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Abstract—Detecting non-termination is crucial for ensuring
program correctness and security, such as preventing denial-of-
service attacks. While termination analysis has been studied for
many years, existing methods have limited scalability and are only
effective on small programs. To address this issue, we propose
a practical termination checking technique, called EndWatch,
for detecting non-termination caused by infinite loops through
testing. Specifically, we introduce two methods to generate non-
termination oracles based on checking state revisits, i.e., if the
program returns to a previously visited state at the same program
location, it does not terminate. The non-termination oracles can
be incorporated into testing tools (e.g., AFL used in this paper)
to detect non-termination in large programs. For linear loops,
we perform symbolic execution on individual loops to infer State
Revisit Conditions (SRCs) and instrument SRCs into target loops.
For non-linear loops, we instrument target loops for checking
concrete state revisits during execution. We evaluated EndWatch
on standard benchmarks with small-sized programs and real-
world projects with large-sized programs. The evaluation results
show that EndWatch is more effective than the state-of-the-art
tools on standard benchmarks (detecting 87% of non-terminating
programs while the best baseline detects only 67%), and useful in
detecting non-termination in real-world projects (detecting 90%
of known non-termination CVEs and 4 unknown bugs).

Index Terms—Non-termination detection, static analysis, test-
ing, test oracle generation

I. INTRODUCTION

Ensuring correctness is an essential part of software quality
assurance. A program is considered partially correct if it
produces correct results whenever it terminates. Moreover,
it is considered totally correct if it terminates and produces
correct results [1]. Therefore, ensuring the total correctness
of a program requires proving both its partial correctness and
termination.

To ensure program correctness, the study of program ter-
mination has a long history. The basic idea of proving non-
termination of a program is to find a recurrent set in which
the program stays indefinitely [2]. Many verification tools
such as CPAChecker [3], UAutomizer [4], and AProVE [5]
have been developed to detect non-termination. However, their
scalability is limited, making them ineffective in detecting
non-termination in large programs, particularly for real-world
software projects. The main challenge in program termination
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analysis is the undecidability of finding recurrent sets, which
becomes particularly expensive for large programs with nu-
merous loops, complex program features, and long execution
traces. A recent study [6] demonstrated that the state-of-the-art
loop-analysis tools fail to handle real-world programs directly.
These tools did not perform well even on substantially simpli-
fied real-world programs due to presence of complex features,
such as floating point numbers, arrays, bit shifts, and pointer
arithmetics. Furthermore, the study revealed that real-world
non-termination bugs are caused by not only common logical
errors (e.g., mistakes in loop conditions or loop variables), but
also misuses of low-level program features (e.g., overflows and
variable type casts). These findings motivate us to develop a
technique which is able to detect non-termination in large real-
world programs.

In contrast to software verification, testing is scalable and
works well on large real-world programs. There have been
numerous testing techniques [7]–[9] proposed to detect bugs
by identifying test inputs that lead to erroneous program states.
However, testing cannot be used directly in detecting non-
termination bugs, due to the lack of test oracles. Unlike other
bugs (e.g., functional bugs and memory corruptions) which can
be detected by designing specific test oracles (e.g., program
crashes, assertions, and address sanitizers [10]), the violation
witnesses of a non-termination bug are infinite traces that
cannot be captured by a traditional test oracle. In particular,
fuzz testing tools, such as AFL [11], have been shown to be
effective in finding bugs and security vulnerabilities in real-
world programs, such as buffer overflow, use-after-free bugs,
and other memory corruption issues. However, they still do not
possess the ability to detect non-termination bugs. Similar to
existing performance issue detection methods [12]–[18], AFL
can generate hang tests. However, it remains unclear whether
these hangs are due to non-termination bugs or performance
degradation, which are distinct issues. The latter is often
considered a non-functional problem rather than a correctness
issue. Therefore, despite significant progress in theory and tool
development over the years, proving non-termination of real-
world software remains an open problem due to the limited
scalability in verification methods and the lack of oracles in
testing methods.

To address this gap, we propose a practical testing method
EndWatch for detecting non-termination in real-world software



projects. Our approach involves generating non-termination
oracles by detecting state revisits during program executions,
where the intuition is that if the program returns to a previously
visited state, it does not terminate. To tackle scalability issues,
we adopt a divide-and-conquer strategy that generates non-
termination oracles for each loop1 individually, rather than the
entire program. Specifically, for linear loops, we propose a
symbolic execution-based method that infers the State Revisit
Condition (SRC), which is the weakest precondition that two
symbolic states visited in a loop execution are equivalent. If
the corresponding SRC is satisfied during testing, we discover
a state revisit that can serve as a non-termination witness.
For other loops where EndWatch cannot infer the SRC, we
instrument the loops with revisit monitors to detect revisits of
concrete states during program executions.

We designed two experiments to evaluate the effectiveness
of EndWatch. To compare EndWatch with the state of the
art, we selected three non-termination benchmarks including
SV-COMP [19], TermComp [20], and OSS Bench [6], where
OSS Bench [6] contains simplified programs of real-world
non-termination bugs. The results show that EndWatch cor-
rectly detects 87% of the non-terminating programs while
the best baseline (i.e., UAutomizer) only correctly handles
67%. To evaluate the usefulness of EndWatch in real-world
software projects, we collected 12 projects that contain a
total of 20 known CVEs related to non-termination. EndWatch
successfully identified 90% of the CVEs, except the two where
we were unable to obtain the source code. We further ran
EndWatch on real-world projects and 4 unknown bugs were
detected, where two of them have been confirmed and fixed
by the developers.

To summarize, we made the following contributions:
• We proposed a practical testing technique to detect non-

termination in large real-world programs.
• We proposed two methods to generate non-termination ora-

cles needed for discovering non-termination bugs: inferring
state revisit conditions for linear loops and monitoring
concrete state revisits for non-linear loops.

• We conducted experiments to evaluate the effectiveness of
EndWatch on standard benchmarks and its usefulness on
real-world projects. In particular, EndWatch discovered 4
new bugs. All detailed results and source code can be found
at https://sites.google.com/view/endwatch/home.

II. PRELIMINARY

In this section, we introduce definitions and preliminaries.
Definition 1: A control flow graph (CFG) G of a loop is

defined as a tuple G = (X,B,E,Bh, Be):
• X denotes the variables in the loop. A state s of the loop

is a valuation of the variables from X .
• B is a set of basic blocks. Each basic block b ∈ B

contains a sequence of statements that construct a tran-
sition relation ρb over the variables X

⋃
X ′, where X ′

denote the updated values of the variables X after the

1In this paper, we mainly focus on non-termination caused by infinite loops.

1 ...

2 int i = func();

3 /*func() is with a

4 complex context*/

5 while (i < 100){

6 if (i < 50)

7 i = i+1;

8 else
9 i = i-1;

10 }
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Fig. 1: An example of a loop with its CFG and lasso

execution of the basic block. We define (s, s′) |= ρb if
the valuation s from X and the valuation s′ from X ′

satisfy the constraint ρb(X,X ′).
• E ⊆ B × C × B is a set of edges representing the

transitions between blocks, where C is a set of conditions.
An edge bi

c−→ bj is feasible if c ∈ C can be satisfied.
• Bh is a set of header blocks. Especially, a loop can have

multiple header blocks if it is a nested loop.
• Be is a set of exit blocks from which the loop can

terminate.
Figure 1a shows an infinite loop, and Fig. 1b is the correspond-
ing CFG. It has one variable, i.e., X = {i} and X ′ = {i′}.
B = (a, b, c, d, e, f, g) is the set of basic blocks and i = i+1
is a statement in the block e. The transition relation ρe can be
written as i′ = i+ 1. The two states s : i = 1 and s′ : i′ = 2
satisfy this relation, i.e., (i = 1, i′ = 2) |= ρe. The edge
c

i<50−→ e is feasible if and only if i < 50 is satisfied. The basic
block d is an exit block.

Definition 2: A loop path τ = b1
c1−→ . . .

cn−1−→ bn is a
sequence of blocks beginning and ending with a header block
or an exit block, i.e., b1 ∈ Bh

∧
bn ∈ Bh ∪Be:

• The transition relation of the path can be represented by
ρτ = ρb1 ◦ . . .◦ρbn , where ◦ is the relational composition
operator [2].

• The loop path condition (LPC) θτ is defined as
wp(ρb1 , c1)

∧
wp(ρb1 ◦ ρb2 , c2)

∧
. . .

∧
wp(ρb1 ◦ . . . ◦

ρbn−1
, cn−1), where wp(ρ, c) calculates the weakest pre-

condition of c over the relation ρ. The loop path τ is
feasible if the LPC θτ can be satisfied.

The CFG has three loop paths, i.e., τ1 = b
i<100−→ c

i<50−→
e

true−→ g
true−→ b, τ2 = b

i<100−→ c
i≥50−→ f

true−→ g
true−→ b, and

τ3 = b
i≥100−→ d. The transition relation for τ1 is ρτ1 = ρb ◦

ρc ◦ ρe ◦ ρg , i.e., i′ = i + 1. The path condition for τ1 is
θτ1 = {i < 100} ∧ {i < 50}.

Definition 3: A loop execution can be viewed as a lasso
[21] which consists of two sequences of transitions, referred
to as stem and loop:

lasso = τ0
stem−→ τ

loop−→ τ

where the stem is a finite sequence starting from τ0 and the
loop is a finite sequence that starts and ends at τ .

https://sites.google.com/view/endwatch/home


Note that a loop in the program can have different exe-
cutions based on different inputs, representing different las-
sos. Intuitively, an execution is non-terminating if the loop
sequence of the lasso can be unrolled infinitely.

Figure 1c shows a lasso of the loop in Fig. 1a. Given a
variable i = 0, it first increases to 49 on τ1, which can be
seen as the stem. Then once i reaches 50, it will cyclically
transits between τ2 and τ1, falling into a loop of the lasso
(i.e., τ1−→τ2−→τ1).

Definition 4: For a transition relation ρ, we say that Rρ(X)
is a Recurrent Set, if for each state s ∈ Rρ(X), there exists a
state s′ such that s′ ∈ Rρ(X)

∧
(s, s′) |= ρ.

Proposition 1: A lasso τ0
stem−→ τ

loop−→ τ is non-terminating
if there exists s0, s1 and an recurrent set Rρloop

(X) for ρloop
such that (s0, s1) |= ρstem

∧
s1 ∈ Rρloop

(X), where ρstem
and ρloop are the transition relations of the sequences stem
and loop, respectively.

Note that (s0, s1) |= ρstem
∧
s1 ∈ Rρloop

(X) represents
that the initial state s0 can reach the recurrent set.

In Fig. 1c, the loop begins with i = 0 and increases i to 50,
and it has a recurrent set {i = 49, i = 50}. The initial state
s0 is i = 0 and there exists a state s1, i.e., i = 49 that reaches
the recurrent set. Therefore, the loop is non-terminating.

III. OVERVIEW

A. Problem Definition

In general, the execution of a program can be viewed as a
concatenation of multiple lassos,

⟨τ0
stem1−→ τ1

loop1−→ τ1⟩ . . . ⟨τn−1
stemn−→ τn

loopn−→ τn⟩.

The number of lassos depends on the number of loops in the
execution. Hence, larger executions with a greater number
of loops are likely to have more lassos, resulting in more
complexity for termination analysis.

Definition 5 (Program Non-Termination): A program is
non-terminating if there exists an initial state s0 that leads to
a recurrent-set belonging to one of the lassos, i.e., ⟨τ0

stem1−→
τ1

loop1−→ τ1⟩ . . . ⟨τn−1
stemn−→ τn

loopn−→ τn⟩, where the state s0 is
the input to the program.

To prove non-termination of a program, we need to find
inputs (i.e., initial state s0) and a lasso of the program such
that the input can reach a recurrent-set inferred from the lasso.

Differences from detecting performance issues. It is worth
noting that some existing works [12]–[18] focus on detecting
performance issues, such as inefficient executions. This paper
focuses on detecting and proving non-termination instead,
which differs at the problem definition. While detecting perfor-
mance issues can be accomplished by checking execution time,
proving non-termination is more difficult and requires showing
that a program never terminates. A long-running execution
may indicate a performance issue, but it is not necessarily an
indicator for non-termination.

SRC Extraction

Revisit Monitoring

Revisit 
Oracles

Test Case 
Generation

Instrumented 
Program

Non-Term 
Bugs

Static 
Analysis

Testing

instrument

Program Loops

Fig. 2: Overview of our work

B. Overview of EndWatch

Challenges. There are two main challenges that the state-
of-the-art tools face when detecting non-termination in real-
world programs. ① Real-world programs are often large and
contain many loops, making it difficult to statically determine
the context of deep loops, which is required for recurrent-set
analysis. As shown in Definition 5, when n is large, calculating
the recurrent-set for the last lasso τn

loopn−→ τn becomes
challenging, as its context depends on the postcondition of
the previous loops and function calls. For example, the loop
in Fig. 1a requires the analysis of function func and others.
② Inferring recurrent-sets is undecidable and cannot be fully
automated, especially for complex loops that involve pointers,
arrays, and custom data structures.

Our Solution. To address these challenges, we propose a
practical and scalable method called EndWatch, as shown
in Fig. 2. To tackle challenge ①, we adopt a divide-and-
conquer strategy that analyzes each loop individually instead
of the entire program. We extract all loops in a program and
calculate non-termination oracles for each loop. As a testing
approach, EndWatch has access to runtime information about
the program and can easily determine the precise context of
each individual loop. To address challenge ②, we propose to
sacrifice on generality, and design more practical and tractable
non-termination oracles. We employ two strategies for gen-
erating non-termination oracles: i.e., State Revisit Condition
(SRC) extraction and Revisit Monitoring. Specifically, for
linear loops, we perform symbolic execution to infer SRCs, so
that the loop is non-terminating if an SRC is satisfied by the
test input. For other loops whose SRCs cannot be determined,
we implement runtime monitors to check for concrete state
revisits by comparing the current state with the previously
visited states. Of course, revisit monitoring is more resource-
intensive, as it requires recording and comparing concrete pro-
gram states. Both SRCs and revisit monitors are instrumented
into the program as non-termination oracles during testing.

Figure 3 illustrates the two types of oracles generated by
EndWatch. The condition calculated by SRC extraction is
i = 49, which serves as a non-termination oracle for the loop:
if there exists an input that makes i equal to 49 before entering
the lasso, a non-termination is detected. The revisit monitoring
analysis involves dynamically recording previously visited
concrete states, such as {20, 40, 50} for i. These states are
used to compare with subsequent states during loop execution.



Algorithm 1: InferSRC
Input : τ0: An initial path of the loop;
Q: A set of all paths ;
Output: C: State Revisit Condition;

1 Create an initial symbolic state s0 ;
2 s0.TC = θτ0 ;
3 s0.trace← [τ0];
4 worklist← {s0};
5 while worklist ̸= ∅ do
6 s← SELECT (worklist);
7 τ ← s.trace[−1];
8 foreach τ ′ ∈ Q do
9 if head(τ ′) = tail(τ) then

10 s′ ← FORK(s);
11 Introduce a variable k to represent the k iterations of

τ ;
12 if INDUCTIV E(τ) then
13 ϕk ← θτ [X/X′

k−1] ∧ θτ ′ [X/X′
k] ;

/* Constraints on k */

14 else
15 ϕk ← k = 1 ; /* No summary for

non-inductive paths */

16 s′.TC = s′.TC ∧ θτ ′ [X/X′
k] ∧ ρkτ ∧ ϕk ;

/* Perform path summarization with k

*/
17 if FEASIBLE(s′.TC) then
18 if V ISITED((τ, τ ′), s′) then
19 continue ; /* State pruning */

20 s′.trace.append(τ ′);
21 worklist← worklist ∪ {s′};
22 if IS LASSO(s′) then
23 Let s′.trace = τ0

stem−→ τ ′
loop−→ τ ′;

24 c← INFER(s′.trace) ; /* Infer SRC
*/

25 C ← C ∪ {c};

26 return C;

i<50
i = i + 1

i = 1

…

i = 0

i = i + 1

i>=50
i = i - 1

Recorded state: (i=50, i=40, i=20)SRC: i = 49

Current state: i=50

Infinite loop

Oracle1: Oracle2: Revisit Monitoring

Fig. 3: Two types of oracles for the lasso in Fig. 1

For example, when a matching state of 50 is identified, a non-
termination is detected.

IV. METHODOLOGY

A. State Revisit

State revisit in a lasso implies the existence of a recurrent-
set for the lasso. Therefore, a loop does not terminate if we
can find a state revisit, which is formalized as follows:

Proposition 2: A lasso τ0
stem−→ τ

loop−→ τ is non-terminating
if there exists s0, s1 such that (s0, s1) |= ρstem

∧
(s1, s1) |=

ρloop, where ρstem and ρloop are the transition relations of the
sequences stem and loop, respectively.

Proof: Assume there is no non-deterministic operation in ρloop,
if (s1, s1) |= ρloop, then there exists one reachable recurrent-
set {s1}, which serves as a proof of non-termination based on
Proposition 1.

The problem of detecting non-termination is now reduced
to finding state revisits for a given loop. We propose two
types of oracles to detect state revisits: symbolic state revisits
(Section IV-B) and concrete state revisits (Section IV-C). For
symbolic state revisits, we perform symbolic execution to
identify symbolic states that occur at the same location of the
loop (e.g., X and X ′). We then calculate the weakest State
Revisit Condition (SRC) that makes the symbolic states equal
(i.e., X = X ′). The SRC is then instrumented into the loop
as the non-termination oracle. For concrete state revisits, we
directly instrument the loop by recording the previously visited
states and comparing them with the current state (e.g., s = s′).
During testing, a non-terminating loop is discovered if a state
revisit occurs. A detailed comparison of the two methods will
be discussed in Section IV-C.

B. State Revisit Condition Extraction

Algorithm 1 outlines the process of identifying lassos within
a loop and calculating their SRCs. The basic idea is to iterate
the loop and compare the symbolic states. A major challenge
in this approach is the possibility of encountering an infinite
number of lassos during the symbolic execution (i.e., state
explosion). To address this challenge, we adopt two strategies:
path summarization and state pruning, which can alleviate the
state explosion problem. Path summarization calculates the
effect of a path after any k iterations, while state pruning
limits the number of iterations.

Algorithm 1 takes as input a loop with an initial path τ0 and
a set of paths Q. The algorithm starts by initializing a symbolic
state s0, which includes various properties such as the current
trace2 executed and its corresponding trace condition s0.TC
(Lines 2-3). A standard worklist-based symbolic execution (as
described in [22]) is then executed until the worklist is empty
(Lines 5-25).

At each iteration, a symbolic state s is selected and removed
from the worklist by the SELECT function (Lines 6-7). The
function SELECT can be implemented following various
selection strategies, and in this paper, we always select the first
state from the worklist. The algorithm then iterates through the
path list to select the next path (Lines 8-25). The transition
from τ to τ ′ requires that the last basic block of τ matches
the first basic block of τ ′ (Line 9).

Path Summarization (Lines 11-16). The algorithm executes
the current path τ symbolically and transits to the next path
τ ′. To reduce the number of times that symbolic execution
traverses a path, we perform path summarization for inductive
paths by INDUCTIVE function (Lines 12-13), as described
in [23]. This allows us to obtain the result of executing path τ
any k times in a single iteration, thereby reducing the overall

2A “trace” is equivalent to the term program path used in the symbolic
execution literature. We use the term “trace” to distinguish from loop paths
used in this paper.



time. For instance, if the variable is increased by a constant
value in each execution of the path (e.g., x := x + 1), then
we can obtain the result after k executions, i.e., x + k. To
implement this, we introduce a variable k > 0 to represent
that the loop will execute τ ′ after τ has executed k times.
This implies the constraint that after k− 1 iterations of τ , the
path condition of τ is satisfied, and after k iterations of τ ,
the path condition of τ ′ is satisfied (Line 13). The expression
θτ ′ [X/X ′

k] represents the results after k executions of τ (i.e.,
ρkτ ), with variables in X substituted by the variables in X ′

k.
If τ is a non-inductive path that we fail to summarize, we
perform a standard symbolic execution that does not involve
path summary (i.e., k = 1 in Line 15). It updates the current
trace condition to reflect the transition from executing the
path τ k times to τ ′, and then checks the satisfiability of
the updated trace condition. The trace condition is updated
to be the conjunction of the current trace condition and the
condition derived from executing τ k times and transitioning
to τ ′ (Line 16). If the updated trace condition is not feasible,
the algorithm will skip to the next path τ ′.

State Pruning (Lines 18-19). The algorithm implements the
similar state pruning [22] strategy to prevent state explosion
during symbolic execution, caused by the cyclic execution
between multiple paths. It limits the number of iterations for
each cycle of execution by only considering one cycle of
execution at a time (Lines 18-19). It may miss some state
revisit checking, but reduces the complexity of the symbolic
execution and makes EndWatch more practical. If the state is
not pruned, the algorithm creates a new symbolic state s′ for
the next path τ ′ and adds it to the worklist (Lines 20-21),
allowing the algorithm to continue its iteration.

SRC Inference (Lines 22-31). If a lasso is detected during
the execution, meaning that the next path τ ′ exists in the
previous execution, the algorithm infers a sufficient condition
for the non-termination of the identified lasso (Lines 22-
23). We calculate the SRC by ensuring that the values of
the variables Xτ ′ remain unchanged after one execution of
the cycle, i.e., Xτ ′ = X ′

τ ′ , where Xτ ′ and X ′
τ ′ represent

the variables before and after one execution of the cycle,
respectively. INFER aims to eliminate the variables ki from
the condition s′.TC∧Xτ ′ = X ′

τ ′ . Here, we use the Z3 theorem
prover [24] to eliminate the existentially quantified variables,
which is easier to do due to the inductiveness of the paths.

Consider the loop in Figure 1b, and there is a lasso τ1 →
τ2 → τ1. Then we can calculate its SRC with two quantifiers
k1 and k2, i.e., {∃k1 ∈ Z,∃k2 ∈ Z|k1 > 0 ∧ k2 > 0 ∧ i <
50 ∧ i + k1 − 1 < 50 ∧ i + k1 ≥ 50 ∧ i + k1 − (k2 − 1) ≥
50 ∧ i + k1 − k2 < 50 ∧ i + k1 − k2 = i}. After eliminating
k1 and k2, we can get a simplified SRC {i ≥ 49 ∧ i ≤ 49},
i.e., {i = 49}.
Other Optimizations. Additionally, we provide several opti-
mization strategies to enhance Algorithm 1, including stuck
path detection, non-inductive path summarization, and over-
flow handling. Due to space limit, we provide more details
and examples about these strategies on our website [25].

Stuck paths are paths that cannot transit to any other paths,
and they may not cause state revisits in a finite execution. If the
loop enters a stuck path, it does not terminate. To detect stuck
paths, we check whether the path condition θτ can always
be satisfied for any number of iterations using a universal
quantifier k, as shown below:

StuckCon← ∀k > 0 · θτ [X/X ′
k] ∧ ρkτ

If StuckCon is satisfied, we use Z3 to eliminate the universal
quantifier k, and the result is a stuck condition that can serve
as an oracle for non-termination.

Non-inductive paths could also be summarized if we have
prior knowledge about some special program constructs. For
example, bit shifting is a non-linear operation, but in certain
situations, it can result in a constant-valued variable or has an
upper/lower bound. For instance, if a positive value is shifted
right iteratively, it will eventually become 0. We can use these
to calculate the path summary. Similarly, for function calls
(e.g., read), some APIs have specific return values (e.g., 0
after reaching EOF) that can be used as the summary. We
have implemented the strategies to handle some non-inductive
paths.

Overflow occurs when a value exceeds the maximum or
minimum value that can be represented by its data type.
Existing techniques usually assume that overflow does not
occur, which can lead to incorrect conclusions in real-world
program execution. To handle overflow, we constrain the range
of the value when calculating the path summary. For example,
if the instruction x-- occurs in a loop path, the summary
without considering overflow is x′ = x − k. However, when
we consider overflow, the summary becomes x′ = (x − k)
mod 216 if x is an unsigned 16-bit integer.

C. Revisit Monitoring

For loops that cannot be handled in Algorithm 1, we
instrument them with state revisit monitors to record and
compare the concrete states visited in loop executions. The
method consists of two components: a state slicing process
to determine which variables should be recorded for a state,
and adaptive state recording strategy to compare the recorded
states.

State Slicing. Choosing proper state abstractions is important
for detecting state revisits. In other words, one needs to decide
which variables to record as a part of the loop state: recording
variables that do not affect loop termination could result
in missing non-termination bugs due to mismatched states;
conversely, missing variables that affect loop termination could
lead to false positives caused by partial state matching.

We adopt the idea from [26] to slice variables that affect the
termination of the loop. The process starts by selecting vari-
ables in loop conditions and then performing data dependency
analysis and control dependency analysis to identify any other
variables that may have an impact on the loop termination.
Additionally, we conduct special analysis on the dependencies
of global variables, function parameters/returns, and pointers



through a points-to analysis to ensure that all relevant variables
are monitored.

Adaptive State Recording. Determining the period of state
recording is another challenge in revisit monitoring, because
state revisit may not occur after every iteration. It could occur
after a varying number of iterations, such as after each iteration
or after thousands of iterations. Recording the state at each
iteration is intuitive but impractical as it significantly increases
the costs. To strike a balance between precision and efficiency,
we aim to select an appropriate number of states for checking,
rather than recording the state at every iteration.

Specifically, we propose an adaptive strategy to determine
the period of state recording. Our strategy is based on an inter-
val I, where we record the states at Ith, 2×Ith, . . . , n×Ith
iterations of the loop. This interval is dynamically updated
based on the number of loop iterations:

I = I0 × ⌈
#iter

α
⌉,

where I0 is the initial interval, #iter is the number of
iterations, and α is a discount factor to control the interval
value. In this work, we set I0 = 100 and α = 10, 000. This
means that if the number of iterations is less than 10, 000,
we record the states with a smaller interval (100) for finer-
grained monitoring. However, if no state revisit is detected
after a large number of iterations, we increase the interval to
reduce the overhead of recording and comparing many states.

Finally, given a concrete state in the current iteration, if
it can be matched with one of the recorded states, then the
program does not terminate.

SRC Extraction versus Revisit Monitoring. The two meth-
ods complement with each other and work in synergy to
detect non-termination bugs in real-world programs. The SRC
extraction method is relatively light-weight for testing as it
does not require recording too many states, and the inference
of SRCs can be conducted offline, i.e., before testing. Hence,
it is suitable for linear programs (e.g., benchmarks used by the
existing tools). On the other hand, revisit monitoring tends to
be more resource-intensive due to the need of recording states
of running loops, especially when the state revisit cannot be
detected within a small number of iterations. However, revisit
monitoring tends to be more scalable than SRC extraction as
it is able to handle non-linear loops.

D. Instrumentation and Testing

EndWatch performs instrumentation to insert the oracles
generated by SRC extraction and revisit monitoring. We use
Clang to instrument the oracles into LLVM-IR code. For SRC,
we insert it into the loop header as an asserted condition
that reports non-termination. For revisit checking, our instru-
mentation consists of two parts, namely, the state recorder
and the state checker. The state recorder is instrumented at
the loop header to collect states, while the state checker is
instrumented at the loop tail to compare the current state
with the recorded states. To reduce the overhead of variable

comparisons, EndWatch only records the hash value for all the
sliced variables in the state.

With the instrumented code, we can then use testing tools to
generate test cases and detect non-termination bugs based on
the oracles. Note that the usage of testing tools is orthogonal
to our method. In this paper, we used AFL, a widely used
fuzzing tool to generate test cases.

E. Discussions

1) Soundness and Completeness: As proven in Proposi-
tion 2, EndWatch is sound, meaning that if it finds a non-
terminating test case, the program must not terminate. How-
ever, like other non-termination tools, EndWatch is not com-
plete as non-termination proving is an undecidable problem.
This means that EndWatch may miss some non-termination
test cases. Theoretically, without considering scalability chal-
lenges, a recurrent-set based method would detect more bugs
than EndWatch since EndWatch mainly considers state revisits,
which is a special case of the recurrent-set.

Limitation. The primary limitation of EndWatch is its bal-
ance between practicality and generality. While EndWatch
succeeds in achieving practicality, it scarifies the generality.
This means that certain instances of non-termination can
not be detected by EndWatch. Specifcially, the state pruning
strategy mitigates state explosion issues, yet at the cost of
potentially disregarding state revisits requiring more iterations.
The adaptive state recording approach opt to capture only
partial states, leading to commendable efficiency gains, but
possibly overlooking certain instances of non-termination if
the partial assessment is inadequate.

2) Usage of EndWatch: EndWatch offers two usage modes,
namely, offline mode and online mode. For the online mode,
EndWatch first instruments the program with oracles and then
tests the instrumented programs. For the offline mode, we
first generate test cases for the original programs without
EndWatch. Then we collect the tests that do not terminate
within a pre-defined threshold (e.g., hangs in AFL’s terminol-
ogy). Although these slow test cases may not necessarily be
non-terminating, they are more likely to be non-terminating.
We can run EndWatch on them offline to confirm the non-
terminating cases. The offline mode is more efficient as it only
needs to analyze the slow loops instead of all the loops. But it
relies entirely on the ability of the selected testing tool to detect
potential non-terminating cases. On the other hand, the online
mode is more expensive but can provide better feedback for
the testing algorithm, such as non-termination guidance from
the SRC and state revisit checking.

V. EVALUATION

To evaluate the effectiveness of EndWatch, we aim to answer
the following research questions:

• RQ1: How effective is EndWatch on existing benchmark
programs compared with the state-of-the-art tools?

• RQ2: How effective is EndWatch on detecting CVEs in
real world programs?



• RQ3: How useful is EndWatch in finding zero-day non-
termination bugs?

Tools under comparison. We selected 6 state-of-the-art tools
in the experiments: 2LS [27], AProVE [5], CPAchecker [3],
UAutomizer [4], Dynamite [28], and Loopster [29]. Among
them, UAutomizer, AProVE, 2LS, and CPAchecker achieved
outstanding results in the past SV-Comp competitions. Dy-
namite is a termination and non-termination verification tool
based on a dynamic approach. Loopster is a static approach
which also computes path summaries.

In the experiments, we utilized the versions of 2LS,
CPAchecker, and UAutomizer as supplied by the SV-
COMP2023 competition, and utilized AProVE as supplied by
the SV-COMP2022 competition. As for Dynamite, we em-
ployed the released Docker version available on GitHub [30].
Since Loopster is not available, we manually analyzed and
identified the cases that could be handled by Loopster. We
had intended to select VeriFuzz (FuzzNT) [31], a fuzzing-
based tool, in our evaluation. However, it failed on almost
all of our non-termination benchmarks, and as a result, we
did not include its results in the paper.

Note that there are some other techniques [12]–[18] that can
be used to detect performance issues. However, it is important
to note that these methods are not suitable for comparison with
non-termination detectors, as they are not designed to detect
or confirm non-termination bugs.

Existing benchmarks. As the selected baselines are only
capable of analyzing small programs, we selected benchmarks
that contain curated programs with simplified program fea-
tures. To this end, we choose the existing benchmarks that are
widely recognized in termination analysis, such as those from
SV-COMP2023 [19] and TermComp2022 [20]. The selected
benchmarks encompass programs written in various languages,
including C and Java. In our experiments, we only focused
on C programs. The SV-COMP2023 benchmark comprises
40,604 C programs, grouped into 135 categories, while the
TermComp2022 benchmark consists of 1,332 C programs
classified into 11 categories. EndWatch is designed for non-
termination loop detection, hence from the SV-COMP2023
benchmark, we selected categories labeled as “loop” and
“termination”. Using the “false” label, we further gathered 123
non-termination cases from its configuration file (.yml file).
Similarly, we collected 130 “false-termination” benchmarks
from TermComp2022, after removing 44 duplicated cases.
We then excluded 15 non-termination cases resulting from
infinite recursion, as the focus of our comparison is on non-
termination loops. In total, we have 194 benchmark programs
(112 from SV-COMP2023 and 82 from TermComp2022) in
the experiment.

Furthermore, we also incorporate a new benchmark called
OSS Bench, which was recently released by [6]. The pro-
grams in this benchmark are extracted from real-world
projects, making them more representative of real programs.
Specifically, this benchmark was created to evaluate the capa-
bility of non-termination detection tools in handling real-world

projects with special features. The benchmark comprises both
non-termination and corresponding termination cases, which
are divided into loop-caused and recursion-caused categories.
Out of 118 programs, we only chose 44 loop-caused non-
termination programs.

CVE Programs. To evaluate EndWatch on real-world pro-
grams, we gathered 20 CVEs related to infinite loop from the
CVE website [32] for the past four years (2019-2022). The
CVEs were filtered to only include those related to C/C++
programs and only the reproducible ones were considered. The
collected CVEs came from 12 different projects including lib-
jpeg, Wireshark, Gpac, nasm, PDFResurrect, zziplib, picoquic,
gdk-pixbuf, libsixel, cairo, Exiv2, and ProFTPD.

The new programs are simplified based on the follow-
ing principles: ❶ Context Simplification - The loops were
simplified by identifying loop iterators and loop conditions,
retaining relevant variables and data structures which may
change the variables in the iterators, and removing instructions
that do not affect loop termination. ❷ Function Rewriting
- Functions affecting iterations were kept and others were
removed. ❸ Reserve Name and Types - Consistent naming,
typing of variables, and functions were maintained. ❹ Making
Benchmark Executable - Following the benchmark [19], we
add non-deterministic initialization of variables to make them
executable.
Real-world Projects. Additionally, to evaluate the ability to
detect zero-day bugs, we chose 5 high-star applications, i.e.,
the OpenCV (66.1k stars) [33], Draco (5.5k stars) [34], Im-
ageMagick (8.4k stars) [35], Libbpf (1.4k stars), [36], keystone
(2k stars) [37].

All experiments are conducted in Ubuntu 22.04 system on
a 3.9GHz 6-core AMD Rayzen processor with 16 GB RAM.

A. Evaluation on Benchmark (RQ1)

1) Setup: For every case in the selected benchmark, we
set a 900-second time limit, which is the same setting as
the SV-COMP2023 competition. To minimize randomness, we
repeated the testing process 5 times. We consider the non-
deterministic variables (e.g., _VERIFIER_nondet_int())
as the input variables for testing. In regards to 2LS, AProVE,
CPAchecker, and UAutomizer, we adjusted their settings to
match those of SV-COMP2023. For Dynamite, we utilized
the option “--nonterm”. The results such as “timeout”, “UN-
KNOWN”, “MAYBE”, and “TRUE/YES” (representing termi-
nation) are considered not correct.

For the existing benchmarks with small programs, we use
the online mode of EndWatch. Firstly, we perform static analy-
sis to instrument the oracles (i.e., SRC and revisit monitoring),
and then we use AFL [11] to generate test cases for the
instrumented programs. The total time taken by EndWatch
includes both the time taken for static analysis and the time
taken for testing.

2) Result: Table I presents the performance of the various
tools on different benchmarks. In general, for benchmarks
SV-COMP2023 and TermComp2022, it can be observed that



TABLE I: The results on benchmarks including SV-COMP2023, TermComp2022 and real-world OSS benchmark. Total
represents the total number of programs in each category. # represents the number of correctly detected. The best value
for each raw (benchmark) is highlighted in bold.

Category Total EndWatch 2LS AProVE CPAchecker UAutomizer Dynamite *Loopster
# Time(s) # Time(s) # Time(s) # Time(s) # Time(s) # Time(s) #

loop-acceleration 2 2 2.18 2 0.18 2 3.00 0 2.93 2 6.17 2 64.19 0
loop-crafted 1 1 0.41 1 6.26 1 1.79 0 0.70 1 2.47 0 1.36 0
loop-invariants 7 7 6.09 1 5400.06 1 5526.99 6 23.12 1 77.13 5 961.03 7
loop-invgen 2 1 900.74 1 0.13 0 902.93 0 1.39 0 3.62 0 2.80 1
loop-lit 1 0 901.32 0 710.98 1 2.15 0 855.81 0 2.15 1 23.47 0
loops 9 9 19.30 6 1.30 8 831.87 6 12.49 5 57.67 5 39.73 7
termination-memory-alloca 2 2 2.45 0 0.27 2 3.01 0 1.47 2 6.48 0 2.81 0
termination-15 6 6 4.59 0 0.85 2 1909.09 0 4.38 6 31.65 0 5400.14 8
termination-crafted 11 10 906.53 9 905.47 9 1851.51 7 254.98 10 44.91 3 66.58 0
termination-memory-linkedlists 4 4 19.22 0 0.35 4 34.78 0 3.63 4 41.88 0 5.48 0
termination-restricted-15 34 34 20.16 34 47.38 30 4272.86 25 3639.80 32 200.21 24 1324.87 13
termination-nla 19 15 3740.72 4 13501.31 0 22.55 3 3499.69 3 2234.76 17 1159.50 0
termination-bwb 14 14 9.76 11 2700.73 8 946.67 1 26.05 2 42.44 6 168.2 0
AProVE memory alloca 4 4 2.85 0 23.76 3 965.63 0 6.80 4 29.67 0 5.58 0
SV-COMP Mixed Categories 12 1 9917.56 2 1.76 3 9323.80 8 4256.97 8 3683.94 0 16.78 3
SV-COMP Termination Category 6 6 4.65 4 1800.36 4 3237.36 4 13.23 6 17.18 6 1369.29 3
Ultimate 16 16 21.09 11 3990.27 13 2122.94 10 161.76 16 54.11 9 1486.43 11
Ton Chanh 15 13 10 2719.04 3 3.07 8 2917.00 10 62.26 12 3706.93 6 233.69 11
Stroeder 15 31 30 948.05 18 10533.43 26 6754.48 20 276.19 28 279.07 18 2009.19 26
OSS Bench 44 36 7279.95 26 9574.82 21 9418.87 14 3040.24 18 7606.90 7 5455.60 4
Total 238 208 35566.27 133 49202.76 146 51049.26 114 16143.89 160 18129.36 109 19796.72 94

TABLE II: The number of programs correctly handled by the
SRC (R1) and the revisit monitoring (R2), as well as the
average time taken.

Benchmark Total #C Avg Time(s)
R1 R2 R1 R2 Testing

SVComp 105 54 51 1.25 0.48 3.15
TermComp 67 50 17 1.52 0.83 4.11
OSS Bench 36 12 24 1.55 1.19 8.15
Total Num& Avg Time 208 115 78 1.38 0.73 4.43

EndWatch correctly detects 208 infinite loops, representing
87% of the total, which is more than the results of state-of-the-
art tools. Specifically, 2LS correctly verified 133 loops (56%),
AProVE correctly verified 146 loops (61%), CPAchecker cor-
rectly verified 114 loops (48%), UAutomizer correctly verified
160 loops (67%), Dynamite correctly verified 109 loops (46%)
and Loopster can correctly verify 94 loops (39%).

Additionally, EndWatch has a 1.4× faster runtime compared
to AProVE, but almost 2× slower than CPAchecker and
UAutomizer. This is because if EndWatch encounters a case
it cannot handle, it continues to run until the timeout, while
the other tools may return “UNKNOWN” in a short time if
they fail to verify a case. For instance, in categories such as
“termination-restricted-15” is 180× faster than CPAchecker
and 10× faster than UAutomizer, when it did not reach the
timeout.

We also observed that Dynamite failed on many programs.
Our in-depth analysis revealed two possible reasons: Firstly,
Dynamite may not support some data types or structures.
For instance, it returns “ERROR” when it encounters certain
pointer or function calls. Secondly, Dynamite was unable
to obtain the recurrent set for a lasso until it exceeded its
maximum recursion depth.

The results of the real-world OSS benchmark (OSS Bench)
reveal that EndWatch is better at handling unpredictable con-

TABLE III: The result on handling different features of
benchmark programs. The best value for each row (feature)
is highlighted in bold.

Features (Total) EndWatch 2LS AP. CPA. UA. Dyn. Lo.R1 R2
Integer(165) 101 34 95 100 97 111 85 94
Array(20) 5 14 8 9 0 14 2 0
Pointer(16) 0 16 0 10 0 12 0 0
Bit calculation(20) 6 14 15 0 4 4 5 0
Data structure(6) 0 6 1 5 0 6 0 0
Function (20) 4 16 8 4 10 12 4 0
Overflow(9) 6 3 8 0 3 2 1 0

ditions compared to the other tools. Out of the total cases,
EndWatch correctly verified 82% (the highest percentage),
while 2LS and AproVE verified 59% and 48% respectively,
and CPAchecker and UAutomizer verified 32% and 41%
respectively. On the other hand, Dynamite and Loopster, which
performed poorly on this benchmark, correctly verified only
16% and 10%, respectively.

Table II provides detailed results of programs that are
correctly handled by SRC (R1) and revisit monitoring (R2).
The first and second columns represent the benchmark and
total number of programs in each benchmark, respectively.
The third column (#C) shows the number of programs cor-
rectly handled by SRC or revisit monitoring. The last column
displays the average time taken by SRC, revisit monitoring,
and fuzzing in each program. The results indicate that most
of programs in SV-COMP and TermComp can be handled by
SRC (60%). Revisit monitoring is more effective in handling
real-world benchmarks, such as OSS Bench (67%). The test-
ing takes more time (4.43s) compared to static analysis (1.38s
and 0.73s), indicating that the static analysis is lightweight.

We further show the capabilities of EndWatch and the other
tools in handling different scenarios, such as those involving
arrays, functions, pointers, etc. This was done by categorizing
the programs into different features as shown in Table III.
The first column indicates the feature of the program that



TABLE IV: Results on CVE programs. R1 and R2 refer to the
cases handled by SRC and revisit monitoring, respectively.

Projects CVEs Org Sim
EndWatch EndWatch 2LS APr. CPA. AU. Dyn. Lo.

Libjpeg CVE-2022-37768 !(R2) !(R2) ! U U % U U
CVE-2022-35166 !(R2) !(R2) ! U U U U U

Wireshark

CVE-2022-0586 !(R2) !(R2) ! U U U U U
CVE-2021-4184 !(R2) !(R2) U U U U U U
CVE-2021-4185 !(R2) !(R2) U U U U U U

CVE-2020-26575 !(R2) !(R2) U U U U U U
CVE-2019-16319 !(R2) !(R2) U U U U U U
CVE-2019-10897 !(R2) !(R2) U U U U U U

Gpac
CVE-2021-45297 !(R1) !(R1) % U ! U U U
CVE-2021-44924 - - - - - - - -
CVE-2021-40592 - - - - - - - -

nasm CVE-2021-45257 !(R2) !(R2) % U U ! U U
PDFResurrect CVE-2021-3508 !(R2) !(R2) % U U U U U

zziplib CVE-2020-18442 !(R2) !(R2) % U U U U U
picoquic CVE-2020-24944 !(R2) !(R2) % U U U U U

gdk-pixbuf CVE-2020-29385 !(R2) !(R2) ! U U ! U U
libsixel CVE-2019-3573 !(R1) !(R1) % U U U U U
cairo CVE-2019-6462 !(R1) !(R1) U U U U U U
Exiv2 CVE-2019-20421 !(R2) !(R2) U U U U U U

ProFTPD CVE-2019-18217 !(R1) !(R1) U U U U U U

causes non-termination of the loop, while the second column
shows how many cases are handled by SRC (R1) and dynamic
checking (R2), respectively.

Among these results, EndWatch can detect 61% of integer
cases through R1, but requires revisit monitoring (R2) to
handle features like Pointer, Bit calculation, Data structure,
and Function that are hard to be analyzed statically. EndWatch
outperforms the other tools in handling non-integer cases.
For example, UAutomizer performs best among these tools
for programs involving functions, handling 52% of cases,
while EndWatch correctly detects 87% of cases. It is because
EndWatch benefits from the dynamic fuzzing strategy that
can ignore complex features and provide accurate context
information, which is more advantageous than the existing
static analysis-based methods.

Answer to RQ1: EndWatch outperforms all existing
approaches on existing benchmarks. With EndWatch, we
can correctly detect 87% non-termination benchmarks.
Due to the state revisit monitoring, EndWatch shows a
significant performance advantage at handling loops with
special features such as array, pointer, bit calculation, data
structure, and function.

B. Evaluation on CVE Programs (RQ2)

1) Setup: We conducted two experiments to answer this
research question. Firstly, we applied EndWatch to the col-
lected real-world projects to demonstrate its capability in real-
world scenarios. EndWatch was configured in offline mode for
these large projects, i.e., whether our oracles can identify non-
termination when provided with the non-terminating inputs.
Secondly, to compare with the baselines that cannot directly
handle large programs, we also evaluated all of the tools on
simplified versions of these programs within 900 seconds.

2) Result: Table IV shows the results on CVE programs.
Org refers to the results on the original project while Sim
refers to the results on the simplified versions. In the table, “✓”
represents a correct verification, “%” means a non-termination
bug is incorrectly verified as “termination”, and “U” demon-
strates that the tool is unable to handle this case within the

TABLE V: Hangs and non-termination bugs found

Projects #Hangs Non-termination
OpenCV 1,624 1
Keystone 2,310 1
Draco 2,241 1
ImageMagick 649 0
Libbpf 363 1

specified time (900s), e.g., “UNKNOWN”, “TIMEOUT”, and
“MAYBE”. The results on the collected CVEs show that the
oracles provided by EndWatch are able to detect the non-
termination effectively. We observed that 4 non-termination
bugs were detected by SRC while 14 bugs were detected by
our revisit monitoring. This could be due to the fact that more
non-termination bugs occur in non-linear loops, which often
involve pointers, data structures, arrays, and functions, and
are more prone to non-termination due to their complexity
and potential for subtle bugs. EndWatch failed in CVE-2021-
44924 and CVE-2021-40592. The reason is that the infinite
loop in both CVE-2021-44924 and CVE-2021-40592 exists
within a dynamic shared library, i.e., the files end with “.so”,
which cannot be instrumented and analyzed by EndWatch.

Compared to the simplified programs, we can observe that
EndWatch is more effective in detecting most of the CVEs.
Our in-depth analysis reveals that AProVE fails in all the
programs due to its limitation to support data structures, which
are widely used in these programs. Dynamite and Loopster
failed because they cannot handle functions and pointers well.
On the other hand, 2LS only successfully handles four cases,
but also produces five incorrect results.

Answer to RQ2: EndWatch is highly effective in de-
tecting non-termination bugs in real-world programs. Our
experiments demonstrate that EndWatch can correctly
handle 90% of the non-termination bugs in the original
CVE programs, outperforming state-of-the-art tools such
as 2LS, AProVE, CPAchecker, UAutomizer, Dynamite,
and Loopster. These tools were only able to detect 15%,
0%, 5%, 10%, 0%, and 0% of non-termination bugs in the
simplified versions of the CVE programs, respectively.

C. Zero-Day Bug Detection (RQ3)

1) Setup: We configured EndWatch in offline mode to de-
tect non-termination. Specifically, we first run AFL to generate
test cases and collect the hang test cases. Each project was
fuzzed with 240 hours. Then we instrumented the programs
with EndWatch and fed the hangs to the instrumented programs
to identify the non-termination inputs.

2) Result: Four infinite loop bugs have been found, and
two of them have been confirmed and fixed. Among them, 3
bugs are detected by Revisit Monitoring and 1 bug is found by
SRC. Table V shows the number of hangs found by fuzzing
and non-termination detected by EndWatch.

Another possible approach to identify non-termination bugs
is to manually analyze long-running tests (hangs) collected
from existing tools. However, this method has some chal-



1...

2 while (true){

3 IdentityOpsMap::iterator

4 nextIt = identity_ops.find( it->second );

5 if (nextIt != identity_ops.end())

6 it = nextIt;

7 else
8 break;
9 }

Fig. 4: Issue #22709 in OpenCV.

lenges. Firstly, it can be time-consuming, inaccurate, and
requires significant human effort. Based on our experience,
it takes tens of minutes or even hours to analyze and confirm
a hang test case, especially when the project logic is complex.
Secondly, it is not trivial to set a suitable time threshold
for collecting hangs, as it depends on the project. A larger
threshold may reduce some hangs, but it requires more time to
filter, especially when there are too many hangs. For example,
OSS-Fuzz [38] can detect a large number of hangs, but
few non-termination bugs are reported from them. Therefore,
EndWatch is designed to automatically detect and confirm non-
termination bugs.

Figure 4 shows a new non-termination bug we discovered
in OpenCV. This bug is due to the cyclic assignment in the
map data structure. Specifically, the map iterator is utilized to
search for a corresponding value using a key “it->second”.
However, when the key is equal to the value in the map iterator,
“identity_ops.find(it->second)” returns the same
iterator, making “it” remains unchanged. This issue was
difficult to detect using existing tools due to the complexity
of the data structures and pointers involved as well as the
complex context in the whole project. However, by utilizing
revisit monitoring, EndWatch was able to record the relevant
variables as states (i.e., “it”) and check for its revisits during
testing, leading to the detection of the infinite loop. More detail
and case studies can be found on our website [25].

Answer to RQ3: EndWatch is useful in detecting new
non-termination bugs in real-world projects.

VI. THREATS TO VALIDITY

The selected benchmarks could be a threat to validity. To
mitigate this threat, we select multiple benchmarks including
the standard benchmarks, the OSS benchmarks, the projects
with CVEs, and other projects. Another threat comes from
the randomness in our fuzzing testing. Because mutation in
fuzzing is a heuristic method, which may affect the generaliz-
ability of the RQ1 result. To alleviate this issue, we repeated
5 times and calculate the average time. The step interval and
the corresponding hyper-parameter in Section IV-C could be a
threat to validity. Different parameters setting may affect the
experiment result. The setting in the paper may miss some
non-termination if we cannot observe the revisit.

VII. RELATED WORK

A. Static Analysis for Non-termination
Non-termination is a classic topic that has been studied for

a long time. Many static researches ( [21], [39], [40], [41])
aim to find a recurrent set. Gupta et al. [21] introduced a
concept named lasso. They enumerated a lasso-shaped path
for counter example, and then to determine the feasibility,
they searched for a recurrent set by exploring the program
symbolically. Chen et al. [39] extended the recurrent set to a
closed recurrence set and reduced it to an under-approximation
nonlinear program. Cook et al. [40] intruded live abstraction to
make over-approximation on non-linear programs for recurrent
set inferring. Larraz et al. [41] used Max-SMT to generate
quasi-invariant, and take it as a property to demonstrate the
non-termination. Our work is also interested in recurrent set
detection. However, we use the test oracle to identify whether
the execution has fallen into a recurrent set, which is a subset
of the non-termination input, rather than to make a static
verification.

Except for recurrent set detection, some researchers focus
on infinite state verification. Le et al. [42] adopted a Hoare-
style forward verification and incorporated unknown pre/post-
pre-dicate to discover both termination and non-termination
properties. Frohn et al. [43] proposed the approach named loop
acceleration. They accelerated the terminating loops to prove
the reachability of non-terminating configurations. Different
from the non-termination checking, Xie et al. [29] adopted
path dependency automation, and inferred the termination and
non-termination of a single path and interleaving path via
monotonicity analysis. EndWatch differs from Loopster in
three aspects: 1) Loopster can only detect non-termination
caused by single stuck paths while EndWatch can detect
non-termination caused by interleaving of multiple paths. 2)
Loopster determines the termination or non-termination by
checking satisfiability of the whole program, while EndWatch
calculates explicit SRCs of individual loops, which are used as
oracles for testing. 3) Loopster is pure static and inapplicable
in large programs, while EndWatch can handle real-world
program, especially due to state revisit checking.

B. Dynamic Analysis for Non-termination
Compared with static analysis, dynamic analysis for non-

termination is relatively more similar to our work. Le et
al. [28] developed Dynamite which can verify termination
and non-termination for a loop by dynamic analysis. They
first dynamically execute the program to acquire dynamic
snapshots. Then they use these snapshots and a template to
infer a ranking function for termination verification or learn
a recurrent set for non-termination verification. Karmarkar et
al. [31] proposed FuzzNT for non-termination testing. They
used a guess-and-check approach to guess a prefix by AFL
and then they check non-termination by abstract interpretation-
based analysis. Similar to them, we also run the program
dynamically, but we verify the non-termination by test oracle
rather than to “guess” a candidate result, which is more
scalable in real world programs.



C. Detecting performance issues

Many approaches have been proposed to explore effective
ways on low-performance fuzzing. [12]–[16]. SlowFuzz [12]
adopts the number of executed instructions as the fitness
in genetic algorithm for a worse performance. Perfuzz [16]
further takes the visited paths into account and uses feedback-
directed mutational fuzzing to help generate slowdown input.
HotFuzz [13] constructs a test harness for every function, and
takes the number of executed instructions as fitness in their
generic algorithm to slow down the execution. Different from
the former feedback-based method, Singularity [15] conducts
a black box fuzzing, and finds slowdown cases by generating
the input with a specific pattern. ReScue [14] adopts a back-
tracking search approach to find the target string which can
induce Regex Dos. Some of the research is mainly focused
on loop efficiency [17], [18]. CARAMEL [17] adopts the
static analysis to find the variable that makes a loop executes
redundant iterations. Dhok et al. [18] detected performance
issues by finding redundant functions. Detecting performance
issues is different from proving non-termination, as discussed
in Section III-A.

VIII. CONCLUSION

In this work, we introduced EndWatch, a practical method
for detecting non-termination in real-world programs. End-
Watch combines static and dynamic analyses, where static
analysis calculates non-termination oracles, and dynamic anal-
ysis generates test cases to violate these oracles. EndWatch
can be applied in both offline and online modes, allowing it
to handle programs of different sizes and complexities. We
evaluated it on standard benchmarks and real-world projects.
The results showed its effectiveness and usefulness, especially
in detecting non-termination in real-world projects.
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