
Large-Scale Patch Recommendation at Alibaba
Xindong Zhang

zxd139922@alibaba-inc.com
Alibaba Group

Chenguang Zhu
cgzhu@utexas.edu

University of Texas at Austin

Yi Li
yi_li@ntu.edu.sg

Nanyang Technological University

Jianmei Guo
jianmei.gjm@alibaba-inc.com

Alibaba Group

Lihua Liu
lihua.llh@alibaba-inc.com

Alibaba Group

Haobo Gu
haobo.haobogu@alibaba-inc.com

Alibaba Group

ABSTRACT

We present Precfix, a pragmatic approach targeting large-scale
industrial codebase and making recommendations based on previ-
ously observed debugging activities. Precfix collects defect-patch
pairs from development histories, performs clustering, and extracts
generic reusable patching patterns as recommendations. Our ap-
proach is able to make recommendations within milliseconds and
achieves a false positive rate of 22%. Precfix has been rolled out to
Alibaba to support various critical businesses.

KEYWORDS

Defect detection, patch generation, patch recommendation.
ACM Reference Format:

Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo
Gu. 2020. Large-Scale Patch Recommendation at Alibaba. In 42nd Interna-
tional Conference on Software Engineering Companion (ICSE ’20 Companion),
October 5–11, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3377812.3390902

1 INTRODUCTION

Patch recommendation is the process of identifying errors in soft-
ware systems and suggesting suitable fixes. Automated patch recom-
mendation can significantly reduce developers’ debugging efforts
and the overall development costs, improving software quality and
system reliability. Recommending patches automatically is a chal-
lenging task, especially for large-scale industrial codebase. Many
state-of-the-art techniques from the literature make assumptions
on the existence of auxiliary development artifacts such as complete
test suites and detailed issue tracking as well as debugging reports,
which may not be readily available in the day-to-day development
environment.

Through our study of the Alibaba development practices and
interviews with the developers, we identified three key challenges
for existing fault localization and automated patch generation tech-
niques to be successfully applied on our codebase.
Insufficient Labeled Data. Due to the widespread legacy code
in the codebase, a large number of software projects only have
partial debugging reports and very limited test cases. The commit

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390902

messages may be succinct and do not follow any standard template
either. Therefore, it is challenging to label defects and the associated
fixes manually, given the size and complexity of the codebase.
High Responsive Standard. The application scenario of patch
recommendation in Alibaba is highly interactive. Patch recommen-
dation needs to be run whenever new commits are submitted by
developers for code review. The recommended patches are then
checked by developers, who may decide to incorporate the sugges-
tions into the commits. Therefore, the responding time for patch
recommendation is supposed to be reasonably low in order to be
integrated into the development routine.
GeneralizabilityRequirement.The software projects in Alibaba’s
codebase are diverse. These software applications cover a variety of
domains including e-commerce, finance, cloud computing, and arti-
ficial intelligence, many of which are used by millions of users on
a daily basis. Thus, the patch recommendation techniques should
be generalizable to cover all different projects and defect types.

These specific challenges render most of the existing automated
patch generation approaches inappropriate for our application sce-
nario, since they either rely on a large amount of labeled data or
require expensive compilation and test execution for each identified
defect. To address this, we propose a pragmatic patch recommen-
dation approach Precfix, with improvements in both the precision
and efficiency when applied on large-scale industrial codebase.

2 APPROACH

Fig. 1 overviews the workflow of Precfix. Precfix consists of an
offline patch discovery component and an online patch recommenda-
tion component. The patch discovery component extracts potential
defect-patch pairs from commits in the version controlled history,
clusters defect-patch pairs based on their similarity, and finally
extracts generic patch templates to be stored in a database. The
patch recommendation component recommends patch candidates
to developers and collects their feedback, which can be used to
improve the patch database.
Offline Patch Discovery. The offline patch discovery component
performs three steps to generate patch templates.
(1) Extracting Defect-Patch Pairs. The first step is to extract a large
number of defect-patch pairs from the existing codebase. This is
largely based on the SZZ algorithm [3] with a number of strategies
customized for the Alibaba codebase. For example, we constrain the
number of files modified in a potential bug-fixing commit, filtering
out any commit that exceed the threshold. This is based on our
observation that such commits are often “multi-purpose” and can
affect the precision of patch discovery significantly.

https://doi.org/10.1145/3377812.3390902
https://doi.org/10.1145/3377812.3390902

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu

Offline Patch Discovery

(,)
…

Defect-Patch Pairs
Pattern Clusters

C
lustering

Patch Template
DatabaseG

eneralization

Company
Codebase

Extraction

Online Patch
Recommendation

Code Reviewers

Feedback

Patch
Candidates

Integration

Figure 1: Overview of the Precfix workflow.

(2) Clustering defect-patch pairs. To obtain common defect patterns
from the codebase, we group all the extracted defect-patch pairs into
a set of clusters. We use DBSCAN [1] as the clustering algorithm
and make several customizations. For instance, we exploit the infor-
mation from API call sequences to avoid unnecessary comparisons.
The intuition behind this is that if two code snippets contain two
completely different API call sequences, then they are obviously
not belonging to the same patch pattern, thus should not be com-
pared during the clustering. We improve the clustering accuracy
by normalizing code snippets with canonical representations of the
most commonly seen statements and expressions.
(3) Collecting generic patch templates. After the clustering step fin-
ishes, for each pattern cluster, Precfix extracts a generic patch
template, which summarizes the common pattern of defect-patch
pairs in that cluster. The goal of template generalization is to keep
the patch abstract and generally applicable in different contexts.
This is achieved by first converting patches into token lists, and then
applying the longest common substring (RLCS) algorithm [2] to per-
form matching between them. This helps separate context-specific
“parameters” (unmatched) from context-independent “templates”
(matched), with the latter serving as patterns.
Online Patch Recommendation. Online patch recommendation
is triggeredwhenever developers commit new code changes. During
code review, Precfixmatches each of developers’ newly committed
code snippet with the template database. During the patch valida-
tion process, in addition to feedback on the recommended patches,
Precfix also accepts patch templates created by developers and is
able to integrate them into the template database. This contribution
mechanism enriches the template database in the long run.

Fig. 2 shows the Precfix user interface with which developers
interact during code reviews. Fig. 2(a) is the inline view of an iden-
tified defect and the corresponding patch recommended. Fig. 2(b) is
the detailed view of the defect-patch pairs (left) and the developer
template suggestion form (right), where developers can devise and
submit their own patches. Each defect-patch pair can be expanded,
viewed, and voted for or against.

3 IMPLEMENTATION AND EVALUATION

Precfix is implemented on top of the cloud-based data processing
platform, MaxCompute, developed by Alibaba. The commit history

(a) Inline view of recommended patch.

(b) Detailed view of defect-patch pairs and the template suggestion form.

Figure 2: Precfix patch recommendation user interface.

data is preprocessed and stored in data tables on the Alibaba Cloud
storage. The defect-patch pair extraction is implemented as a set
of SQL scripts and user-defined functions (about 900 LOC). The
clustering of defect-patch pairs (about 1 KLOC Java code) is highly
parallelized and handled by the MaxCompute’s MapReduce engine.

Precfix has been deployed in Alibaba for about one year so
far. Every week, it recommends about 400 patches to developers
on average, and receives about two to three false positive reports.
Precfix managed to identify 30K defects from 7K projects in total
and provided corresponding patches. Our approach is able to make
recommendations within milliseconds and achieves a false posi-
tive rate of 22% confirmed by manual review. We also conducted a
small-scale user study and the majority (10/12) of the interviewed
developers appreciated Precfix, which has been rolled out to Al-
ibaba to support various critical businesses.

4 CONCLUSION

We present Precfix, a patch recommendation technique designed
for large-scale industrial codebase. Precfix does not rely on labeled
defects or patches, which are difficult to obtain in practice. Instead,
it automatically mines a large number of defect-patch pairs from
historical changes, and clusters them to extract high-quality generic
bug fix templates. Precfix has been implemented and deployed as
an internal web service in Alibaba. It is also integrated as a part
of the code review process and provides patch recommendations
whenever developers commit new changes to the codebase.

REFERENCES

[1] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In International Conference on Knowledge Discovery and Data Mining. 226–231.

[2] Daniel S. Hirschberg. 1977. Algorithms for the Longest Common Subsequence
Problem. Journal of the ACM 24, 4 (1977), 664–675.

[3] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
Changes Induce Fixes?. In International Conference on Mining Software Repos-
itories. 1–5.

