
4 E, dict← ∅, ∅ ;
5 foreach transaction ti in ts do
6 run ti and collect execution trace ei on EVM ;
7 dict← extractValues(ei) // dictionary values ;
8 E ← E, ei (append ei to E) ;
9 if test oracle is violated then

10 TS ′ ← TS ′ ∪ ts ;

11 foreach transaction ti in ts do
12 if ti has new branch coverage in ei then
13 TS i ← InputMutate(ti, dict) ;
14 TSg ← GasMutate(ti) ;
15 TS ← TS ∪ TS i ∪ TSg ;
16 if ti executes fallback function then
17 TSf ← FallbackMutate(ti) ;
18 TS ← TS ∪ TSf ;

19 if E has new data dependence coverage then
20 TS t ← TransSeqenceMutate(ts, E, dict) ;
21 TS ← TS ∪ TS t ;

22 ContractStateMutate() ;

Attack Contract. ContraMaster uses the attack contracts
to interact with target contract, thus we first automatically
generate the attack contract, like in the example shown in
Fig. 3. To synthesize the attack contracts, we use a variable to
represent the target contract and initialize it in the constructor
function (Lines 2 to 5). Then, for each function in target
contract, ContraMaster develops a surrogate function to call
this function, as shown in Lines 5 to 11 in Fig. 3. Finally, we
synthesize the fallback function as shown in Lines 12 to 14.

Function Inputs. Line 13 of Algorithm 1 mutates the param-
eters passed to each target function. We consider two types
of function parameters: primitive and array types.

Primitive-type parameters include Booleans (bool), ac-
count addresses, unsigned integers (uint*), integers (int*),
and arbitrary-length raw byte data (byte*). First, we pick
special values from the dynamic dictionary of previously
seen state variable values with matching types to generate
multiple mutation ranges. Within these ranges, we randomly
generate values as candidate function inputs. Second, we
opportunistically negate bits in these inputs to produce new
inputs (similar to the “flip1” operation used in AFL [15]). For
account addresses, we simply enumerate addresses from a
predefined account list. In most cases, the collected dynamic
dictionary and “flip1” are enough for generating effective
inputs, since most smart contracts have relatively simple
program logic.

For array types, we consider both fixed- and arbitrary-
length arrays. For fixed-length arrays of primitive-type
elements (e. g., address[n] and uint*[n]), we use the
same technique described above to generate random values
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for each element. For an arbitrary-length array, we first
generate a positive random number as the array length,
and then proceed as dealing with a fixed-length array. For
arbitrary-length bytes or strings, we use values from the
dictionary and mutate them with bit flips.

Gas Limit. Every instruction executed on EVM has an asso-
ciated fee, known as the gas. If the gas cost of a transaction
exceeds the gas limit, an out-of-gas exception is thrown. To
simulate all possible behaviors with the exceptions thrown
in the middle of a transaction, we mutate on the gas limits
at Line 14 of Algorithm 1. First, we estimate the maximum
gas cost Gt and the intrinsic gas cost Gi [33] (consisting of
a constant transaction fee and a data-dependent fee) for a
target transaction. Then, we divide the range between Gi
and Gt into n equal intervals and randomly choose a gas
limit from each interval to initiate the transaction with.

Fallback Function. The fallback function is an important
mechanism in Ethereum and is highly relevant to the
reentrancy and exception disorder vulnerabilities. When
receiving funds from the target contract under test, the
attacker’s contract may use specially crafted fallback function
to perform malicious activities. To trigger these behaviors,
ContraMaster performs mutations on the fallback function
at Line 17 of Algorithm 1.

We generate multiple attack contracts with different
fallback functions to interact with the target contract, such
as in Figs. 3 and 4. In particular, we allow any function of
the target contract to be called within the attacker’s fallback
function. Apart from that, we also have an empty fallback
function and one that contains a single throw statement
(e.g., revert()) to trigger exception disorders.

Transaction Sequence. Some vulnerabilities can only be
triggered with the correct transaction sequences. For example,
the DAO attack can only be mounted by first depositing
into the target contract and then withdrawing from it. To
find a successful exploit, we mutate the call sequences as
follows. For a given candidate transaction sequence, (1) we
randomly insert/remove transactions to/from it; and (2) if
two transactions in a sequence operate on the same contract
state variable, we switch their order.

Contract State. The effects of a transaction depend on the
contract state in which it is initiated. To mutate contract states,
we allow the values of state variables to be carried forward
across multiple test runs and reset the state periodically, say,
after every n transactions. The intuition behind resetting
a contract to restore its initial state is that some contract
states are not useful for discovering new vulnerabilities. For
example, when a DoS attack is launched on the “King of the
Ether Throne” contract [34], no further state can be reached.
In this case, resetting the contract state helps to escape
from dead-ends and find more vulnerabilities. The reset
of contract state is achieved by redeploying the contract code
to the private test network, which does not pose significant
overhead.

4.3 Feedback Mechanisms

The feedback used by ContraMaster can be broadly catego-
rized into the control-driven and data-driven, and contract
state feedback information. The control-driven feedback

mechanism strives to cover more CFG edges as with AFL [15],
by favoring uncovered CFG edges.

Data-Driven Feedback. Since smart contract is state-relevant,
we should synthesize a suitable transaction sequence to
detect the vulnerabilities. However, the transaction sequence
cannot be guided by the control-flow information, as a
different transaction sequence does not necessarily cover
new CFG edges. Thus, we propose to use data flow to guide
transaction sequence mutations. If the mutated transaction
sequence covers new data dependencies, it is an interesting
transaction sequence. We first define the data dependency as
follows.

Definition 5 (Data Dependency [35], [36]). There is a data
dependency from y to x if there exists a directed path p from x to
y where x defines a variable v ∈ V , y uses v and there is no node
z ∈ p that redefines v.

In the execution of transaction sequence, if two trans-
actions operate on the same contract state variable, we
switch their order to generate new transaction sequence. For
example, the transaction sequence “withdraw→ deposit” both
operate on the bookkeeping variable balances, thus we switch
their order to generate a new transaction sequence “deposit
→ withdraw”, which may trigger the reentrancy vulnerability.

Contract State Feedback. Apart from the data dependency,
we also use the contract states (Definition 1) to guide the
function input generation. The basic idea is that, in most
cases, the execution of current transaction heavily depends
on the contracts’ states. For example, the sequence “deposit
→ withdraw” may trigger the reentrancy, but it depends on
whether the funds deposited is greater than the funds with-
drawn. Thus, we use contract states to guide function input
generation, such that the less funds withdrawn than those
deposited. to subsequently trigger potential vulnerabilities.
In fact, we extract the dynamic contract states as a dynamic
dictionary, which is similar to VUzzer [32]. However, the
latter uses the immediate values in the code as the static
dictionary.

4.4 ContraMaster by Example
Taking the DAO contract (Fig. 2) as an example, we illustrate
the workflow of ContraMaster with one possible set of
generated transaction sequences shown in Fig. 7. Based
on the initial seeds, i.e., {withdraw(10), deposit.value(5)(*)},
ContraMaster randomly generates a transaction sequence,
“ts1 = withdraw(10)→ deposit.value(5)(*)”, shown on the first
row of Fig. 7. Here we assume that the attack contract
used is another attackDAO from Fig. 4. After ts1 is executed,
we identify a data dependency between the withdraw
and deposit functions over the state variable balances
by analyzing the data flow of the execution trace. Based
on the data-driven feedback, we adopt the transaction se-
quence mutation strategy on ts1 to generate a new one:
“ts2 = deposit .value(5 )(∗)→ withdraw(10 )”, as shown on
the second row.

Yet, executing ts2 does not expose a reentrancy issue,
because the value to withdraw is more than the bal-
ance deposited earlier, thus resulting in a runtime failure.
Here, ContraMaster inspects the contract states and adds
“(balances, 5)” (the deposited amount) into the dynamic
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No. Transaction Sequences Attack Contracts Feedback Mechanisms Mutation Strategies
1 ts1 = withdraw(10)→ deposit .value(5)(∗) another attackDAO data-driven transaction sequence
2 ts2 = deposit .value(5)(∗)→ withdraw(10) another attackDAO contract state contract state
3 ts3 = deposit .value(5)(∗)→ withdraw(3) another attackDAO control-driven fallback function
4 ts3 = deposit .value(5)(∗)→ withdraw(3) attackDAO — —

Fig. 7: Illustration of the discovery of the DAO attack by ContraMaster.

dictionary. Using contract state as feedback, ContraMaster gen-
erates three groups of input parameters for withdraw, i.e.,
≤ 5, 5, and ≥ 5. For example, we may end up with a transac-
tion sequence, “ts3 = deposit .value(5 )(∗)→ withdraw(3 )”,
based on the contract state mutation strategy, as shown on the
third row of Fig. 7.

To trigger a reentrancy attack, a suitable fallback function
is still required in the attack contract. The fallback function
in another attackDAO (Fig. 4) does not reenter the withdraw
function. Based on the control-driven feedback, ContraMaster
mutates the fallback function, and may generate a new one
such as the one in attackDAO (Fig. 3). At this point, we have
successfully found an attack contract (i.e., attackDAO in Fig. 3)
as well as a transaction sequence (i.e., “deposit.value(5)(*)→
withdraw(3)”), which trigger reentrancy.

When reentrancy occurs, Ether would be transferred
to the attacker’s account via the withdraw function. In
the end, the update of balances at Line 9 would underflow
the balances. Since the value of the bookkeeping variable
balances becomes inconsistent, the balance invariant (Defi-
nition 3) is violated.

5 IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of ContraMas-
ter and evaluate it on a set of benchmarks.

5.1 Implementation

We use a C++ implementation of the Ethereum client, Aleth
v1.8.0, to setup a single node private blockchain as the
test network, and Truffle Suite v4.1.14 as the test harness.
ContraMaster consists of a front end which generates inputs
and triggers transactions, and a back end which executes
transactions on smart contracts and validates their behaviors.

The front end starts from some initial seeds and performs
mutations to persistently generate new seeds based on our
feedback mechanisms. In the back end, the Aleth EVM is
modified to monitor the runtime execution: the test oracle
is enforced by asserting invariants after each transaction is
finished. We use big numbers (i.e., the BigInt javascript
library) when handling values, arithmetic operations, and
checking the invariants. Therefore, no overflow/underflow is
possible in the analyzer. If an invariant violation is detected,
the test sequence is reported as an exploit. Otherwise, it
performs data-flow, control-flow, and contract-state analysis
to provide feedback to the front end, which continues to gen-
erate new test inputs. In total, ContraMaster is implemented
with more than 5,000 lines of Javascript, Python and C++
languages.1

1. The tool implementation and benchmark used in our experiments
are available at: https://github.com/ntu-SRSLab/vultron.

5.2 Evaluation

Our empirical evaluation of ContraMaster tries to answer
the following research questions:

• RQ1: How does ContraMaster perform compared to the
state-of-the-art pattern-based approaches?

• RQ2: How effective is the feedback-guided test generation
in speeding up the exploit generation?

• RQ3: How do the initial seeds affect the effectiveness of
ContraMaster?

• RQ4: Can ContraMaster discover previously unknown
vulnerabilities?

Setup. All our experiments were performed on a 64-bit
Ubuntu 18.04 desktop with an Intel Xeon CPU E5-1650
(3.60 GHz, 12 cores) and 16 GB of RAM. Since we focus on
smart contract vulnerabilities, not the consensus protocol, we
configure only one peer node for the mining process. We set
the initial mining difficulty of the genesis block to 1 so that
transaction confirmation is fast. We also assume that each
participant owns as much Ether as the total Ether supply
at the time of writing (currently about 108 Ether).

Subjects. To evaluate our approach, we selected the experi-
mental subjects as follows. We compared ContraMaster with
the dynamic fuzzing tool ContractFuzzer [8] and the static
verification tool Zeus [11]. These two tools reflect the state of
the art in dynamic and static smart-contract analysis, and use
properties that are stronger than our test oracle. Thus, we
use the reported vulnerabilities as our experimental subjects
(except timestamp dependency, block number dependency, and
dangerous delegatecall, which cannot be easily exploited).

We included all the 188 contracts reported as vulnerable
by ContractFuzzer into our benchmark. Since ContractFuzzer
does not analyze integer overflow/underflow [8], we aug-
ment the set of benchmarks with 30 contracts containing
overflow/underflow vulnerabilities. These 30 contracts were
randomly sampled from a set of 1,095 smart contracts that
reported by Zeus [11] to have this vulnerability. To evaluate
the feasibility and ability of ContraMaster in identifying the
bookkeeping variables, we first conducted an experiment
on the 1,095 smart contracts used by Zeus. Out of the 514
smart contracts whose source code is available on Etherscan,
our automatic identification method successfully found the
internal bookkeeping variables in 430 smart contracts (about
83.6 %). We manually checked the bookkeeping variables
found and confirmed these results to be correct. We have also
manually investigated the contracts in which bookkeeping
variables cannot be automatically identified and found that
they either do not perform bookkeeping or use complicated
data structures or user-defined types to record the book-
keeping. In total, we selected 218 smart contracts for our
subsequent experiments.

https://github.com/ntu-SRSLab/vultron
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TABLE 1: Vulnerabilities reported by ContractFuzzer, Zeus
and ContraMaster.

Vulnerability Types Pattern-based Detection ContraMaster#Vul #Exp (%)

Reentrancy 14 6 42.86 % 6
Exception Disorder 36 13 36.11 % 13
Gasless Send 138 6 4.34 % 6
Integer Over/Under-flow 30 3 10.00 % 3
New Vulnerabilities — — — 26

Total/Avg. 218 28 12.84 % 54

5.3 Comparison with the State-of-the-Art

RQ1 and RQ4 relate to the effectiveness of ContraMaster.
To evaluate this, we compared ContraMaster with Contract-
Fuzzer and Zeus. Table 1 shows the vulnerability type, the
number of reported vulnerabilities, the number of actually
exploitable vulnerabilities, and the percentage of exploitable
vulnerabilities over the vulnerabilities reported by the state
of the art. The last column lists the exploitable vulnerabil-
ities reported by ContraMaster. Row “New Vulnerabilities”
shows the new vulnerabilities ContraMaster found; these
are different from the vulnerability types covered by the
state-of-the-art ContractFuzzer and Zeus.

As is shown in Table 1, ContractFuzzer reports 14
reentrancy vulnerabilities. Out of these, only six contracts
were reported exploitable by ContraMaster. For the eight
smart contracts not reported by ContraMaster, we manually
checked the contract code and confirmed that they are non-
exploitable. Our investigation showed that ContractFuzzer
over-reports reentrancy vulnerabilities (around 42.86 % ex-
ploitable) because its oracle is defined at the syntactic level.

For exception disorders, ContractFuzzer reported 36
vulnerabilities, while ContraMaster only reported 13. Con-
tractFuzzer only considers a transaction being safe if the
exceptional case is followed by a throw statement. However,
an exception can be handled by multiple ways, e. g., reverting
the modified variables, in which the exception would not
lead to an exploitable vulnerability.

ContractFuzzer also reports 138 gasless send vulnera-
bilities. However, the gasless send vulnerabilities are not
exploitable if the transfer() function is used to send
Ether, because the transfer() function automatically
reverts the program state if there is not enough gas. These
cases were reported by ContractFuzzer as vulnerable. Out of
the 138 gasless send vulnerabilities, only six were reported
exploitable by ContraMaster (4.34 %).

Overall, ContraMaster has shown its advantages against
ContractFuzzer in producing fewer false positives and
the capability in finding new vulnerabilities. We did not
compare the time taken for each case individually, because
this information is not available for ContractFuzzer [8]. To
evaluate the efficiency of ContraMaster, we constructed a
baseline version, called ContraAFL, and further evaluated
the efficiency of our mutation strategies (c.f. Sect. 5.4).

Integer overflow/underflows constitute another impor-
tant issue in smart contracts. Zeus detects integer over-
flow/underflow based on the predefined syntactic pat-
terns [37]. However, whether these really happen depends
on the execution environment and program contexts. In the
30 sampled integer overflow/underflow vulnerabilities, only

3 were reported exploitable by ContraMaster (10.00 %).

Summary. In the 218 detected vulnerabilities by Contract-
Fuzzer and Zeus, only 28 vulnerabilities were reported ex-
ploitable by ContraMaster (12.84 %). For the non-exploitable
vulnerabilities, we manually checked and confirmed that
they are indeed not exploitable. Furthermore, ContraMaster
finds 26 new vulnerabilities, which are different from the
vulnerability types in ContractFuzzer and Zeus.

From the above experiments, we observe that Contra-
Master only reports exploitable vulnerabilities because its
oracle is defined at the semantic level. In addition to that,
ContraMaster is able to discover previously unknown vul-
nerabilities. Two of the authors have independently verified
the results by replaying the exploit scripts manually. The
authors of ContractFuzzer also confirmed our findings. Later,
in Sect. 5.6, we explain why some vulnerabilities reported by
ContractFuzzer and Zeus are not exploitable, and illustrate
the new attacks.

5.4 Evaluation of Feedback Effectiveness

RQ2 questions the effectiveness of feedback in fuzzing. To an-
swer this question, we implemented a variant of ContraMas-
ter (called ContraAFL), which strips the data-dependence
guidance from ContraMaster, similar to AFL. Then, we
performed the experiments on the 23 exploitable examples
(five exploitable vulnerabilities are repetitive in exception
disorder and gasless send) by repeating each experiment eight
times, and the compared the performance of ContraMaster
and ContraAFL. We set a timeout of 120 seconds for each
benchmark program, in which ContraMaster can successfully
finish all experiments.

Figure 8 shows the comparison results, where the x and y
axes show the time taken by ContraMaster and ContraAFL,
respectively. ContraMaster performs better than ContraAFL
for points above the diagonal line, which was observed
for all examples we ran. From the results, we can see that
ContraMaster is highly efficient, compared with ContraAFL,
in recognizing exploitable vulnerabilities. Specially, three
exploitable vulnerabilities cannot be found by ContraAFL in
the given timeout (points lying on the top x-axis) in their all
experiments.

Furthermore, a manual investigation revealed that the test
sequences generated by ContraAFL are mostly meaningless.
For example, ContraAFL often chooses amounts of Ether
to send that are larger than the amount it owns. Thus, the
transaction would be reverted, resulting in no actual effect
on the smart contracts. On the other hand, ContraMaster
is guided by feedback and gradually generates meaningful
transactions.

Mann Whitney U-test Scoring. Following Klees et al.’s [38]
recommendation, we apply the Mann Whitney U-test on the
time used to find the vulnerabilities. As shown in Table 2,
in most experiments (16 out of 23 cases), the p-values are
smaller than or close to a significance level of 0.05. Thus,
we conclude there exists a statistically significant difference
in the time used to find the vulnerabilities, compared to
ContraAFL.

Vargha and Delaney Â12 Scoring. To determine the extent
to which ContraMaster outperforms ContraAFL, we also use
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TABLE 2: Statistical results for feedback-directed fuzzing.

Contracts ContraMaster (s) ContraAFL (s) Statistics Seeding Strategies: (seqLen, funParam) (s)

Avg Var. Avg Var. p-value Â12 (1,0) (2,0) (all, 0) (1, rand) (2, rand) (all, rand)

BountyHunt 8.37 63.94 46.04 2,073.61 0.015 0.828 76.43 106.86 — 81.71 56.14 1.24
CreditDepositBank 27.60 442.15 66.41 1,931.76 0.051 0.750 69.23 77.64 — 71.25 37.33 14.28
Etheramid 1.80 2.04 3.22 4.18 0.103 0.715 77.50 105.56 — 65.72 34.61 1.38
EthSplit 1.97 2.29 2.69 5.47 0.016 0.828 79.43 — — 11.62 18.81 0.99
Eth VAULT 3.33 20.64 75.21 2,153.68 0.006 0.906 79.08 — — 14.18 15.29 16.31
FreeEth 82.70 2,327.13 100.46 1,156.77 0.203 0.609 — — — 91.92 108.27 48.71
HelpMeSave 12.25 60.20 26.41 286.13 0.063 0.734 107.96 — — 94.58 72.79 27.18
HFConditionalTransfer 1.32 0.48 1.77 0.48 0.085 0.710 80.38 72.89 — 37.62 15.06 1.24
Honey 72.48 2,352.50 82.51 1,861.25 0.026 0.594 — — — — 109.16 105.10
MultipicatorX4 7.77 32.45 18.10 81.32 0.009 0.859 — — — 80.68 23.82 16.24
MyToken 0.31 0.03 25.01 979.31 0.003 0.914 2.72 0.24 0.41 0.39 0.29 0.36
Pie 99.91 1,211.07 99.84 1,078.11 0.374 0.547 103.03 108.80 — — 103.71 105.51
PIGGY BANK 5.57 33.76 55.63 2,576.46 0.026 0.797 54.87 78.69 — 54.55 49.45 4.65
Private accumulationfund 2.85 12.05 71.91 2,023.33 0.015 0.725 110.31 111.40 — 29.39 47.79 1.91
Private Bank 48.30 2,053.90 105.95 1,015.69 0.021 0.797 — 108.71 — 112.62 — 80.50
PrivateDeposit 21.02 128.52 — 0.00 0.0002 1.000 — 96.29 — — 66.29 23.73
SafeConditionalHFTransfer 2.14 2.81 3.61 7.91 0.264 0.602 54.25 86.09 — 26.81 18.17 1.53
SimpleCoinFlipGame 1.95 3.48 — 0.00 0.0002 1.000 43.17 — — 16.88 8.21 1.43
SimpleLotto 106.41 213.88 111.25 132.40 0.025 0.601 — — — 16.6 1.06 1.28
Soleau 26.30 54.92 28.20 89.25 0.437 0.531 — — — 44.94 23.73 69.56
TokenBank 16.75 220.67 — 0.00 0.0002 1.000 — — — — 65.73 8.10
transferIntwopart 1.68 1.52 3.10 3.50 0.103 0.725 85.65 — — 8.32 10.16 16.07
WhaleGiveaway 87.09 1,825.72 93.94 1,376.56 0.368 0.555 — 110.32 — 90.22 94.05 86.69

avg 27.82 481.14 58.50 829.16 91.48 103.63 114.80 62.17 47.82 27.57

“—” indicates timeout (exceeding 120 seconds).
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Fig. 8: Time taken by ContraMaster and ContraAFL.

Vargha and Delaney’s Â12 statistical test [38], [39]. From
Table 2, we can see among benchmark experiments the
resulting Â12 statistic exceeds the conventionally large effect
size of 0.71 in 16 out of 23 cases. Therefore, we conclude
that the time usage in ContraMaster to find vulnerabilities is
statistically different from that in ContraAFL.

Besides, we also developed another variant of Contra-
Master, in which all our mutation strategies (e.g., contract
states and data dependence) are disabled, and conducted the
experiments again. The results show that this fuzzing tech-
nique only finds one vulnerability (i.e., from BountyHunt),
and results in timeouts for all other subjects.

5.5 Evaluation of Initial Seeds
It is well established [38] that initial seeds may have great
influence on the effectiveness of fuzzing techniques, since

good initial seeds tend to trigger behaviors closer to the ones
exposing vulnerabilities and thus require less mutations.
We conducted a set of experiments to study the impact of
initial seeds on the effectiveness of ContraMaster in finding
vulnerabilities. We compared seeds of various length and
different function inputs. In terms of lengths, we picked
transaction sequences of length one, two, and up to the total
number of functions available in the contracts. In terms of
function inputs, we tested both all-zero input parameters and
randomly generated ones. We combined these two seeding
strategies and have generated six different types of initial
seeds.

The experimental results are shown on the right side of
Table 2. The columns “(seqLen, funParam)” list the average
time taken to discover vulnerabilities when using initial seeds
of lengths one (“1”), two (“2”), or the number of functions
available (“all”), and function input parameters of either all
zeros (“0”) or randomly generated values (“rand”).

Generally speaking, the randomly generated function
inputs perform better than the all-zero inputs. The average
time taken to find vulnerabilities are at least 1.5X longer and
there are a lot more timeouts, when given all-zero inputs to
the initial seeds. This is mainly because in contracts handling
monetary transactions, all-zero function inputs usually do
not generate meaningful contract state changes. For instance,
if the function inputs contain a parameter representing the
amount of transferred Ether, a zero input would trigger
a revert of the transaction, not changing the state of the
blockchain.

When it comes to transaction sequences, the results
become more interesting. Specifically, with all-zero inputs,
the longer the transaction sequences, the less effective they
are in finding vulnerabilities. The inverse becomes true when
randomly generated inputs are used, i.e., longer transaction
sequences are more effective seeds. This suggests that, when
all-zero inputs are used, increased length of transaction
sequences lead to a waste of time on less effective seeds.
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Yet, when utilizing randomly generated inputs, which have
higher chance of triggering more diverse contract states, the
increased length of transaction sequences would raise the
chance of covering vulnerable contract states. From these
results, we observe that initial seeds do have an impact on
the effectiveness of ContraMaster and the use of longer as
well as more diverse inputs is more preferable.

5.6 Case Studies

In this section, we report on interesting findings from our
case studies.2 Section 5.6.1 introduces some new attacks
found by ContraMaster in the experiments, and Sect. 5.6.2
investigates on some non-exploitable vulnerabilities reported
by ContractFuzzer [8], Zeus [11], and Oyente [9].

5.6.1 New Attack Surfaces
There are three different types of new attacks found by
ContraMaster in 26 smart contracts.

Incorrect Access Control. Access control is important in
smart contracts, which only allows critical operations to
be performed by the owner of the contract. Access control-
related issues are ranked the second most severe among all
vulnerability types [40]. When access control is exploitable
to steal ether, one of our oracle invariants (c.f. Definitions 3
and 4) will be violated. Thus, our approach is able to detect
this vulnerability.

Honey Trap. Some contracts, e. g, ETH_VAULT and
WhaleGiveaway, contain honey traps where the partici-
pants deposit Ether into the contracts, and cannot withdraw
it again. These smart contracts are unfair to the participants.
Our approach is able to detect this vulnerability because the
behavior of honey traps violates the transaction invariant (c.f.
Definition 4) of our test oracle.

Deposit Less and Withdraw More. Some smart contracts,
e. g., BountyHunt, LZLCoin and PowerCoin, are vulnera-
ble by allowing an adversary to withdraw more Ether than
they have deposited, which violates the balance invariant
(c.f. Definition 3) of our test oracle. Thus, our approach is
able to detect this vulnerability.

5.6.2 Non-Exploitable Vulnerabilities Reported by the
Pattern-Based Approaches
In this section, we illustrate the reasons why some vulnera-
bilities detected by existing techniques are not exploitable.

Reentrancy. Existing techniques, e.g., Zeus, can detect reen-
trancy based on predefined properties. However, these
properties are fixed patterns and are too strong so that
non-exploitable renentrancy is also reported. For example,
the contract DaoChallenge shown in Fig. 9 was reported
by Zeus as vulnerable [11]. However, based on the official
website [41] where the contract was originally from, this is
not an exploitable reentrancy.

This contract first checks whether the balance of the
message sender is zero at Line 11. If so, it throws an
exception and reverts the program state. Otherwise, it sets
the balance of the sender to zero at Line 12, and then uses

2. More details can be found at: https://sites.google.com/view/
contramaster.

1 contract DaoChallenge {

2 function withdrawEtherOrThrow(uint256 amount) private {

3 bool result = msg.sender.call.value(amount)();

4 if (!result) {

5 throw;

6 }

7 }

8 ...

9 function refund() noEther {

10 address sender = msg.sender;

11 uint256 tokenBalance = tokenBalanceOf[sender];

12 if (tokenBalance == 0) { throw; }

13 tokenBalanceOf[sender] = 0;

14 withdrawEtherOrThrow(tokenBalance * tokenPrice);

15 notifyRefundToken(tokenBalance, sender);

16 }

17 }

Fig. 9: An example for non-exploitable reentrancy.

1 contract Store {

2 function payout() returns (uint) {

3 uint amount = ownerBalances[msg.sender];

4 ownerBalances[msg.sender] = 0;

5 if (msg.sender.send(amount)) {

6 return amount;

7 } else {

8 ownerBalances[msg.sender] = amount;

9 return 0;

10 }

11 }

12 ...

13 }

Fig. 10: Non-exploitable exception disorder.

withdrawEtherOrThrow(), the safe withdraw function,
to fetch Ether at Line 13. Through this safe withdraw
function, the program may re-enter the function refund().
When reentering function refund(), the balance will be set
to zero. Thus, the reentrancy cannot pass the check at Line
11 again, and the program state is reverted. As a result, an
adversary cannot steal Ether from this contract.

Exception Disorder. ContractFuzzer uses a pattern to de-
tect exception disorders: it checks if a throw statement
is executed after a failed send(), in order to revert the
transaction [8]. Zeus [11] checks whether there is a write op-
eration on a global variable after a failed send(). However,
both checks are purely syntactic, and many non-exploitable
vulnerabilities are reported because of this.

For example, consider the code snippet from Store
in Fig. 10. At Line 5, the contract pays out Ether to the
message sender and the send() operation may fail. When
the send() operation fails, the contract reverts the program
states at Line 8. This is in fact a correct way to handle the
exception. However, it is reported as a vulnerability by both
ContractFuzzer and Zeus. There is no easy way to precisely
detect exception disorder without semantic understandings.

Integer Overflow/Underflow. Zeus used 1,523 smart con-
tracts for evaluation, and reported 1,095 contracts from that
dataset as susceptible to integer overflow/underflow [37].
Although many integer overflow/underflows may occur
in theory, not all of them are practical. First, the total
amount of Ether available on the Ethereum platform is
limited to 140 million Ether [42]. Therefore, one cannot
use infinite amount of Ether to overflow/underflow an

https://sites.google.com/view/contramaster
https://sites.google.com/view/contramaster
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uint256 variable. Second, the numbers of transactions and
participants are also much smaller than the upper bound of
uint256. Finally, many smart contracts use safe mathemat-
ics operations protected from overflow/underflow. This is
not recognized by the property(pattern)-based techniques,
such as Zeus.

5.7 Threats to validity

We have selected a benchmark set that is large enough to
show the capabilities of ContraMaster and compare it with
other tools. However, both the set of benchmarks we selected
ours from, as well as our own selection, may include a
certain sample bias. Thus, the results may not generalize
to all smart contracts. Moreover, while our approach is
generic and also applicable to other types of smart contracts,
some implementation details and issues found are specific to
Ethereum.

6 RELATED WORK

Existing work on smart contract vulnerability detection can
be categorized into static analysis [6], [7], [9], [10], [11], [43]
and dynamic analysis [8], [12].

6.1 Static Analysis

Program Analysis. Securify [7] first infers semantic infor-
mation by analyzing control- and data-dependencies of the
contract code. Then, it checks against both the predefined
compliance and violation properties to detect vulnerabilities.
SmartCheck [44] is an automated static code analyzer for
smart contracts. It automatically checks smart contracts
against a knowledge base for security vulnerabilities and
bad practices. Slither [45] is a static analysis framework for
Solidity, which contains a suite of vulnerability detectors and
also provides an API for developing custom analyses.

Symbolic Execution. Oyente [9] is the first tool to apply
symbolic execution in finding potential vulnerabilities in
smart contracts. It formulates the vulnerabilities as intra-
procedural properties, and uses symbolic execution to check
against these properties. TEETHER [23] focuses their analysis
on the critical paths of a contract program. Specifically, a path
is critical if it includes an instruction whose arguments can
be controlled by an attacker. Once a critical path is found,
TEETHER computes the path conditions and infers the corre-
sponding attack sequences for triggering the vulnerability. In
addition, TEETHER also requires that the value transmitted
in the final CALL instruction is greater than the sum of all
values sent to the contract. This is similar to our approach but
imprecise, because it does not model the whole transaction.
MAIAN [10] is designed to find three types of problematic
contracts: the prodigal, greedy and suicidal contracts. It
formulates these three types of problems as inter-procedural
properties, and performs bounded inter-procedural symbolic
execution to search for property violations. EthRacer [31] in-
vestigates a family of event-ordering bugs in smart contracts.
These bugs are intimately related to the dynamic ordering of
contract events, i.e., function calls. The technical challenge
in detecting event-ordering bugs in smart contract is the
inherent combinatorial blowup in the path and state space

analysis, even for simple contracts. The authors propose to
use partial-order reduction techniques, using automatically
extracted happens-before relations along with several dynamic
symbolic execution optimizations.

Formal Verification. There are also attempts to formally
verify smart contracts using either model checking or
theorem-proving [11], [28], [43], [46], [47], [48], [49], [50],
[51], [52]. Zeus [11] first translates Solidity source code into
LLVM [53] intermediate language, and then performs the
verification with the SeaHorn verification framework [54].
Hirai [46] defines a formal semantic model for EVM using
the Lem language, and proves safety properties of contract
programs compiled to Lem, with the interactive theorem
prover Isabelle/HOL. KEVM [47] is a semantic encoding
of EVM bytecode in the K-framework based on the rewrit-
ing logic. VerX [50] is an automated verifier for proving
functional properties of smart contracts. VerX addresses
an important problem, as all real-world contracts must
satisfy custom functional specifications. VerX combines three
techniques, enabling it to automatically verify temporal
properties of infinite state smart contracts: (1) reduction of
temporal property verification to reachability checking, (2)
a new symbolic execution engine for EVM that is precise
and efficient for a practical fragment of smart contracts,
and (3) delayed predicate abstraction which uses symbolic
execution during transactions and abstraction at transaction
boundaries. VERISOL [55] studies the safety and security
of smart contracts in the Azure Blockchain Workbench, an
enterprise Blockchain-as-a-Service offering from Microsoft.
It formalizes the semantic conformance of smart contracts
against a state machine model with access-control policies,
and develops a highly-automated formal verifier for Solidity
that can produce proofs as well as discover counterexamples.

Static analysis approaches can be more efficient in terms
of running time, but they often suffer from high false-positive
rate. The main difference between our approach and these
techniques is that, our approach dynamically executes the
contract code on the real EVM environment, and therefore
the detected vulnerabilities are guaranteed to be exploitable.

6.2 Dynamic Analysis
Some dynamic analysis techniques are proposed to address
the vulnerabilities of smart contracts [56], [57].

Input generation. ContractFuzzer [8] is a fuzzing framework
for detecting vulnerabilities of Ethereum smart contracts. It
proposes seven specific patterns for seven types of vulnera-
bilities. Based on these patterns, it generates fuzzing inputs,
instruments the EVM to collect the execution traces, and
analyzes the traces to identify vulnerabilities. ReGuard [12]
developed a fuzzing-based analyzer to automatically de-
tect reentrancy vulnerabilities. Specially, it performs fuzz
testing on smart contracts by iteratively generating random
but diverse transactions. Based on the runtime traces, Re-
Guard dynamically identifies the reentrancy vulnerabilities.
Echidna [58] takes a contract program as well as a set of
invariants as input, and generates random inputs to trigger
potential vulnerabilities. The invariants used by Echidna
have to be written within the contract itself, thus they are not
expressive enough to encode our inter-contract invariants.
Wüstholz and Christakis [59] present a technique that extends
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greybox fuzzing with a method for learning new inputs
based on already explored smart contract executions. The
learned inputs can be used to guide exploration towards
specific executions, for instance, ones that increase path
coverage.

The main difference between our approach and other
dynamic approaches is that we provide general principles
that drill down to the very root of vulnerabilities, while
other approaches use generic properties to detect specific
vulnerabilities. By definition, fixed collections of properties
are limited and modeled at the syntactic level; thus, they
usually suffer from both false negatives and false positives.
We believe that the absence of a general and precise test
oracle is the main reason that there exist very few dynamic
techniques for detecting vulnerabilities in smart contracts.

Test oracle. The lack of a precise test oracle is often the main
bottleneck in software test automation [60]. An empirical
analysis of model-derived test cases for Java programs shows
that using a test oracle roughly doubles the defect detection
rate [61]. Most activities to support the test oracle focus on
providing better specification mechanisms, or on mining
properties from the documentation or comments [60]. An
implicit test oracle covers assumptions that have to hold
globally for well-defined applications, e.g., no memory access
to unallocated or uninitialized memory should ever happen.
Sereum [62] protects the deployed smart contracts from being
exploited. It addresses this problem in the context of re-
entrancy exploits and propose a novel smart contract security
technology, which protects existing, deployed contracts
against re-entrancy attacks in a backwards compatible way
based on run-time monitoring and validation. Sereum does
not require any modification to or any semantic knowledge
of existing contracts. Our work is also within that domain, as
we cover the implicit assumption that no funds are created or
destroyed by transactions. We therefore provide a valuable
contribution in a field where it is in general very difficult to
find useful implicit assumptions [60].

In general, specifications are provided by developers,
either on a case-by-case based in code, or as more general
rules that apply throughout the program. Specifications can
be provided as executable code in the form of software
design requirement, as preconditions, invariants, and post-
conditions [63]. These facilities have been made available in
the Solidity language as of version 0.4.10 [64], [65], but are
not widely used yet. Compared to verification on traditional
platforms, these features on Solidity have the drawback that
their usage incurs side effects (in terms of the gas cost of
computing the expression being evaluated); in general, side
effects should be avoided in such expressions [66].

7 CONCLUSION

We propose ContraMaster, a grey-box fuzzing approach for
finding exploitable vulnerabilities in smart contracts. Differ-
ent from previous works, the proposed test oracle captures
the very roots of transaction-related vulnerabilities based on
invariants (Definitions 3 and 4), which are essential and not
specific to any particular attack pattern. We also use feedback
computed from the efficient runtime monitoring on EVM to
guide the mutation of transaction sequences for fuzzing. We
have demonstrated that ContraMaster is effective in finding

exploitable vulnerabilities and produces much fewer false
positives than the state-of-the-art. Furthermore, we find and
confirm three new attacks.
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