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Abstract—Managing large and fast-evolving software systems
can be a challenging task. Numerous solutions have been developed
to assist in this process, enhancing software quality and reducing
development costs. These techniques—e.g., regression test selection
and change impact analysis—are often built as standalone tools,
unable to share or reuse information among them. In this paper,
we introduce a software evolution management engine, EVOME,
to streamline and simplify the development of such tools, allowing
them to be easily prototyped using an intuitive query language and
quickly deployed for different types of projects. EVOME is based
on differential factbase, a uniform exchangeable representation of
evolving software artifacts, and can be accessed directly through
a Web interface. We demonstrate the usage and key features of
EVOME on real open-source software projects. The demonstration
video can be found at: http://youtu.be/6mMguérfnjyY.

Index Terms—Software maintenance, software evolution, query
languages, program facts

I. INTRODUCTION

Managing a large software system is hard, and managing a
fast-evolving one is extremely challenging. Software systems
are usually developed and maintained in an incremental manner
and various types of development artifacts accumulate in
this process. These artifacts, including change histories and
code of each version, can be a useful source for program
understanding and analysis. Numerous tools and techniques
have been developed to make use of those artifacts in order
to help improve software quality and reduce development
costs, such as regression test selection [1], change impact
analysis [2], and semantic history slicing [3]. These are often
built as standalone tools, each addressing a different yet related
aspects of the evolving software, unable to share or reuse
information among them. When trying out a new technique,
one often has to start from scratch and re-implement common
analysis tasks, such as classifying changes and identifying code
dependencies.

To promote information sharing across multiple software
evolution management tasks and streamline the development of
the associated tools, we encode common knowledge about the
evolving software artifacts as differential facts [4]. Differential
facts are stored in a differential factbase, providing a uniform
exchangeable representation of the reusable information and
supports efficient querying and manipulation. For example,
facts about how classes and methods are added or updated
between each version can be stored and reused between
regression test selection and change impact analysis [4]. In
addition, representing software changes as facts makes cross-

language analysis possible. The analyses implemented on
top of differential facts, which are language-independent,
can be applied directly to operate on projects written in
different programming languages without modifications. With
efficient cross-version analyses, differential facts enable fast
prototyping and are especially beneficial in experimenting with
new techniques.

Yet, querying in differential factbase involves writing low-
level relational algebraic formula and Datalog-like logic
inference rules, which is prohibitive for average users. To
make the manipulation of differential facts more effortless,
we introduce an SQL-like query language, allowing a large
set of evolution management tasks to be specified with more
intuitive syntax. EVOME combines the expressive intermediate
representation of differential facts with improved usability
and efficiency provided by the newly added query engine. In
the following example, we demonstrate how EVOME can be
applied in a real-world analysis task.

Example. Figure 1 illustrates a real-world usage scenario,
where we implement a lightweight static regression test
selection (RTS) algorithm. The goal of RTS is to select a subset
of test cases needed to be re-executed after software changes,
in order to reduce the time costs of regression testing [1]. The
query leverage knowledge about classes (Class), methods
(Method), source code changes (i.e., Insert and Update),
the containment relation (Containment) between different
program entities and the call graphs (MethodAccess). It
finds methods whose direct or indirect callees changed between
the two software versions, namely, v1 and v2. Then it finds
out which classes contain those methods and only keep test
classes (1sTestClass ()). Since the resulted classes might
include inner classes, we select their outer classes as the tests
needed to be rerun. Later in section II, we will explain how
this query works in more detail.

The key features of EVOME are summarized as follows.
Readers can also get more details about the tool at http://
evome.facta.xyz.

o SQL-like query language with cross-version support. Com-
pared with logic programming based queries, the language
used by EVOME is influenced by SQL and object oriented
programming constructs, which is more user friendly.

« Language-neutral fact abstraction. Meanwhile, the query
and fact abstraction are both language-independent, thus
can be applied to projects written in different programming
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Fig. 1. Regression test selection implemented using EVOME query.

languages. Modifications are only necessary when language-
specific features are involved in the analysis.

« Efficient query execution thanks to facts reusing. The
previously extracted facts can be reused between iterative
development cycles of software projects, on repeated runs
of the same task, such as RTS. A significant portion of facts
can also be reused among different tasks, thus making the
query execution more efficient.

e Quick prototyping for new techniques. With EVOME, it
is much easier for developers to do quick prototyping in
order to try out and compare different new techniques. As in
the example, since information used by different variants of
RTS algorithms have a lot in common, facts can be partly or
fully shared. Executing modified queries is also faster than
re-running an end-to-end implementation, thus reduces the
efforts by developers.

II. OVERVIEW OF EVOME

In this section, we describe the architecture and usages of
EVOME. As shown in Fig. 2, users may interact with EVOME
through the front-end web interface (Web UI). Two inputs are
taken from the user, including a Git repository URL and a
query program. The back-end then sends the query program
to the query translator, converting it to a Datalog program
and also determining the set of facts needed for the query
execution. If the facts needed for the task already exist in the
fact storage, they are fed into the Datalog engine together with
the translated Datalog program. Otherwise, the repository will
be fetched from the specified URL, if not already cached in
the EVOME server. Then the fact extractors take the target
repository as input and process the artifacts, including source
code and change histories, to produce the differential facts.
The newly generated facts are stored in the fact storage.

A Datalog program [5] contains (1) a set of inference rules
automatically generated by the query translator, in the form of
“a,b,c — d”, and (2) a set of differential facts which are used

to infer whether the terms a, b, and ¢ can be evaluated to true.

The Datalog engine then outputs all instances of d satisfying
all the rules. The outputs are then translated to human-readable
form and sent back to the user interface for display.
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Fig. 2. Architecture of EVOME.
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Fig. 3. Overview of the user interface.

A. User Interface

As is shown in Fig. 3, the user interface of EVOME mainly
consists of a (3) code editor for inputting query programs and
a (1) form for specifying repository location. Clicking on the
(4) Run button will trigger the back-end process. Once the
process finishes, the outputs are displayed on the web page
as shown in Fig. 4. Besides the web interface, power users
can also use the command line interface (CLI), where users
specify the query file and repository location as arguments to
the CLI program.

Selected Test Version

org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizerTest - 419a052c6842192e78f747d9f5af619c2ca56e78

org.apache.commons.math3.optim.nonlinear.scalar.noderiv.PowellOptimizerTest  419a052c6842192e78f747d95af619c2ca56e78
Fig. 4. Output displayed after the query execution.

B. Grammar of EVOME Query

The SQL-like query language is the key to make good use
of EVOME. The core grammar of it is listed in Fig. 5 in the
EBNF format. A query consists of a series of selection state-
ments (select_stmt) and optional version selection statements
(ver_select). Each selection statement can be divided into at
most four parts, marked by the corresponding keywords: from,
range, where, and select.

We now explain each clause using the example introduced in
Fig. 1. A from clause contains one or more variable declarations,
each of which consist of a type (type_id) and a name (lower_id)



separated by a space. In the example, six variables are declared
with six different types (Lines 1 to 2). A range clause is
optional, but is usually included for evolution management
tasks. With it, a version variable can be associated for each
variable declared in the from clause, in the form of “var @
version”. In the example, we associate the six variables with
either of the two version variables, namely, vRange and vNew.
The where clause, like in SQL, determines the selection criteria.
It contains a series of predicates connected by logic operators,
i.e., “and” and “or”. In Fig. 1, the first three predicates (Lines 6—
8) express the relation between the method m and the changed
program entities in upd and ins. By applying the “+” suffixed
variant of the gerCallee() method on ma (Lines 7-8), we
compute a transitive closure on the MethodAccess relation,
thus require that m must have some updated or newly-inserted
program nodes on its call chain. The fourth and fifth (Lines
9-10) find classes ¢/ which contain the method m through the
Containment relation. The last one (isTestClass() on Line 11)
restricts cl to test classes. The select clause determines what
to include in the output and the as clause can be used to set
the corresponding column headers. In our example, the class
names are selected to be included in the final output.

Version selections mimic the syntax used by Git for its
revision selections [6]. A ver_select assigns a version or a
version range to a version variable (lower_id) so that it can be
referenced in the range clause in select_stmt. In the example,
two version variables are defined: vNew and vRange. While
vNew is bind to a version, vRange is defined as a range
v1..v2.Inaccordance with Git, it means vRange is a version
reachable from v2 and not reachable from v1. Besides the
range representation, commonly used ancestry references such
as v2~2 (the grandparent of v2) and v1~3 (the third parent
of v1) are also supported. All of these representations can be
used together, as in “define v (vl, v2..v3, v4d~4)”,
which means v could be any version of them.

III. BACKEND IMPLEMENTATION

The backend of EVOME consists of two components: the
fact extractor and the query translator.

Fact Extractors. The fact extractors generate Datalog facts
as tab-separated CSV files from versioned software artifacts.
Different types of facts are produced by independent extractors,
so that only the necessary ones need to invoked for specific
projects to improve the efficiency. For analyses in need of cur-
rently unavailable facts, such as an unsupported programming
language, EVOME can also be extended easily by adding more
extractors. Currently, there are extractors for intra-version facts
encoding basic information about classes and methods, and
call/reference relations between them. They are implemented by
analyzing Java bytecode using the Apache BCEL [7] library.
The inter-version fact extractor, which encodes AST node
changes between versions, is based on ChangeDistiller [8].
A language-neutral extractor for Git histories is implemented
using git2-rs [9] providing libgit2 bindings. All facts contain
version information so that they can support versioned queries.
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Fig. 5. Grammar of EVOME in EBNF.

Query Translator. The translator is implemented using the
lexer generator Flex [10] and the parser generator GNU
Bison [11]. It translates EVOME queries into the Datalog
dialect used by the Soufflé [S] engine. Classes in EVOME
becomes relations in Datalog, and methods usually corre-
spond to terms in relations. For example, for a variable
cl of type Class, where cl.isTestClass () produces
Class(cl, ...,1 ,...) in Datalog where “1” indicate
that c1 is a testclass in facts. By converting getters and
predicate methods into Datalog rules, the whole where clause
of a selection statement becomes one or more inference
rules. Similarly, version selections are translated so that
concrete versions assigned to a version variable can be inferred
automatically by Soufflé.

IV. EVALUATION

To evaluate the applicability and performance of EVOME
on real-world projects, we measured the time and peak
memory usage of four different queries on four Maven projects
of varying sizes: Commons CLI [12], Commons 10 [13],
Commons Compress [14], Commons Lang [15].

The experiments were conducted on a desktop computer
with Xeon(R) E5-1650 (v4) processor and 16GB RAM. Table I
shows the time and memory costs for running the following
three different queries in a history range of 90 commits.

o Find methods which are called by other methods in the
selected version 2 but are not used in the selected version 1;

o Find methods taking parameter lists of different lengths
between the two versions;

o Find methods which return void in the selected version 1
but return types other than void in the selected version 2.
The second column shows project sizes measured by thousand
lines of Java code (kLoC) and the last column is the peak
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Fig. 6. Total time usage with the history lengths increase.

TABLE I
TIME AND MEMORY USAGE ON FOUR REAL-WORLD PROJECTS

Time (seconds)

Projects kLoC Facts  Translate  Query  Total Mem (KB)
CLI 6.4 73 0.02 0.64 74 547

10 38.7 553.16 0.02 3.18 556 2,256
COMPRESS 522 653.70 0.02 422 658 2,285
LANG 883  1,565.71 0.02 6.44 1,572 2,904

memory usage in kilobytes. Remaining columns list the time
usage of the different stages in seconds—column facts for time
used by the facts extractors, translate for the translators, query
for the query executions (time used by Datalog engine), and
total for the overall time taken. Note that translate and query
are averaged over three queries. We also measured the time
costs when the lengths of the change histories queried over
increases from 10 to 30, 60, and 90 commits. The total time
usage is plotted in Fig. 6.

It is clear that the time costs of facts extraction and query
execution increases when the repository size grows bigger
and the history length involved in the query increases. The
evaluation also revealed that the majority of the time is spent
during the facts extraction stage. Since facts can be stored and
reused, time used for extraction is a one-time cost. In contrast,
the query stage takes on average 3.6 seconds, providing a
reasonable user experience.

Case Studies. We have also tested EVOME on a set of
practical evolution management tasks, including regression
test selection, change impact analysis, and semantic history
slicing. We managed to replicate the existing techniques using
EVOME queries and test them on a subset of projects used
in [4]. We can obtain matching results at comparable speed.
EVOME inherits the fact reusing capability of differential facts,
extensively evaluated in the previous work [4], where a 44%
time-cost reduction was observed. We also manually inspect
the translated program, comparing them with hand-written
Datalog rules and verifying the correctness. Finally, the same
set of queries were also tested on several C/C++ projects,
demonstrating the effectiveness of the language-neutral fact
abstraction, although this feature has not been integrated into
the Web interface yet.

Expressiveness. While we do not encounter expressiveness
issues when implementing queries for evaluation and case
studies, there might be expressive limitations, caused by
either the implementation of translator, missing information

in extracted facts or the expressiveness limitations of Datalog.
Issues arisen from the first two causes can be solved by adding
features to translators and fact extractors. For queries which
can not be expressed in Datalog efficiently, we can also add
some pre-processing procedures to handle them before the
translation to Datalog. Those can be studied in future work.

V. RELATED WORK

There is a large body of work on analyzing and under-
standing software histories and using them for evolutionary
management tasks. Li et al. defined the problem of semantic
history slicing [3], [16], [17] and proposed an algorithm
CSLICER [3] which computes a sub-history that preserves
the desired semantic properties for Java projects hosted in
Git repositories. Recently multiple tools for change impact
analysis and regression test selection has been developed by
both academia and industry [18]-[20]. Zhu et al. [21] proposed
a framework for comparing and evaluating different RTS
techniques on their correctness (false negatives) and efficiency
(false positives). It is also possible to compare different RTS
algorithms with the quick prototyping abilities of EVOME.

Converting software artifacts into “facts” or databases and
using queries for searching or analyzing them have led to
many works. Hajiyev et al. [22] implemented CodeQuest, a
source code querying tool which uses a Datalog-based language
and translates it to SQL for scalable execution. Nowadays,
Datalog engines are efficient enough to be used as the query
backend for lots of applications, as seen in Doop [23], a
framework for points-to analysis using Soufflé. Other works
include JQuery [24], which facilitates the navigation of source
code using a logic programming based language and PQL [25]
which is a query language designed for flexible static program
analysis. CodeQL [26] gains popularity in recent years. It
provides an SQL-like language and a standard library for
security analysis. Some of our syntax were influenced heavily
by CodeQL. None of these tools aim at evolution management
and they do not provide facilities for handling versions. Wu et
al. [4] proposed DiffBase, a fact-based approach for evolution
management by considering program changes as first-class
objects and implementing fact extractors for them. DiffBase
uses both algebraic operations and Datalog as interfaces for
manipulating facts. EVOME adopts a more intuitive language
over DiffBase, making it more usable.

VI. CONCLUSION

In this paper, we described the architecture, user interface,
and usage of EVOME. We also evaluated its applicability
and key features on real-world software projects. The SQL-
like version-aware query language brings improved usability
and efficiency to differential fact-based evolution management,
enabling fast and easy prototyping for related tools.
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